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A Mathematical Model of Spheroidal Weathering 1 

R. S. Sarracino ,  z G. Prasad,  3 and M. H o o h | o  z 

A mathematical model is developed to explain the geometrical patterns of spheroidal weathering. 
The model is then analyzed, and results of computer simulations for the weathering of spherical 
and ellipsoidal surfaces are presented. Ellipsoids weather initially into ellipsoids of greater or 
lesser eccentricity, depending on boundary conditions, and finally into spheres. This is in quali- 
tative agreement with the geometry of observed weathering patterns. Some of these features would 
be difficult to explain by a diffusion model. The weathering of rectangles also is simulated, and 
they weather into ellipses or circles. These are also in qualitative agreement with observed weath- 
ering patterns. 
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INTRODUCTION 

Spheroidal weathering structures are formed by differential chemical leaching 
and precipitation in rocks. Weathering starts from a network of fractures and 
fissures. Water percolates along these and penetrates the polygonal body from 
all sides, producing concentric ellipsoidal and spherical shells of decayed rock 
(Figs. 1-3). Weathering cells are typically 0.02-2.00 m in diameter. The 
weathering front migrates from the outside toward the center. Occasionally a 
core of unweathered rock is preserved. Microstructure analysis shows that min- 
erals of the unweathered rock are dissolved, elements are mobilized, and some 
are reprecipitated. Commonly, alternating Fe-rich and Fe-depleted zones occur 
(Fig. 3). These concentric weathering structures are found in a variety of rock 
types including granite, basalt, gabbro, sandstone, bauxite, and others (Augus- 
tithis and Otteman, 1966; Singer and Navrot, 1970; Augustithis et al., 1980; 
Augustithis, 1982). 

Alternating concentric precipitations were first described by Liesegang 
(1913). In his experiments, Liesegang produced parallel rings when potassium 
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Fig. 1. Typical spheroidal weathering structures. Measurements are made from the line drawing. 

dichromate and silver nitrate reacted in gelatin. Silver dichromate precipitated 
in concentric rings alternating with areas of no precipitation. The tings form by 
diffusion of silver dichromate through gelatin which forms a barrier to the other 
salt solution. This phenomenon is called Liesegang diffusion. Liesegang (1913) 
relates these diffusion tings to Fe-rich banding in weathered rocks and suggests 
the process of  formation might be similar. Carl and Amstutz (1958) experi- 
mentally show that Liesegang tings also are formed in three-dimensional bodies 
with 80-90% quartz grains and 5-10% gelatin; the rings either stop at grain 
boundaries or deviate around sand grains. 

These findings are similar to observations made on natural rocks in which 
Fe-rich tings terminate at mineral grains or go around them. Carl and Amstutz 
conclude that the Fe-rich rings in weathered rocks are caused by diffusion and 
periodic precipitation in a colloidal matrix or intergranular film. Augustithis and 
Ottemann (1966) show an exchange of elements occurs between the Fe-rich and 
the Fe-depleted zones in weathered granite. The amount of Ca and Fe increases 
in brown, Fe-rlch zones whereas A1, Si, K, Zr, Y, and Rb are enriched in Fe- 
depleted zones. They propose two opposing directions of element migration, 
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Fig. 3. Schematic section through spheroidal weathering stmcture. Weathering starts from a net- 
work of fractures along which water percolates and penetrates from all sides. 

producing a pH environment in which Fe precipitat ion is effective. The Liese- 
gang phenomenon part ial ly explains this process.  

Singer and Navrot  (1970) study the mineralogical  and chemical  alterations 
accompanying formation of  diffusion rings in a basalt boulder.  Depletion of  Fe 
from the white core is explained by little stability of  mafic minerals and a re- 
ducing environment.  Accumulat ion of  Fe in the brown rings is attributed to a 
rise in Eh due to fissuring of  the rock. In more recent work, diffusion tings in 
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bauxites and other rocks are analyzed, and elemental leaching and mobilization 
are proposed to be the mechanisms for formation of diffusion tings (Augustithis 
et ai., 1980; Augustithis, 1982). 

In the above experiments, diffusion is in one direction, either from inside 
to outside as in the two-dimensional experiment of Liesegang (1913) or from 
outside to inside, as in the three-dimensional case of Carl and Amstutz (1958). 
The diffusion medium also is assumed to be homogeneous. Spheroidal weath- 
ering in nature is in two directions, and the medium is generally not homoge- 
neous. Solution penetrates a rock from the outside to the weathered/fresh rock 
interface whereas leached elements are carried away from the interface to the 
outside. 

During this weathering process, three types of spheroids are formed: (1) 
the unweathered cores, (2) the decomposed and leached Fe-depleted shells, and 
(3) reprecipitated Fe-rich zones (Fig. 3). Among these types of spheroid for- 
mation only the third, or reprecipitated Fe-rich zones, is formed by a process 
similar to the Liesegang phenomenon (Matalon and Packter, 1955; Packter, 
1956a, 1956b). The interface between unweathered core and weathered rock 
cannot be formed by diffusion because fresh rock is impermeable to water. On 
the scale with which we are dealing, the interface presents a sharp discontinuity 
in mineral and water concentration and would, therefore, propagate in a fashion 
analogous to that of a shock front. 

Because the geometry of the first two spheroid types is not in accord With 
the Liesegang-type diffusion tings, but is consistent with the geometry one would 
expect from the propagation of a discontinuity interface, we suggest that the 
geometry of weathering patterns is determined by the geometry of the shrinking 
interface, and not by diffusion. 

These considerations have led to a shock-front model involving propaga- 
tion of a discontinuity (in this case the interface), in an attempt to explain the 
geometry of weathering rings. We introduce and analyze a general mathemat- 
ical model for the shape of weathering fronts, which leads to both the ellipsoidal 
and spheroidal weathering observed in nature, and we justify the overall pre- 
dictions of the model through measurements of a number of selected, represen- 
tative weathering structures. 

P R E L I M I N A R Y  C O N S I D E R A T I O N S  

On cut and exposed rock faces one can see the network of original fissures 
and the weathering pattern. The weathering surface rapidly evolves from a poly- 
gon into concentric ellipses, of increasing (Figs. lb; 2b,c) and decreasing (Figs. 
la,c; 2a) eccentricity. Whether or not the eccentricity initially increases, it 
eventually decreases (e.g. Figs. lb and 2c), and the ellipses weather into con- 
centric circles. Because the observed face presents sections from randomly ori- 
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ented cuts through the weathered structure, we conclude an initial irregular 
polygonal body will weather into an ellipsoid and eventually into a sphere. Any 
viable model would have to explain this phenomenon of both spherical and 
ellipsoidal weathering. 

The time scale for weathering is large. We assume that no considerable 
change occurs in water concentration during the weathering process and that 
fissures are adequately narrow. Structures are assumed far enough below the 
surface, that at the scale of the individual structure, capillary action would over- 
come the effect of the gravitational field gradient, so that weathering rates would 
be expected to be independent of cell orientation. On a scale less than a tenth 
of a millimeter, the fresh/weathered rock interface is complicated. However, 
on the scale we are dealing with, inhomogeneities of rock texture and crystal 
orientation and size are averaged out, so that fresh rock presents a homogeneous 
face to the water. Hence, the direction of weathering would parallel the geo- 
metric gradient of the interface surface at each point, and the propagation rate 
for a given rock in a given environment would depend solely on the local ge- 
ometry of the surface. These considerations have lead to the model presented 
here. 

T H E  M A T H E M A T I C A L  M O D E L  

Let the fresh surface be represented by a function of three spatial coordi- 
nates and time 

f (x( t ) ,  y(t), Z(t)) = c(t) (1) 

Function f represents a three-dimensional surface embedded in a four-di- 
mensional x, y, z, t space, points of which can be characterized by three param- 
eters s, u, and t. A surface point P(to, So, Uo), with spatial coordinates X(to, 
So, Uo), y( to, So, Uo), and Z( to, So, Uo), on the two-dimensional surface 

f[x(to), y(to), Z(to)] = C(to) (2) 

is considered to weather into point P(q,  s o, Uo), with coordinates x(tl, So, Uo), 
y(q,  So, Uo), and z(q,  So, Uo), which lies on the neighboring surface 

f [x (q) ,  y(t l ) ,  z (q ) ]  = c(tl) (3) 

If tl - to is infinitesimal, At, the vector separating P(to, So, Uo) and P(tl, 
So, Uo), is 

- _ F ~ f ) y  ( q -  to ) (4) 

where Vfis  a gradient of C(to) at P(to, So, Uo), and F(r) is some function of 
r, the radius of curvature of C(to) at P(to, So, Uo). 
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x(tl, So, Uo), Y(tl, So, Uo), 
z(fi, So, Uo) -....-. 

fix(tO, y(to), z(t)] fix(to), y(to), Z(t0)l 

~ t " ~ |  ix(to ' So, uo), y(to, so, Uo), 
-F(r)Vf (tl _ to) L ~ /  z(to, So, uo) 

/vfl 

Scheme I 

The negative sign arises because on a convex surface the gradient vector 
is opposite to the weathering direction. A contracting surface implies c ( t l )  < 
c (t  o); therefore, we find that 

f [ x ( q ,  So, Uo), y(tl ,  So, Uo), z(t , ,  s o, Uo)] 

- f [ x ( t o ,  So, Uo), y(to, So, Uo), Z(to, So, Uo)] 

_ (af  ,~ afdy 6fdz)  do 
\ g  d O  + ~y 7 + ~ 7 (t, - to) = 7tt (tl - to) < o 

= (L~ +fy~ + L i ) ( t ,  - to). (5) 

We also note 

6x -F(r ) f~  
x(t , ,  So, Uo) - X(to, So, Uo) = 6t (tl - to) - ! V i i  (tt - to). (6)  

Substituting (6) into (5), we obtain 

_F(r)(f2x + f y  + f2)  [vfl = _ F ( r ) ( f }  + f }  + f2)1/2 = b < O. (7)  

Without loss of  generality, we can set b = - k ,  where k is a positive constant. 
Equation (7) then becomes a nonlinear first-order partial differential equation in 
three independent variables 

G(x,  y, z , f , p ,  q, w) = - F [ r ( x ,  y, z ) ] ( p  2 + q2 + w2)1/2 + k = 0 (8) 

with a solution characterized by three parameters, t, s ,  and u. There will be (2n 
+ 1 ) = 7 equations for the characteristics of  the partial differential equation 

dx ~G -F2p  dy 5G -F2q  dz 6G - F 2 w  

dt 61) k dt 6q k dt 6w k 
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df 6G 6G ~G 
d t -  P ~ p  + q ~ q  + WOw - k  

dp 6G 6G - 6G kF x dq kFy dw kF z 
- p . . . . . .  ( 9 )  

dt 6x 6f 6x F dt F dt F 

For a given problem, we prescribe the initial conditions 

f = f( to,  s, u) x = X(to, s, u) 

y = y(to, s, u) Z = Z(to, s, u) (10) 

and can determine the initial conditions for the dependent variables p = p (to, 
s, u), q = q (to, s, u), and w = w (to, s, u), from the three equations 

Of Ox 6y 6z 
6s = P ~s + q o-s + Wos 

6f 6x 6y Oz 
a~ = P Tu + q-~u + Wou 

al,o .... = 0  (11) 

As a criterion for uniqueness of the solution, the initial conditions must be such 
that the determinant 

j = 

6G 6G 6G 

Op 6q 6w 

Ox 6y 6z 

6s Os Os 

Ox Oy 6z 

6u 6u Ou 

4 : 0  (12) 

The final step is to evaluate the function F(r) .  Assuming the rock to be 
homogeneous, composition of fresh rock on one side of the interface and weath- 
ered rock on the other side are independent of  time because, on the weathering 
time-scale, the weathering interface propagates in a fashion analogous to a shock 
front. Therefore, weathering rate will depend solely on the geometry of the 
interface. 

What is the probability that a given molecule will be pulled out of the fresh 
rock by solution at the interface? The molecule is held in place by neighboring 
molecules in the rock while being attracted into solution by the surrounding 
water molecules. The net weathering rate at a point on the interface should then 
be directly proportional to the ratio of the solid angles of the outer and inner 
faces. 
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F ( r )  = solid angle of  H20 surrounding rock section _ ~H2o (13) 

solid angle of  rock at section 4~" - ~2H2 o 

A number of  functions can be used to relate the radius of  curvature r and fL 
each characterized by a different distance scale. For instance, one possible re- 

l a t i o n s h i p  is given by 

f~n2o = 2~r(1 + e - r )  (14) 

This has the necessary limits: 2~r for r = ~ (a plane) and 47v for r = 0 (a 
point). From Eq. (14) 

l + e  r 
F ( r )  - - -  (15) 

1 - e - r  

We choose a more convenient relationship 

f~H20 = 2rr{2 - - [ 1  + ( l / r ) ]  -1} (16) 

which has the same limits as Eq. (14). From Eq. (16) 

F ( r )  = 1 + ( Z / r )  (17) 

Substituting Eq. (17) into Eq. (9) yields the equations for a general three-di- 
mensional weathering surface 

dx'  _ 1 (  2)  2 . 
dt k 1+7 p' 

df k 
dt 

dp i - 2kr i 

dt - 2r + r 2 (18) 

where r i = d r / d x  i and x l, x 2, x 3, p l ,  p2, p3 = x,  y, z, p ,  q, w. 

Radius of  curvature is defined unambiguously on any point of  a line, but 
not at any point of  a surface. The definition we use is 

1 
r = - -  (19) 

k0 

w h e r e  k0, mean curvature, is the average of curvatures of  the most strongly and 
most weakly curved lines on the surface intersecting the particular point. 
For a surface described by a function f ,  mean curvature is given by 

1 
k° - 2 ] V f  I ~ [ f x x ( f 2  + f 2 )  + f y y ( f 2  + f 2 )  + fzz(f2x + f 2 )  

- 2fyzLf~ - 2fxzfxfz - 2f,  uLfy ] where (20) 
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= ~ /~2) k0 2(kl + 

Scheme II 

6/ 
fx = 6x f v  - 6x 6y etc. (21 ) 

W E A T H E R I N G  O F  A P L A N E  

Exact solutions to Eq. (18) will now be found for a plane and a sphere. 
Choosing a convenient  orientation of  coordinate axes, a plane may be param- 
eterized by 

X(to, S ,U)  = s y ( t  o , s , u )  = u Z(to, S ,U)  = t o f =  0 (22)  

The radius of  curvature is infinite, so that F = 1. From Eq. (11), we find 

p ( t  o, s, u) = 0 q(to, s, u) = 0 W(to, s, u) = k (23)  

so that Eq. (18) reduces to 

dx 0 dy 0 dz - w 
dt dt dt k 

dp _ k 6 F _  0 _dq = 0 __dw = 0 (24)  
dt F 6x dt dt 

with the solution 

x = s y = u z = to - t (25)  

which is the equation of  a plane discontinuity moving perpendicularly to the z 
axis. 

W E A T H E R I N G  O F  A S P H E R E  

The initial coordinates are given by 

x - - a  o c o s s s i n u  y = a o s i n s s i n u  z = a 0 c o s u  

with 

f = const. (26)  
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r(to, s, u)  : a o 

From Eq. (11), we find 

0 = - a o p  sin s sin u + aoq cos s sin u 

0 = a o p c o s s c o s u  + a o q s i n s c o s u  - a o w s i n u  

1 + ( p 2 +  + - k  

which reduce to 

k cos s sin u 
p ( t  o, s, u)  - (1 + 2 / a o )  

k sin s sin u 
q ( t  o, s, u)  - (1 + Z/a0)  

We expect spherical weathering, so 

x ( t ,  s, u)  = a ( t )  cos s sin u 

Z( t )  = a ( t )  cos u 

k cos s sin u 
p ( t ,  s, u) = [1 + 2 / a ( t ) ]  

k cos u 
w( t ,  s, u) = [1 + 2 / a ( t ) ]  

Substituting Eq. (30) into Eq. (18), we obtain 

da 
- [1 + ( Z / a ) ]  

dt 
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(27) 

(28) 

k COS U 
W(to, s, u)  - (1 + 2 / a o )  (29) 

y ( t )  = a ( t )  sin s sin u 

k sin s sin u 
q( t ,  s, u)  = [1 + 2 / a ( t ) ]  

(30) 

(31 

The solution to this first-order differential equation is 

2 ,]2 e a - a °  = e -(t-t°~ (32 
+ a 

2 + a o /  

T H E  E Q U A T I O N S  O F  AN E L L I P S O I D  

We now examine equations for an ellipsoidal surface. Ellipses are the most 
common weathering curves, suggesting that irregular solids rapidly weather into 
ellipsoids. We begin with an ellipsoidal surface centered at the origin, with axes 
parallel to the coordinate axes and with axis radii a > b > c. 

At t = to, let the ellipsoid surface be 

X2 y2 Z2 
a 2 + ~ + ~5 = 1 (33) 
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The initial coordinate values are 

x (to, s, u) = a 0 cos s sin u (34) 

y ( t  o, s, u) = b o sin s sin u z ( t  o, s, u) = c o c o s u  

Substituting into Eq. (11), and n o t i n g f  = const. ,  we obtain 

0 = -pao  sin s sin u + qbo cos s sin u 

0 = p a o c o s s c o s u  + q b o s i n s c o s u  - wc o s i n u  

0 = [1 + ( 2 / a o ) ] ( p  2 + q2 + w 2 ) l / 2  _ k (34) 

which gives 

p(to,  S, u) = k b o c o C O S s s i n u / { [ l  + ( 2 / r o )  ] ~p(s, u)}  

q( t  o, s, u)  = kaocos ins  sin u / { [ 1  + (a/ro)l ~,(s, u)} 
W(to, S ,U ) = k a o b o c o s u / { [ 1  + ( 2 1 r o ) l ~ o ( s , u ) }  where (36) 

~o(s, u)  = (boc 022 cos 2 s sin: u + aoc 022 sin 2 s sin 2 u + a~bo 2 cos 2 u) 1/2 

2 2 2 ( x  2 yg 
r 0 = 2aoboc o \ a  4 + b~o 

+ 1 c~ ° (ag + b 2) 

+ 

and (37) 

z  3/21Fx  
~ j  /L~o o(bg + c 2) + b~ o ( a  2 + c 2) 

(38) 

Numerical solution of differential equations in Eq. (18) with initial con- 
ditions of  Eqs. (33-38) is difficult because, as the ellipsoid shrinks, the equa- 
tions become stiff, and special methods must be used to solve them. However ,  
the equations may  be simplified. 

Intuitively, we expect the ellipsoid to weather into an ellipsoid (of different 
eccentricity), represented by 

x( t ,  0, 7r/2) = a( t )  y( t ,  7r/2, 7r /2)  = b( t )  z( t ,  s, O) = c ( t )  (39) 

One might think the general solution is represented by 

x = a ( t )  c o s s s i n u  y = b( t )  s i n s s i n u  z = c ( t )  c o s u  (40) 

However ,  Eq. (40) would not be a solution because, in general, a weathering 
path would not be a locus of  constant s, u points, as s and u are defined in Eq. 
(40). Along an axis, the weathering path will be a straight line and is the locus 
of  constant s, u points, as given by Eq. (39). Along the x axis (s = 0, u = 
7r /2) ,  the initial conditions Eqs. (34-38) become 
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T h e  solid l ine  represents  a wea the r ing  path 

7r 
Sinitia I ~ 

~ "  The  dotted l ine is the locus o f  points for  which  

7r 
$ = - 

4 

Scheme III 

X(to, O, ~r/2) = ao y(to, O, ~r/2) = 0 

2bgc g 
r° - ao(b g + cg) 

k 
p(to, O, 7r/2) - 

1 + ( 2 / r o )  

Noting that 

r s 

Z(to, O, rr/2) = 0 

q(to, O, 7r/2) = 0 w(t  o, O, ~r/2) = 0 

2xa2b2c2[(x2/a 4) q- (y2/b4)  q- (Z2/C4)] I/2 

(41) 

[(x2/ , t2)(b  2 + c 2) + (y2 /b2) (a2  + C 2) q- (Z2/C2)(a 2 + b2)] 2 

IX 2 y2 ( 3C 2 2C2'~ Z2 ( 3b 2 
" ~ ( b 2  + c2) + a - ~  1 + a~ b 2 j  + a2c2-- 1 + a2 

(42) 

we have 

rx(tO, O, 7r/2) 2 2 2 = 2boco/ao(b 2 + c 2) 

From Eq. (26) and Eq. (18) 

(43) 

da( t )  f a°(b2 + cg)] (44) 
dt to = - 1 + 2 2 boco 

Equation (44) is preserved throughout the weathering process. By using 
similar derivations for the weathering paths, s = 7r/2, u = rr/2,  and u = 0, 
we find 
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E dt 1 + 

d c _  [ 
dt 1 + 

Considering 

Eq. (45) becomes 

a(b2_+__c:)q 
b2c 2 J 

c(a: + b2)] 
a 2 ~  J 

_db I b(a2 + c2) 1 =  _ 
dt 1 q- a2c2 

a > _ _ b > c  

a = a [ b ( c ) ]  

b = b(c)  

da a2 {ab2 q- ac2 q-_72c2~ 
d---b - b 2 \a2b + a2c 2 q- bc2J 

db b 2 f a 2 b + a 2 c 2 + b c 2 ~  

dc - c 2 \ 7 g  2 + 77~ + b2c /  

da a 2 lab  2 + ac e + b2c2'~ 

dc - c 2 \ a G  2 ; 7 c  ; - 7 c /  

Of critical importance are the conditions 

da a db b 
db b dc c 

(45) 

(46) 

(47) 

(48) 

because 

da a db b 
~-~ > ~ and ~cc > -c (49) 

will lead to spheroidal weathering (that is, an ellipsoid will weather into a 
sphere), whereas 

da a db b 
~-~ < ~ and dcc < -c (50) 

will lead to ellipsoidal weathering (an ellipsoid will become more eccentric), 
and mixed conditions will give the appearance of both, depending upon which 
plane of the cell has been cut. We note for a sphere a = b = c 

da db 
- - 1 (51)  

db de 

so a sphere will remain a sphere, as we expect. 
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Will the sphere be stable? Let b = c ( 1 + e ) and a = b ( 1 
e + 6), to the first order, where 

(1, 1) >> 6) > (o, o) 

+ 6) = c(1 + 

(52) 

(53) 

Equation (47) becomes 

l >b/c c < 2 
__db = c + 2(1_-__6) = b / c  if c = 2 

dc c + 2(1 ~ 6) <b/c c > 2 

l >a/b c < 2 
__da =-c + 2(1  _+ 6) = a / b  i f  c = 2 
db c + 2(1 6) 

<a/b c > 2 

Hence, spherical weathering is stable for a sphere smaller than a critical radius. 
Will weathering be spheroidal in its final stages? An analysis similar to 

that above suggests that it will be. Weathering of an ellipsoid is summarized in 
Table 1. 

Equation (45) is nonstiff. They were solved by a Runge-Kutta fourth-order 
method (Burden et al., 1981). Computer simulations for different planar cuts 
(Fig. 4a-e) are presented with different initial values of ellipsoid axis length. 

W E A T H E R I N G  F R O M  A N  INITIAL P O L Y G O N  

Equations (8)-(17) readily lend themselves to curve evolution from an ini- 
tial polygon. Because a unique circle can be drawn through any three points, a 

Table 1. Type of Weathering as a Function of Axis Length 

c b a 
(z axis) (y axis) (x axis) Type of weathering 

>2  > c  > b  
>2  =c  =b  
<2  =c  =b  

Between 1 > c > b 
and 2 

< t  
<2  

>c/(c- 1) [>c/(e- 1)l 
<c/(c- 1) [<c/(c- 1)] 

> b / ( b -  l) 
< b / ( b -  1) 

Elliptical in planes through all pairs of axes 
Unstable (spheroidal) 
Stable (spheroidal) 
May be spherical or elliptical through any 

pair of axes (includes the possibility of 
mixed weathering) 

Elliptical through the y - z  [x-z] axis 
Spherical through the y - z  [x-z] axis 
Spherical through the x - z  and y-z  axis 
Elliptical through the x -y  axis 
Spherical through the x -y  axis 
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Fig. 4. (a) Computer simulation of weathering in the x - y  plane for an ellipsoid with initial axis 
half-lengths x = 5, y = 4, z = 1.5. Successive ellipses become first more eccentric, then less 
eccentric. (b) Computer simulation of  weathering in the y - z  plane for the ellipsoid of  (a). (c) 
Computer simulation of  weathering in the x - z  plane for the ellipsoid of (a). As is the case in (a) 
and (b), successive ellipses are first more eccentric, but then weather into less eccentric ellipses. 
(d) Computer simulation of weathering in the y - z  plane for an ellipsoid with initial half-lengths x 
= 3, y = 2, z = 1.5. Successive ellipses become less eccentric. (e) Computer simulation of  
weathering in the y - z  plane for an ellipsoid with initial half-lengths x = 1, y = 0.8, z = 0.6. 
Successive ellipses become less eccentric. 



i 

! 



I ~ ~ - ~  - - -  1 [ ~ - - - -  ~ ~ - - ~ - l l  

+ -  i i i ~ i i i 

iil ~ ~ ~ ~ ; -  . . . . . .  _~ 

Fig. 5. (a) Computer simulation of weathering from an initial square into a circle. (b) Computer 
simulation of weathering from an initial rectangle. (c) Computer simulation of weathering from an 
initial rectangle. The initial rectangle is twice the size as that of (b). 
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~'radius of curvature" can be obtained at any point in a curve. Simulation from 
an initial rectangle (Fig. 5) clearly shows that the rectangle rapidly evolves into 
an ellipse-like curve. 

The three-dimensional case is not as straightforward because one must av- 
erage over curves through a point on the surface to obtain a net "radius of 
curvature." Clearly, however, the overall effect is the same as that for the two- 
dimensional case. 

O B S E R V A T I O N S  

A statistical analysis of measurements for weathered structures chosen at 
random would be a prodigious task. Accordingly, measurements of 14 selected 
structures, chosen both for the clarity of their rings and for ease of measurement 
illustrate features of the model (Table 2). The width of the weathered rings 
seems to depend on grain size and does not appear to represent equal intervals 
of time. Hence, we have looked at the evolution of the ellipse's shape and not 
at the distance between successive surfaces. Because chips break off the original 
structures and parallel cracks develop, the measurements begin with the first 
recognizable ellipse and not with the original fissure. Uncertainty associated 
with each measurement is 0.5 mm which leads, in some cases, to relatively 
large uncertainties in axis ratios. 

Of 14 entries (Table 2), entries 1-7 show spherical weathering, that is, the 
eccentricity of the weathering surface decreases monotonically. Entries 8-14 
illustrate elliptical weathering. The eccentricities of the weathering ellipses in- 
crease initially and then, for entries 11-14, decrease. Considering uncertainties, 
entries 2-7 may also belong to this category. 

CONCLUSION 

Results obtained by the model are in qualitative agreement with observed 
weathering patterns. A comparison of Fig. 5 with Figs. 1 and 2 shows good 
agreement with model predictions regarding rapid evolution of the original 
polygonal body into an ellipse. Perhaps more striking is the agreement of entries 
11-14 in Table 2 with predictions of the model. These measurements would be 
difficult to explain by diffusion. 

The model proposed here has the advantage of simplicity. Although clearly 
an idealization and based on a minimum number of general assumptions, the 
model reproduces the geometry of weathering patterns observed in nature. 

Through a statistical analysis of measurements taken from randomly cut, 
two-dimensional sections of weathering patterns, the applicability of the model 
could be conclusively tested. Through such a study, parameters of the model 
could be fixed and hence relative weathering rates for different rocks, and rocks 
within different environments, could be obtained. 
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Table 2. Dimensions and Eccentricities of Successive Ellipses and Circles 

Ellipse and circle dimensions in m m  (±0.5) (major axis/minor axis) 

1 (Fig. lc) 38/36 30,/28 22/21 I0/10 
1.06 ± 0.02 1.07 ± 0.03 1.05 ± 0.05 1.00(± 0.10) 

2 59/53 49/46 24/22 
1.11 ± 0.02 1.07 ± 0.02 1.09 + 0.05 

3 (Fig. la) 26/25 21/19 15/14 10/9 
1.04 + 0.04 1.11 _+ 0.05 1.07 ± 0.07 1.11 ± 0.11 

4 28/21 20/16 15/12 
1.33 _+ 0.06 1.25 _ 0.07 1.25 + 0.09 

5 33/21 28/19 18,/13 
1,57 _+ 0.06 1.47 _+ 0.06 1.38 ± 0.09 

6 (Fig. 4a) 45/31 30/21 20 / 14 
1.45 _+ 0.04 1.43 _+ 0.06 1.43 + 0.09 

7 48/36 41/30 28/23 14/12 
1.33 _+ 0.03 1.37 + 0.04 1.22 + 0.05 1.17 + 0.11 

8 (Fig. 4b) 46/35 37,/27 29/18 19/10 
1.31 _+ 0.04 1.37 __. 0.04 1.61 _+ 0.07 1.90 ±_ 0.14 

9 45/32 37/26 20/11 
1.41 ± 0.03 1.42 + 0.04 1.82 ± 0.12 

10 69/56 46/29 25/15 
1.23 ± 0.02 1.59 + 0.04 1.67 + 0.09 

11 (Fig. 4c) 99/47 87/41 74/33 65/27 
2.11 + 0.03 2.12 _+ 0.04 2.24 + 0.05 2.41 + 0.06 

40/19 25/13 
2.11 _ 0.08 1,92 _+ 0.11 

12 102-96/58 85/48 68/33 33/18 
1.71 _+ 0.06 1.77 _+ 0.03 2.06 _+ 0.05 1.83 + 0.07 

13 80/62 68/52 44/32 32/25 
1.29 _+ 0.02 1.31 _ 0.02 1.38 + 0.04 1.28 _+ 0.04 

14 (Fig. lb) 37/30 31/23 26/19 9 /9  
1.23 + 0.03 1.35 _+ 0.05 1.37 + 0.06 1.00 (+ 0.12) 
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