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An Interpolation Method Taking into Account 
Inequality Constraints: I. Methodology I 

Olivier D u b r u l e  2 and  C lement  Kos tov  3 

Several kinds of  data can provide information about a variable measured on a one- or two-dimen- 
sional space; at some points, the value is known to be equal to a certain number. At other points, 
the only information may be that the variable is greater or smaller than a given value. The theory 
of  splines provides interpolating functions that can take into account both equality and inequality 
data. These interpolating functions are presented. The parallel between splines and kriging is 
reviewed, using the formalism of  dual kriging. Coefficients of  dual kriging can be obtained directly 
by minimizing a quadratic form. By adding some inequality constraints to this minimization, an 
interpolating function may be calculated which takes into account inequality data and is more 
general than a spline. The method is illustrated by some simple one-dimensional examples. 

KEY WORDS: kriging, splines, mapping, prediction. 

I N T R O D U C T I O N  

Defini t ion o f  the Problem 

The problem of  mapping under inequality constraints is common in the oil in- 
dustry. Consider, for instance (Fig. 1) a well that has been drilled through the 
producing interval of  a reservoir but has reached the oil-water contact before 
the bottom of  the interval. When this happens, drilling is often stopped in order 
to prevent any communication with the aquifer, and also to save drilling costs. 
The only information about the gross thickness at the well is that it is greater 
than the penetrated thickness. This information must be taken into account when 
mapping isopachs. The general problem that this paper addresses is stated as: 

Find an interpolating function z * ( x )  of  the variable z (x)  such that 
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A [ 
TRUNCATION 

OIL-WATER CONTACT ~ ~ ~ 

Fig. 1. When mapping gross thickness of a formation, the only information available at the well 
is that gross thickness is greater than penetrated thickness. 

z*(x,O = z,~ for c~ = 1 . . . .  n (exact data) 

z*(x,~) >- z,~ for c~ = n + 1 . . . .  n + Pl (1) 

(inequality data) 

z * ( x , )  < z,~ for c~ = n + Pl  + 1, . . . ,  n + Pl  + P2 

x can be a point in one or two dimensions,  p = p~ + P2 is the total number of  
inequality constraints,  and at some points x=, the inequality constraint can be 
two-sided 

z,~l <- z*(x,O < z,~2 (2) 

In that case, location x= appears twice in (1). 
In order  to facilitate reading of  this paper,  an outline of  the developments  

follows. 
The problem of  interpolation under inequality constraints has been solved 

already in the f ramework of  spline theory. This solution is presented. Then, 
using the fact that spline interpolation is a part icular  case of  kriging, the spline 
solution is generalized.  The general izat ion is performed in several steps. First,  
existing works about kriging and inequality data are reviewed. A convenient 
way to deal  with this problem is to treat kriging as defining an' interpolating 
function rather than a "po in t  by po in t "  estimator.  That is why formalism of  
"dua l  k r ig ing"  is presented briefly. Coefficients of  dual kriging are shown to 
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minimize a norm similar to the norm minimized by the spline function. Thus, 
results of  the theory of  splines can be generalized to the kriging interpolator, 
which takes into account inequality data, and also is more general than a spline 
function. The last part of  the paper presents simple applications of  the method. 
The reader more interested in applications than theory can read that part first. 

S P L I N E  F U N C T I O N S  U N D E R  I N E Q U A L I T Y  C O N S T R A I N T S  

The theory of  splines under inequality constraints is presented in order to 
prepare for the generalization to kriging. In this paper we restrict ourselves to 
the so-called " thin plate" splines, which are most often used in interpolation 
problems. 

Splines  in R and R 2 

If  x~, either a point in R or R 2, is in R 2, its two coordinates are x~  and 
x~2. The "const ra ined"  thin plate splines are defined as functions minimizing 

In R f"2(x) dx (3) 
a 

n2 + \ O f  J + 2 \Ox OyJ ] dx dy (4) 
In R 2 

under the conditions 

flx~) = z~ for c~ = 1, . . .  , n 

flx~) > z~ for c~ = n + 1, . . .  , n + p~ (5) 

f(x~) < z~ f o r a  = n + p l  + 1 . . . . .  n + p  

In order to formalize this problem mathematically, two normed spaces X and Y 
and a linear operator T mapping X into Y are defined, so that the spline function 
is the function f of X which minimizes I lTf l l  2 under constraints (5). For in- 
stance, in one dimension, X, Y, and Tare:  

X functions defined on the interval [a, b] which have their second derivatives 
in L 2 [a, b] 

S g L 2 [a, b], with the usual norm: Ilf l[  2 = f2(t) dt 
a 

T associates to a function f o f  X its second derivative 

T(f)  = f "  

In two dimensions, the definition of  X, Y, and T is more complicated and 
can be found in Duchon (1975). Let us mention only that T is a second-order 
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differential operator, which associates to each func t ionf the  quadruplet of  func- 
tions 

T(f) = \Ox2 ~y2' Ox Oy' Oy OxJ (6) 

When n " e x a c t "  points of  coordinates (x~, z~) (resp. x~l, x~a, z~ in R 2) are not 
on the same line (resp. plane in R2), Laurent (1972, Chap. 9) has shown that a 
unique constrained spline a(x) is characterized by the relation 

n+p 

( Ta, T f )  = ~ b ~ f(x,~) for all f in X (7) 
~ = 1  

The left member of  the equation is the scalar product between To and Tf, as- 
sociated with the norm of  space Y. Notice that c~ varies from 1 to n + p. The 
exact data play the same role as inequality data. 

Now, consider functions K i ( ' ,  x,~) defined by 

In R K I ( X ,  xe~) = K l ( X  - xa )  = Ix - xo~l 3 (8)  

In R 2 K2(x, x=) = K2(x - x~) -= [(xl - x~l) 2 + (x2 - x~2) 2] 

• Log[(xl - X~l) 2 + (x2 - x~2)2] 1/2 (9) 

Functions K i ( ' ,  x~) associate a real number to points of  R and R 2. They belong 
in each case to space X and are mapped by the application T into space Y, so 
that 

( TK i ( . ,  x~,), T f )  = f (x~)  for all f i n  X (10) 

For R, the proof of  (10) is easy and can be found in Laurent (1972) or Prenter 
(1975). For R 2, it is more difficult and has been established by Duchon (1975). 

Consider now eqs. (7) and (10). I f  we take for a a linear combination of  
functions Ki(" , x~) for c~ = 1 to n + p, eq. (7) clearly will be satisfied• We 
even can add to this linear combination a function of  the kernel of  T (that is, a 
function n such that Tn = 0) and eq. (7) still will be satisfied• In R, T is the 
second derivative, and the kemel of  T is composed of  polynomials of  order 1. 
The spline function then can be written 

n+p 

al(x) = Co + c lx  + ~ b '~ K l (x  - x=) (11) 
c~=l 

In R 2, expression (6) shows that the kernel of  T is composed of  polynomials of  
order 1, as in R. Therefore, the spline function in R 2 can be written 

n+p 

a2(xi, x2) = Co + clx l  + c2x2 + ~ b ~ K2(x - x~,) (12) 
a = l  
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The expression of the constrained spline in R is from Laurent (1972). In R 2, 
Duchon (1975) found the expression of the spline in the case where all data are 
exact. But eq. (7) and his paper evidently imply that (12) applies to constrained 
sptines. 

The balance of the calculations for spline functions will be made in R 2, 
but can be applied easily to R. 

Equation (12) shows that the constrained spline depends linearly on (n + 
p + 3) coefficients Co, cl, c2, b ~ . . . . .  b n+p .  How can these coefficients be 
calculated? First, let us apply eq. (7) to functions f (x)  = 1, f(x) = x~, and f ix)  
= x2, which are basis functions of the kernel of T. 

We obtain 
n+p n+p n+p 

~] b '~= ~ b~x,~l = ~ b~x,~2 = 0 (13) 
e ~ - I  e ~ = l  c ~ = l  

which is a set of three equations in (n + p + 3) unknowns. Applying eq. (7) 
to the spline function a(x) itself, we find (n + p) additional equations which 
determine all unknowns. 

n+p 

Ilyoll = --- <To, To> -- Z b ~ ~(x~) (14) 
c¢=1 

Replacing a(x) by its analytic expression (12) and using eqs. (13), eq. (14) can 
be shown to imply 

n+p n+p 

IIToll = = Z Z b~b~K=(x~ - x~) (15) 
c ~ = l  ~ = 1  

(In the following, K 2 ( x  ~ - x{i) will be noted simply K~).  Equation (15) is 
interesting. It shows that the expression to be minimized, II Tall 2, is a quadratic 
form of unknown coefficients b ~. Minimization is constrained by (5), that is, 
a(x) should satisfy the exact and inequality data. But o(x~), for c~ = 1 to (n + 
p), is simply a linear function of unknown coefficients: 

n+p 

~(x=) = Co + clx~l + c2x~2 + ~ b~K=~ (16) 

Coefficients of the spline apparently can be obtained by solving a classical prob- 
lem of quadratic programming: minimization of the quadratic form (15) under 
linear conditions (5) (The three eqs. (13) can be shown to result from minimi- 
zation of the quadratic form). 

When no inequality constraints exist, the result is the well-known linear 
system of splines for exact data only (Duchon, 1975) 

n+p n+p n+p 

b ~ =  Z b~x~ = ~ b~x,~2 = 0 (17) 
~ x = l  c¢=1 c ~ = l  

where a(x~) = z~ for o~ = 1 . . . . .  n. 
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Therefore, in conclusion, the spline function satisfying exact and inequal- 
ity data can be obtained by the two following steps (in two dimensions): 

• calculate the coefficients c 0, cl, c 2, and b ~ which minimize (15) under con- 
ditions (5) 

• compute the spline function after (12), with functions K2(', x . )  given by 
(9). 

The method used to solve the quadratic minimization problem is presented and 
discussed in Kostov and Dubrule (1986). 

GENERALIZATION TO KRIGING 

C o m m e n t s  on Exis t ing  Methods  

Barnes and Johnson (1984) presented a method for solving the kfiging sys- 
tem under inequality constraints on kriging weights, rather than on interpolated 
values. Limic and Mikelic (1984) showed how to add positivity constraints on 
kriging weights in order to obtain positive estimates when estimating positive 
variables. Mallet (1980) applied a quadratic programming algorithm to a prob- 
lem of multiple linear regression under linear constraints. Mallet was not spe- 
cifically referring to kriging in his paper. Nevertheless, kriging is a multiple 
regression of unknown value Z(x)  against data Z(x~),  and Mallet's method can 
be simply applied to kriging. All these methods add inequality constraints to 
the classical kriging system. Kriging weights k ~ minimize 

- x ~ Z ( x ~ )  Variance Z(x) = i 

not only under usual nonbias conditions of universal kriging (Matheron, 1971) 

n 

k~f~(x~) = f l ( x )  for all 1 
m = l  

but also under constraints: 

k s > 0 (for all c~ between 1 and n) 

(with Barnes and Johnson, 1984, or Limic and Mikelic, 1984), or 

n 

z'(x) <- ~ ~, z(x~) <- z"(x) 
t ~ = l  

(by generalizing Mallet's method, 1980, to kriging). 
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By expressing variance in terms of the ),~ and using quadratic programming 
techniques, this kind of problem can be solved. Can we apply a technique sim- 
ilar to Mallet's to our problem? Unfortunately, the problem is that the constraint 
on value z(x) can only be used when estimating the value at point x itself. When 
estimating z(x + e) at a point close to x, information about bounds on z(x) are 
not available. One can use only exact data z(x~). The consequence of this prob- 
lem is shown (Fig. 2) if we consider four exact values (abscissa 2, 3, 5, 6) 
whereas at x = 4 the value is known only to be greater or equal to 9. When 
estimating points around x (even at a small distance e from x), the method can 
only take into account exact data from four points (location 2, 3, 5, 6), which 
explains why interpolated values are so small. Then, just at x = 4, the estimate 
" jumps"  to take a value greater or equal to 9 (that is, exactly 9 here). This is 
not acceptable, because if the value is so large at x = 4, it is probably also 
large at x = 3.99, x = 4.01, etc. We want the information at x to be used also 
when estimating values surrounding x. Two more comments can be made: 

• The behavior of the interpolator is similar to what happens when the vario- 
gram model has a large nugget effect: the estimated value varies discontin- 
uously between data points and estimated points. However, the behavior we 
see (Fig. 2) has nothing to do with this nugget effect discontinuity: it would 
happen even with a zero nugget effect. The problem comes from "point by 
point" formulation of kriging. 

• Works by Barnes and Johnson (1984), Limic and Mikelic (1984), or Mallet 
(1980) have many useful applications. What is demonstrated here is that they 
are not suitable for mapping applications where one needs an interpolator at 
all the points of a given domain. A satisfactory interpolating function (Fig. 
3) has been produced by the spline method described earlier. This method 
calculates a global function honoring both exact data and inequality condi- 
tions. As a result, these conditions are built into the function and have an 
impact not only at the inequality points themselves, but also in their neigh- 
borhood. 

In conclusion, classical formalism of kriging is difficult to use here because 
it works point by point. The solution seems to belong to methods, such as 
splines, which calculate global interpolating functions rather than point esti- 
mates. That is why the formalism of dual kriging, which expresses kriging as 
a global interpolating function, is going to be useful. 

Fo rma l i s m o f  Dual  Krig ing  

Originally, the kriged value z*(x) at a point x was defined as a weighted 
average o fn  values z~ = z(x~) measured at n surrounding data points. Matheron 
(1971) showed that one also could interpret kriging as an interpolating function, 
a linear combination of some elementary basis functions. If  we consider an 
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intrinsic random function of order k (k - IRF) Z(x)  (Delfiner, 1975) with a 
generalized covariance K(h),  z*(x)  can be written 

z*(x) = c l f t (x )  + Z b'~K(x - x,~) (18) 
/ = 0  e ~ = l  

where coefficients b ~ and cz are solutions of the dual kriging system 

z*(x~) = ~ ct f t (x~)  + ~ b~K(x~ - xz) = z~ (13 = 1 . . . . .  n) 
/ = 0  c ~ = l  

n 

where ~] b~fZ(x~) = 0 (l = 0 . . . . .  m) (19) 
a = l  

(Functions f are monomials of degree _< k in the coordinates of x. For instance, 
in R 2, when k = 1, three monomials exist: f ° ( x  1, x2) = 1, f l ( x  1, x2) = xl, 

f 2 ( x l ,  x 2 ) =  x2. The following simplified notations will be used: f~ = 
ft(x) and f~ : f t ( x , ) .  

Developments will use the formalism of the theory of k - IRF, because 
this makes comparison with splines easier. However, previous remarks about 
dual kriging apply to ordinary and universal kriging (Journel and Huijbregts, 
1978) by replacing the generalized covariance K(h) by -7 (h ) ,  where 3'(h) is 
the variogram. For instance, in the case of ordinary kriging, the kriging inter- 
polator can be written 

Z*(X) = c o - ~,, b'~v(x - x~,) (20) 
o~=1 

(in the case of simple kriging with zero mean, we would have c o = 0). Many 
methods of interpolation calculate an interpolating function g(x) which depends 
on a certain number of parameters. These parameters are determined by con- 
ditions that g(x) honors the data, g(x~,) = z,~, for o~ = 1 . . . . .  n and often by 
other particular conditions. Equations (18) and (19) define kriging in a similar 
manner and make the comparison of kriging with other interpolators easy (see 
Dubrule, 1981). In particular, the parallel between splines and dual kriging 
appears clearly. Matheron (1981) and Salkauskas (1982) compared splines and 
kriging in a rather abstract framework. Dubrule (1981) applied Matheron's re- 
suits to classical problems of interpolation. Watson (1984) used a simple method 
to establish the parallel between the two methods. Comparison of eqs. (17), 
(18), and (19), shows that the spline interpolator is equal to: 

• kriging of a 1 - IRF (linear trend) with generalized covariance K(h) = I hl 3 
in R. 

• kriging of a 1 - IRF with generalized covariance K(h) = Ihl 2 log Ihl in R 2. 

This parallel is discussed in Dubrule (1984): the spline function appears 
to be a particular kriging interpolator, for which covariance, instead of being 
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obtained from data, is fixed a priori. This "spline covariance" is Ih] 3 in R and 
Ihl 2 log Ihl in R 2. 

Quadratic Form Minimized by Coefficients of Dual Kriging 

Earlier, the spline function was determined in two steps. First, we showed 
that the norm to be minimized was given by expression (15). Then, (15) was 
minimized under constraints (5). The fight-hand side of (15) can be calculated 
for the kriging interpolator as well, merely by replacing spline covariance Kz(h) 
with generalized covariance K(h). Of course, this expression cannot be inter- 
preted as a norm, as it was for the spline. However, do coefficients of dual 
kriging minimize 

n 

k b~b/3K(x~ - x/3) (21) 
c ~ = l  / 3 = 1  

under conditions z*(x~) = z~? Introducing n Lagrange parameters d ~, this is 
equivalent to the minimization of the following expression, with respect to coef- 
ficients ct, b ~, d ~ 

Z b ~b ¢K~/3-  2 2  d ~ c t f  ~ + Z b ¢K~/3 - z~ (22) 
~ = 1  / 3 = I  = 1  I=0  B = I  

It is easy to check, by calculating partial derivatives of (22) with respect to all 
coefficients, that one first obtains 

b ~ = d ~ for all c~ 

and that the other relations are nothing more than (19); that is, equations which 
characterize coefficients of dual kriging! This is an interesting result: it is not 
only kriging weights },~ which minimize a quadratic form (the estimation var- 
iance). Coefficients of dual kriging themselves minimize a quadratic form, which 
is equal to H Toll 2 in the particular case of a spline covariance. The direct con- 
sequence of this property is that the approach used with splines for inequality 
data can be generalized to kriging: we will minimize the quadratic form (21) 
not only under equality, but also under inequality constraints. 

Last Theoret ica l  R e m a r k  

We have shown that coefficients of dual kriging minimize a quadratic 
expression, but we have not been able to interpret this expression. This expres- 
sion has been justified only in the case of @lines. We know (Matheron, 1981) 
that to any generalized covariance K(h) can be associated an operator T and two 
Hilbert spaces X and Y such that the kriging interpolator z*(x) is equal to the 
spline function relative to X, Y, and T (we are referring to generalized splines, 
where T can be any kind of operator, not only the second derivative, as it is for 
thin plate splines). In this case, the minimized quadratic form is equal to t] Tz* I] 2. 
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However, this is only a formal equivalence, without much practical meaning, 
because "only in rare cases can the metric associated with a random function 
be defined in terms of differential operations" (Matheron, 1981). 

A recent work by Journel (1986) shows that results presented above can 
also be obtained by working in the framework of random functions only, with- 
out any reference to dual kriging or to the theory of splines. Journel's "soft  
kriging" approach can take into account inequality data, or more generally in- 
formation about "pr ior  probability distribution" at data points. 

S IMPLE EXAMPLES 

A one-dimensional data set (Fig. 4) with n = 9 exact data and p = 18 
inequality constraints has p,  = 12 lesser bounds and P2 = 6 greater bounds. 
Two points (x = 4 and x = 6) have two-sided inequality constraints. When 
only a standard interpolator package (for exact data only) is available, people 
often use the following iterative approach to take into account inequality data: 

• A first interpolator (or map, in two dimensions) is produced using exact data 
only. 

• Values obtained by this interpolator at inequality points are compared with 
greater and/or lesser bounds. 

• Any maximum/minimum which is not honored is added to the exact data set 
and considered as an exact datum. The interpolator then is recalculated for 
the revised data set. 

Problems are associated with this method. A spline may be used to inter- 
polate between exact data only (Fig. 5). Inequalities which were not honored 
on Fig. 5 may be added to the exact data set, and the spline recalculated (Fig. 
6). Two apparent problems with this method are: 

• At abscissum 6, the interpolated value should be between 2 and 4. Although 
it was initially (Fig. 5), it is not subsequently (Fig. 6)! 

• The interpolator should not be equal to lesser bounds at abscissa 8 to 10. 
Only the constraint at abscissum 7 should be used, which should automati- 
cally guarantee an interpolated value greater than the three minima at abscissa 
8 to  10. 

The spline function obtained by the method presented in this paper (Fig. 
7) estimates more realistic values at abscissa 8 to 10. The function is equal to 
the lesser/greater bound only for some inequality constraints. Intuitively, the 
algorithm seems to "p i ck"  the constraints it needs and interpolates them ex- 
actly, with the result that other constraints are satisfied automatically. We also 
made the following test: we picked only inequality constraints which were ex- 
actly honored on Fig. 7, merged them with exact data, and reran a standard 
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spline program on this set of assumed exact data. We found the same function 
as the one shown on Fig. 7. In conclusion, one single run of the algorithm 
performs the two following steps automatically: 

Step 1 select the "strongest"  inequality constraints. "Strongest" means that, 
as soon as these inequalities are exactly honored, all the other inequal- 
ities are satisfied automatically. 

Step 2 run a standard kriging on exact data made of 
• original exact data 
® strongest constraints 

Finally, what the program does is nothing more than "choose"  a subset of 
constraints from the initial data. Note that the method shown on Fig. 6 was 
doing the same thing, except  that it was not  selecting the correct  constraints.  

Some were not necessary (abscissa 8 to 10 on Fig. 6) and the selected subset 
was not sufficient. Using these constraints as exact data did not imply that all 
other constraints were satisfied automatically (abscissum 6). Note that, in case 
only one inequality constraint is in the original data set, the two methods (pre- 
sented on Fig. 6 and Fig. 7) are identical: either the inequality is satisfied au- 
tomatically by the interpolator based on exact data only, and it is not used, or 
it is not satisfied automatically and it is used as an exact datum by the final 
interpolator. In optimization theory, this difference between "strongest" in 
equality constraints and others is derived from the "complementary slackness 
condition" (for more details, see Kostov and Dubrule, 1986). 

The function obtained with a spherical variogram 7(h) (range = 2) and no 
trend (k = 0) (Fig. 8) corresponds to ordinary kriging in the stationary case 
(Journel and Huijbregts, 1978). The interpolator can be written 

Z*(X) = Co - ~ b~7(x - x~) (23) 
c ~ = l  

Such a model corresponds to a random function more irregular than that as- 
sumed by the spline model. Note that z*(x) always stays inside the range of 
data, which was not the case with the spline function (between abscissa 7 and 
9 on Fig. 7); assuming that the variable is strongly irregular, the interpolator 
does not take the risk of extrapolating beyond the minimum and the maximum 
of the data (see Dubrule, 1984). 

CONCLUSION 

A method has been developed for interpolation under inequality con- 
straints. This method is an adaptation of kriging. As such, it can provide a wide 
variety of interpolators, by changing the degree of the trend or covariance. It 
also can take into account the spatial variability of the variable under study if 
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a pre l iminary  structural  analysis  is pe r fo rmed .  This  paper  has presented the 

theory  for  the method ,  and shown,  th rough a s imple  one -d imens iona l  example ,  

how the a lgor i thm selects  inequal i ty  constraints  which  are impor tant  in the in- 

terpola t ion process .  

Discuss ion  o f  computa t iona l  aspects  and appl ica t ion o f  the me thod  to typ- 

ical mapp ing  p rob lems  are presented  in Kos tov  and Dubrule ,  1986. 
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