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An Interpolation Method Taking into Account
Inequality Constraints: I. Methodology"

Olivier Dubrule’ and Clement Kostov?

Several kinds of data can provide information about a variable measured on a one- or two-dimen-
sional space; at some points, the value is known to be equal to a certain number. At other points,
the only information may be that the variable is greater or smaller than a given value. The theory
of splines provides interpolating functions that can take into account both equality and inequality
data. These interpolating functions are presented. The parallel between splines and kriging is
reviewed, using the formalism of dual kriging. Coefficients of dual kriging can be obtained directly
by minimizing a quadratic form. By adding some inequality constraints to this minimization, an
interpolating function may be calculated which takes into account inequality data and is more
general than a spline. The method is illustrated by some simple one-dimensional examples.
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INTRODUCTION

Definition of the Problem

The problem of mapping under inequality constraints is common in the oil in-
dustry. Consider, for instance (Fig. 1) a well that has been drilled through the
producing interval of a reservoir but has reached the oil-water contact before
the bottom of the interval. When this happens, drilling is often stopped in order
to prevent any communication with the aquifer, and also to save drilling costs.
The only information about the gross thickness at the well is that it is greater
than the penetrated thickness. This information must be taken into account when
mapping isopachs. The general problem that this paper addresses is stated as:
Find an interpolating function z*(x) of the variable z(x) such that
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Fig. 1. When mapping gross thickness of a formation, the only information available at the well
is that gross thickness is greater than penetrated thickness.

7¥(xy) = 2z, fora=1, ..,n (exact data)
7¥(x,) = 2z, fora. =n+1,..,n+p; (1)
(inequality data)

7¥(x,) = z, foro. =n+p +1, ...,n+p +p,

x can be a point in one or two dimensions, p = p, + p, is the total number of
inequality constraints, and at some points x,, the inequality constraint can be
two-sided

2ol = Z*(xa) = 22 (2)

In that case, location x,, appears twice in (1).

In order to facilitate reading of this paper, an outline of the developments
follows.

The problem of interpolation under inequality constraints has been solved
already in the framework of spline theory. This solution is presented. Then,
using the fact that spline interpolation is a particular case of kriging, the spline
solution is generalized. The generalization is performed in several steps. First,
existing works about kriging and inequality data are reviewed. A convenient
way to deal with this problem is to treat kriging as defining an’ interpolating
function rather than a ‘‘point by point’’ estimator. That is why formalism of
*‘dual kriging’’ is presented briefly. Coeflicients of dual kriging are shown to
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minimize a norm similar to the norm minimized by the spline function. Thus,
results of the theory of splines can be generalized to the kriging interpolator,
which takes into account inequality data, and also is more general than a spline
function. The last part of the paper presents simple applications of the method.
The reader more interested in applications than theory can read that part first.

SPLINE FUNCTIONS UNDER INEQUALITY CONSTRAINTS

The theory of splines under inequality constraints is presented in order to
prepare for the generalization to kriging. In this paper we restrict ourselves to
the so-called *‘thin plate’’ splines, which are most often used in interpolation
problems.

Splines in R and R?

If x,,, either a point in R or R?, is in R?, its two coordinates are x,; and
X,». The ““‘constrained’’ thin plate splines are defined as functions minimizing

b
InR S F(x) dx (3)

a—zf_- 2 azf 2 azf 2
n & SH(@ ¥ <I9?> 2 <ax ay”"“’y @

under the conditions

fixy) = z, fora =1, ...,n
fx)=zz, fora=n+1,...,n+p 5)
fixy) =z, fora=n+p, +1,...,n+p

In order to formalize this problem mathematically, two normed spaces X and Y
and a linear operator 7 mapping X into Y are defined, so that the spline function
is the function £ of X which minimizes ITEN? under constraints (5). For in-
stance, in one dimension, X, Y, and T are:

X functions defined on the interval [a, b] which have their second derivatives
in I? {a, b]

b
Y L? [a, b], with the usual norm: |[f]|® = S ) dr

T associates to a function f of X its second derivative

=7

In two dimensions, the definition of X, ¥, and T is more complicated and
can be found in Duchon (1975). Let us mention only that T is a second-order
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differential operator, which associates to each function f the quadruplet of func-
tions

aZ 62 32 62
£ 9. 9T —f> ©)

T = — 3 3
) <6x2 9y* ax dy dy ox
When n “‘exact’” points of coordinates (x,, z,,) (Tesp. X, X,2, 2, in R*) are not
on the same line (resp. plane in R?), Laurent (1972, Chap. 9) has shown that a
unique constrained spline o(x) is characterized by the relation

n+p

(To, Tfy = 21 b* fix,) forall fin X (7)

The left member of the equation is the scalar product between To and Tf, as-
sociated with the norm of space Y. Notice that o varies from 1 to n + p. The
exact data play the same role as inequality data.

Now, consider functions K;(-, x,) defined by

InR  Kix x) = K& —x) =[x — x,]° ®
InR>  Ky(x, x) = Kox — x) = [(x; — x0)" + (6, — x,0)7]
- Log[(x, — X + (6 — x,2)°1" 9

Functions K;(+, x,) associate a real number to points of R and R*. They belong
in each case to space X and are mapped by the application T into space Y, so
that

(TK; (-, x), TfY = fixy)  forall fin X (10)

For R, the proof of (10) is easy and can be found in Laurent (1972) or Prenter
(1975). For R?, it is more difficult and has been established by Duchon (1975).

Consider now egs. (7) and (10). If we take for ¢ a linear combination of
functions K,(, x,) for @ = 1 to n + p, eq. (7) clearly will be satisfied. We
even can add to this linear combination a function of the kernel of T (that is, a
function n such that Tn = 0) and eq. (7) still will be satisfied. In R, T is the
second derivative, and the kernel of T is composed of polynomials of order 1.
The spline function then can be written .

n+p

o) = ¢y + ox + 20 b Ky(x — x,) (11
a=1

In R?, expression (6) shows that the kernel of T is composed of polynomials of
order 1, as in R. Therefore, the spline function in R? can be written

n+p
o)Xy, Xo) = Co + Oy + Xy + 20 b Ky(x — x) (12)
1

a=
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The expression of the constrained spline in R is from Laurent (1972). In R?,
Duchon (1975) found the expression of the spline in the case where all data are
exact. But eq. (7) and his paper evidently imply that (12) applies to constrained
splines.
The balance of the calculations for spline functions will be made in R?,
but can be applied easily to R.
Equation (12) shows that the constrained spline depends linearly on (n +
p + 3) coefficients cq, ¢, ¢y, b', ..., b"*P. How can these coefficients be
calculated? First, let us apply eq. (7) to functions fix) = 1, fix) = x;, and fix)
= x,, which are basis functions of the kernel of T.
We obtain
n+p n+p n+p
Zl b = Zl b x, = Zl b*x;, =0 (13)
which is a set of three equations in (n + p + 3) unknowns. Applying eq. (7)
to the spline function o(x) itself, we find (» + p) additional equations which
determine all unknowns.
n+p

| To|?> = (To, Toy = 2:11 b o(x,) (14)

Replacing o(x) by its analytic expression (12) and using egs. (13), eq. (14) can
be shown to imply

n+p ntp

17l = 22 2 6B Kt = x5 (15)

(In the following, Ky(x, — xg) will be noted simply K,3). Equation (15) is
interesting. It shows that the expression to be minimized, | 7ol|?, is a quadratic
form of unknown coeflicients b*. Minimization is constrained by (5), that is,
a(x) should satisfy the exact and inequality data. But o(x,), fora = 1to (n +
P), 1s simply a linear function of unknown coefficients:
n+p
0(x,) = €g + Xy + Xy + le bﬁKaB (16)

Coeflicients of the spline apparently can be obtained by solving a classical prob-
lem of quadratic programming: minimization of the quadratic form (15) under
linear conditions (5) (The three eqs. (13) can be shown to result from minimi-
zation of the quadratic form).
When no inequality constraints exist, the result is the well-known linear

system of splines for exact data only (Duchon, 1975)

n+p n+p n+p

Zl b = Zl b, = Zl b, = 0 (17)

where o(x,) =z, fora = 1,..., n.
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Therefore, in conclusion, the spline function satisfying exact and inequal-
ity data can be obtained by the two following steps (in two dimensions):

¢ calculate the coefficients ¢, ¢, ¢,, and b* which minimize (15) under con-
ditions (5)
¢ compute the spline function after (12), with functions K,(-, x,) given by

(9).

The method used to solve the quadratic minimization problem is presented and
discussed in Kostov and Dubrule (1986).

GENERALIZATION TO KRIGING

Comments on Existing Methods

Bames and Johnson (1984) presented a method for solving the kriging sys-
tem under inequality constraints on kriging weights, rather than on interpolated
values. Limic and Mikelic (1984) showed how to add positivity constraints on
kriging weights in order to obtain positive estimates when estimating positive
variables. Mallet (1980) applied a quadratic programming algorithm to a prob-
lem of multiple linear regression under linear constraints. Mallet was not spe-
cifically referring to kriging in his paper. Nevertheless, kriging is a multiple
regression of unknown value Z(x) against data Z(x,), and Mallet’s method can
be simply applied to kriging. All these methods add inequality constraints to
the classical kriging system. Kriging weights A* minimize

Variance [Z(x) - 2 )\"‘Z(xa)}
a=1
not only under usual nonbias conditions of universal kriging (Matheron, 1971)
20 N flxy) = flx)  forall 1
a=1

but also under constraints:
A= 0 (for all a between 1 and n)

(with Barnes and Johnson, 1984, or Limic and Mikelic, 1984), or
JOREIPIBS OERAC)

(by generalizing Mallet’s method, 1980, to kriging).
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By expressing variance in terms of the A* and using quadratic programming
techniques, this kind of problem can be solved. Can we apply a technique sim-
ilar to Mallet’s to our problem? Unfortunately, the problem is that the constraint
on value z(x) can only be used when estimating the value at point x itself. When
estimating z(x + €) at a point close to x, information about bounds on z(x) are
not available. One can use only exact data z(x,). The consequence of this prob-
lem is shown (Fig. 2) if we consider four exact values (abscissa 2, 3, 5, 6)
whereas at x = 4 the value is known only to be greater or equal to 9. When
estimating points around x (even at a small distance e from x), the method can
only take into account exact data from four points (location 2, 3, 5, 6), which
explains why interpolated values are so small. Then, just at x = 4, the estimate
“‘jumps’’ to take a value greater or equal to 9 (that is, exactly 9 here). This is
not acceptable, because if the value is so large at x = 4, it is probably also
large at x = 3.99, x = 4.01, etc. We want the information at x to be used also
when estimating values surrounding x. Two more comments can be made:

® The behavior of the interpolator is similar to what happens when the vario-
gram model has a large nugget effect: the estimated value varies discontin-
uously between data points and estimated points. However, the behavior we
see (Fig. 2) has nothing to do with this nugget effect discontinuity: it would
happen even with a zero nugget effect. The problem comes from ‘‘point by
point’’ formulation of kriging.

* Works by Barnes and Johnson (1984), Limic and Mikelic (1984), or Mallet
(1980) have many useful applications. What is demonstrated here is that they
are not suitable for mapping applications where one needs an interpolator at
all the points of a given domain. A satisfactory interpolating function (Fig.
3) has been produced by the spline method described earlier. This method
calculates a global function honoring both exact data and inequality condi-
tions. As a result, these conditions are built into the function and have an
impact not only at the inequality points themselves, but also in their neigh-
borhood.

In conclusion, classical formalism of kriging is difficult to use here because
it works point by point. The solution seems to belong to methods, such as
splines, which calculate global interpolating functions rather than point esti-
mates. That is why the formalism of dual kriging, which expresses kriging as
a global interpolating function, is going to be useful.

Formalism of Dual Kriging

Originally, the kriged value z*(x) at a point x was defined as a weighted
average of n values z, = z{x,) measured at n surrounding data points. Matheron
(1971) showed that one also could interpret kriging as an interpolating function,
a linear combination of some elementary basis functions. If we consider an
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intrinsic random function of order k (k — IRF) Z(x) (Delfiner, 1975) with a
generalized covariance K(h), z*(x) can be written

m

) = 2 of'x) + Z_]l bK(x — x,) (18)

=0

where coeflicients b and ¢, are solutions of the dual kriging system

T¥(xg) = z:‘:o e flxg) + aizll bKxy —x5) =25 (B =1,...,n)

where Z_]l Pflx) =0 (=0, ...,m) (19)

(Functions f' are monomials of degree <k in the coordinates of x. For instance,
in R?, when k = 1, three monomials exist: f(x;, x,) = 1, fl(x;, x) = x,,
f*x,, x,) = x,. The following simplified notations will be used: f% =
fix) and £, = fl(xo).

Developments will use the formalism of the theory of & — IRF, because
this makes comparison with splines easier. However, previous remarks about
dual kriging apply to ordinary and universal kriging (Journel and Huijbregts,
1978) by replacing the generalized covariance K(h) by —+y(h), where y(h) is
the variogram. For instance, in the case of ordinary kriging, the kriging inter-
polator can be written

) = ep = 2 b — x) (20)

(in the case of simple kriging with zero mean, we would have ¢, = 0). Many
methods of interpolation calculate an interpolating function g(x) which depends
on a certain number of parameters. These parameters are determined by con-
ditions that g(x) honors the data, g(x,) = z,- for « = 1,..., n and often by
other particular conditions. Equations (18) and (19) define kriging in a similar
manner and make the comparison of kriging with other interpolators easy (see
Dubrule, 1981). In particular, the parallel between splines and dual kriging
appears clearly. Matheron (1981) and Salkauskas (1982) compared splines and
kriging in a rather abstract framework. Dubrule (1981) applied Matheron’s re-
sults to classical problems of interpolation. Watson (1984) used a simple method
to establish the parallel between the two methods. Comparison of egs. (17),
(18), and (19), shows that the spline interpolator is equal to:

e kriging of a 1 — IRF (linear trend) with generalized covariance K(h) = |n|?
in R.

e kriging of a 1 — IRF with generalized covariance K(h) = |h|* log || in R*.

This parallel is discussed in Dubrule (1984): the spline function appears

to be a particular kriging interpolator, for which covariance, instead of being
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obtained from data, is fixed a priori. This “‘spline covariance’’ is || in R and
|k|? log || in R®.

Quadratic Form Minimized by Coefficients of Dual Kriging

Earlier, the spline function was determined in two steps. First, we showed
that the norm to be minimized was given by expression (15). Then, (15) was
minimized under constraints (5). The right-hand side of (15) can be calculated
for the kriging interpolator as well, merely by replacing spline covariance K,(h)
with generalized covariance K(h). Of course, this expression cannot be inter-
preted as a norm, as it was for the spline. However, do coefficients of dual
kriging minimize

n n
2 25 bbPK(x, — xp) Q1)
a=1f8=1
under conditions z*(x,) = z,? Introducing n Lagrange parameters 4, this is
equivalent to the minimization of the following expression, with respect to coef-
ficients ¢;, b*, d*

2 2 b b Ky~ 22 d <Z afi+ 2 PK, - za> (22)
a=1pg=] a=1 =0 8=1

It is easy to check, by calculating partial derivatives of (22) with respect to all

coefficients, that one first obtains

b® = g~ for all o

and that the other relations are nothing more than (19); that is, equations which
characterize coefficients of dual kriging! This is an interesting result: it is not
only kriging weights A* which minimize a quadratic form (the estimation var-
iance). Coefficients of dual kriging themselves minimize a quadratic form, which
is equal to || 7ol in the particular case of a spline covariance. The direct con-
sequence of this property is that the approach used with splines for inequality
data can be generalized to kriging: we will minimize the quadratic form (21)
not only under equality, but also under inequality constraints.

Last Theoretical Remark

We have shown that coefficients of dual kriging minimize a quadratic
expression, but we have not been able to interpret this expression. This expres-
sion has been justified only in the case of splines. We know (Matheron, 1981)
that to any generalized covariance K(h) can be associated an operator T and two
Hilbert spaces X and Y such that the kriging interpolator z*(x) is equal to the
spline function relative to X, ¥, and T (we are referring to generalized splines,
where T can be any kind of operator, not only the second derivative, as it is for
thin plate splines). In this case, the minimized quadratic form is equal to || 7z*]%.



44 Dubrule and Kostov

However, this is only a formal equivalence, without much practical meaning,
because ‘‘only in rare cases can the metric associated with a random function
be defined in terms of differential operations’” (Matheron, 1981).

A recent work by Journel (1986) shows that results presented above can
also be obtained by working in the framework of random functions only, with-
out any reference to dual kriging or to the theory of splines. Journel’s “‘soft
kriging’” approach can take into account inequality data, or more generally in-
formation about ‘‘prior probability distribution’’ at data points.

SIMPLE EXAMPLES

A one-dimensional data set (Fig. 4) with n = 9 exact data and p = 18
inequality constraints has p; = 12 lesser bounds and p, = 6 greater bounds.
Two points (x = 4 and x = 6) have two-sided inequality constraints. When
only a standard interpolator package (for exact data only) is available, people
often use the following iterative approach to take into account inequality data:

® A first interpolator (or map, in two dimensions) is produced using exact data
only.

* Values obtained by this interpolator at inequality points are compared with
greater and/or lesser bounds.

* Any maximum/minimum which is not honored is added to the exact data set
and considered as an exact datum. The interpolator then is recalculated for
the revised data set.

Problems are associated with this method. A spline may be used to inter-
polate between exact data only (Fig. 5). Inequalities which were not honored
on Fig. 5 may be added to the exact data set, and the spline recalculated (Fig.
6). Two apparent problems with this method are:

* At abscissum 6, the interpolated value should be between 2 and 4. Although
it was initially (Fig. 5), it is not subsequently (Fig. 6)!

® The interpolator should not be equal to lesser bounds at abscissa 8 to 10.
Only the constraint at abscissum 7 should be used, which should automati-
cally guarantee an interpolated value greater than the three minima at abscissa
8 to 10.

The spline function obtained by the method presented in this paper (Fig.
7) estimates more realistic values at abscissa 8 to 10. The function is equal to
the lesser/greater bound only for some inequality constraints. Intuitively, the
algorithm seems to ‘‘pick’ the constraints it needs and interpolates them ex-
actly, with the result that other constraints are satisfied automatically. We also
made the following test: we picked only inequality constraints which were ex-
actly honored on Fig. 7, merged them with exact data, and reran a standard
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spline program on this set of assumed exact data. We found the same function
as the one shown on Fig. 7. In conclusion, one single run of the algorithm
performs the two following steps automatically:

Step 1 select the ‘‘strongest’” inequality constraints. ‘‘Strongest’” means that,
as soon as these inequalities are exactly honored, all the other inequal-
ities are satisfied automatically.

Step 2 run a standard kriging on exact data made of
* original exact data
® strongest constraints

Finally, what the program does is nothing more than ‘‘choose’” a subset of
constraints from the initial data. Note that the method shown on Fig. 6 was
doing the same thing, except that it was not selecting the correct constraints.
Some were not necessary (abscissa 8 to 10 on Fig. 6) and the selected subset
was not sufficient. Using these constraints as exact data did not imply that all
other constraints were satisfied automatically (abscissum 6). Note that, in case
only one inequality constraint is in the original data set, the two methods (pre-
sented on Fig. 6 and Fig. 7) are identical: either the inequality is satisfied au-
tomatically by the interpolator based on exact data only, and it is not used, or
it is not satisfied automatically and it is used as an exact datum by the final
interpolator. In optimization theory, this difference between ‘‘strongest’ in
equality constraints and others is derived from the ‘‘complementary slackness
condition’” (for more details, see Kostov and Dubrule, 1986).

The function obtained with a spherical variogram (k) (range = 2} and no
trend (k = 0) (Fig. 8) corresponds to ordinary kriging in the stationary case
(Journel and Huijbregts, 1978). The interpolator can be written '

X)) = ¢y — 21 boy(x — x,) (23)

Such a model corresponds to a random function more irregular than that as-
sumed by the spline model. Note that z*(x) always stays inside the range of
data, which was not the case with the spline function (between abscissa 7 and
9 on Fig. 7); assuming that the variable is strongly irregular, the interpolator
does not take the risk of extrapolating beyond the minimum and the maximum
of the data (see Dubrule, 1984).

CONCLUSION

A method has been developed for interpolation under inequality con-
straints. This method is an adaptation of kriging. As such, it can provide a wide
variety of interpolators, by changing the degree of the trend or covariance. It
also can take into account the spatial variability of the variable under study if
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a preliminary structural analysis is performed. This paper has presented the
theory for the method, and shown, through a simple one-dimensional example,
how the algorithm selects inequality constraints which are important in the in-
terpolation process.

Discussion of computational aspects and application of the method to typ-
ical mapping problems are presented in Kostov and Dubrule, 1986.
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