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Starting from the formalism of covariant spin projection operators we present 
a general derivation and analysis of massless equations with zero helicity for 
an antisymmetric tensor field. We show that the minimal electromagnetic inter- 
action for gauge-invariant equations is inconsistent. 

i. The description of a massless field with zero helicity by an antisymmetric tensor 
field F~ v, given for the first time in [i], seems, at first glance, surprising because F~ ~ 
contains only spin i. However, if one takes into account the fact that helicity is related 
to the spin projection and that there exists, among others, also a zero projection for the 
unit spin, then in principle it is possible to describe also zero helicity. Since normally 
the F~ v field is used to describe a photon with helicity • an object with zero helicity 
was called notohp in [i]. 

Massless equations for zero helicity using an antisymmetric tensor field F~ v have 
been considered in recent works [2-6]. An antisymmetric tensor field is of interest from 
the point of view of supersymmetric models [2] because addition of a spinor field allows 
one to describe a massless supermultiplet with helicities 0, 1/2. 

The possibility of considering the antisymmetric tensor field F~ ~ as a gauge field with 
zero helicity is not trivial. It is related to the fact that the F~ v field is a direct sum 
of two irreducible fields, whose projection operators do not contain nonlocalities higher 
than u'~. In this paper we shall show that, by use of the general formalism of covariant 
spin projection operators [7], it is possible to give a very simple derivation and analysis 
of a general massless equation for an antisymmetric tensor field F~ v. We present a general 
gauge transformation and a restriction to a source. 

We shall show that the minimal electromagnetic interaction is inconsistent for all gauge 
fields, not only for an antisymmetric tensor field. The gauge fields are electrically neu- 
tral or have nonminimal interaction. 

2. We represent an antisymmetric tensor field FUv as a direct sum F I | F2, where FI 
transforms according to the representation i = (I, O) and F 2 according to 2 = (0, i). For 
F~ v it is possible to write the following general second-order equation: 

[aP;1 bP~.l[F~=o ' (i) 

where the P~. are covariant spin projection operators satisfying [7] 
13 

P~ P~t = os~,oj~PH. (2) 

and a, b, c are certain free parameters. With our choice of parameters the equation can be 
derived from a Lagrangian and for b = c the equation is P-invariant. Without loss of 
generality it is possible to assume that all the parameters are real. 

We consider a gauge transformation of Eq. (i). As a gauge field we choose a vector 
field h~(x), which will be denoted by h 3. The representation 3 = (1/2, 1/2) is the unique 
representation that agrees with both representations 1 and 2 for gauge transformations 
which are linear in derivatives. A general gauge transformation is written in the form: 

F3 I i F,-- ~ ~ ~ P23h3, (3) 
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where the parameters ~ and ~ are to be determined. 

We require gauge invariance. Using Eq. (2) we find that Eq. (i) is gauge-invariant if 
and only if a, b, and c satisfy 

a:---- bc ( 4 )  

and ~ and 8 are related bythe equation 

~=--a~/b. ( 5 )  

In terms of the Gel'fand-Yaglom formalism the condition (4) means that the determinant of 
the spin-block corresponding to spin one is equal to zero. 

We write Eq. (i) in the form zF = 0. If condition (4) is satisfied, then there exists 
an operator QZ having the property QZ~ = 0. In the case of an external source J the operator 
QZ gives for the equation ~F = J a restriction to the source QZj = 0. The operator Qz has 
the form 

Q" = I E  l~ph ~P~-, I, 
( 6 )  

where 

a = - -  7~/c. ( 7 )  

In this way we see that in the formalism of covariant spin projection operators it is 
easy to write a general equation, gauge transformation, and a restriction to a source. It 
follows from (4), (5), and (7) that a, b, and c are nonzero. Since it follows from (4) that 

a -- ~/b~c, it is always possible to choose a gauge • V~PiIFI--P~:F 2 = 0, for which Eq. (I) 

reduces to a zero mass equation 2a m F~ v = 0. 

In the case of massive equations ~F + m2F = 0 the condition (4) means that the given 
equation describes one particle with spin one and mass m/J2~a. Massive equations for FII~ are 
considered in [8-10]. In [6] it is pointed out that the spin has a discontinuity when one 
goes to the massless limit. This idea is slightly inaccurate because in taking such a 
limit a zero spin projection is eliminated. This is the reason why helicities _+i appear in 
notohp interactions [i]. F~V contains only spin 1 and this explains why an attempt to des- 
cribe a massive spin zero field by the F~ v field was unsuccessful [2]. 

3. Using the explicit forms of the operators ps (see Appendix) we write the results 
13 

of the previous section in covariant form. We write a general form of Eq. (i) 

2a  - -  b - -  c [] F.~ + ( b 7 '  c)  ( a~O~F'" - -  O"O~F ~:~) + i (c - -  b)  (d,~0p.:~, ~,F~ x _ d,0o_:,~ :..F~ ~ .  + _~o ...... .,.,,~v,,~ ~ F ~~ = 0. ( 8 )  
2 4 

Equation (8) is invariant with respect to the gauge transformation 

, (9) 

Restriction to the antisymmetric source jpv is the following: 

2 

Concrete choices of the parameters a, b, and c give various forms of the equation that 
all describe zero mass with helicity 0. In what follows we give only P-invariant equations. 
Then b = c and, from Eq. (4), we have two possibilities: b = -a or b = a. 

4. We choose a = -b = 1/2, ~ = 8 = I, 7 = 6 = 1/2. We obtain an equation [i] 

with a gauge transformation 
-- F ~" -- d'~&F "" § 6"&F ~:~ = 0 

F ~'" -- F '~" -+- 6," h" -- rS'h: ~ 

(ii) 

(12) 
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and a restriction to a source 

In this case we can choose the gauge 

#~J~' =- O. ( 13 ) 

O~F~'= O, (14) 

hence we obtain the Proca equation with spin i for hP. In the gauge (14) Eq. (ii) reduces 
to the form nF~ v = O. In this gauge in the momentum representation we find that in the 
system ~ = (<, O, O, ~) one component (F~ 2) remains nonzero, which corresponds to the 
helicity O. Here, it is interesting to point out that when the gauge freedom (12) is used 
for the second time the gauge field h~ satisfies the massless Proca equation and h~ becomes 
in turn a gauge field. This property leads to interesting peculiarities in quantization: 
since the ghost fields are gauge fields it is necessary to introduce secondary ghosts [3-5]. 

Equation (ii) can be derived from the Lagrangian 

L = a~F~,OpF ~ -  2O,F~,d~F< 

5. We choose a = b = 1/2, a = -6 = i, ~ = -6 = i. We obtain the equation 

(15)  

with the gauge  transformation 

and the restriction to the source 

In the direct analysis of Eq. 
gauge transformation 

6~&F'"  - -  a'&F':* = 0 

F~'"-+ F~" + i:-'~'%0.~h ,. 

(16)  

i %craj" = o. 

(16) we introduce a dual tensor F~'= s 
2 

7= . . . .  + a : , l , , -e , ,h , .  

(17) 

(18) 

with the 

Equation (16) can now be written in the following equivalent form: 

F ~ ' - -  "~  i~'%a~a,F,= = O. 

In this case there exists a gauge 3u ~v = 0 in which mF~ v = 0. Ih the system ~ = (~, 0, 
K) there is one nonzero component i; 12 = F ~ 

Equation (16) can be derived from the Lagrangian 

(19)  

(20) 

, 

L = a~F~,apF~,. ( 2 l )  

6. In this section we show the inconsistency of the minimal electromagnetic interaction 
of gauge fields. 

We write the equation for the field F# v with the source JPV in the following general 
form: 

(0p&~=) ~',~F "x = J~ .  (22)  

A necessary condition for consistency of Eq. (22) follows from the gauge invariance 
FP v + F# v + Q~'Gh a of the left-hand side of the given equation: for the consistency of Eq. 

(22) it is necessary that the source J#v be gauge invariant with respect to the same gauge 
transformation. When the source does not depend on the field FUv the condition given above 
is satisfied, but when the source depends on the field F# v, it is necessary to verify 
separately if the source is gauge invariant. We note that the condition for consistency 
given above does not depend on the form of the equation and is correct for all gauge- 
invariant equations (second-order, as well as first-order). 

We consider the minimal electromagnetic interaction given by the substitution %0 + DQ = 
~0 - leap, where Ap is the electromagnetic potential. After substituting 30 + Dp in the 

free equation (DoDog~C)F = 0 we obtain an equation of the form (22), where the source J# v is 
linear in the zield FUr, i.e., jUv = j(~, A)P~x~F~. The given source is not gauge invariant 
with respect to the transformations F + F + Qgh because there is a noninvariant term 
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e=(A AoBPa)Q h in the source. The same result is also obtained in the case of the first- 
orde~ gauge ~ields (i~pSP)~ = 0, ~ ~ ~ + Qge, because the substitution ~p ~ D O leads to a 
noninvariant source J = -~(ApSP)~. Since s result does not depend on the concrete form 
of the equation, it follows that all gauge-invariant fields are inconsistent when there is a 
minimal electromagnetic interaction. 

It is well known that the minimal electromagnetic interaction is a consequence of the 
gauge invariance of the massive equations. For the massive equation (~p~oSPV)F + maF = 0 
the substitution a o + D O gives the source J given above. Upon the gauge transformation 
A ~ + AP + 8~ q the'change in the source J is compensated by the transformation F--~e-~F 
In the mass-less limit m + 0 there is an additional gauge invariance F ~ F + Qgh which breaks 
the invariance of the source. 

APPENDIX 

We give the projection operators ps satisfying (2): 
13 

r 1 3 1  x 

l 

1 

21~Z 
1 

2 . . . ~ [  

where D=aua~ and ~v:diag (+ ---). The remaining operators are calculated from the 
relations 

P]i = PhP~,, P~2 = P~aP~2, P12 = ~laPJ, and P~l = P~aP~. 
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