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SLIP ALONG A BOUNDARY FORMING AN INCOMMENSURABLE 

STRUCTURE 

B. M. Darinskii, D. S. Saiko, and 
Yu. A. Fedorov UDC 539.219.3 

The boundary dividing a plane with rational indices, for example, (i00) and 
(ii0) in a cubic lattice, is considered. The planes are oriented so that the 
direction [001] is common. Then the interatomic distances are incommensurable 
in the perpendicular direction. The conditions of thermal activation slip along 
such a boundary are studied. For sufficiently small stresses the dependence of 
the derivative of the slip velocity on the stress has a discontinuous nature. 

Comparatively great attention has been paid to the thermodynamic properties of physical 
systems forming incommensurable structures [I], while the kinetic phenomena of the rearrange- 
ment of an incommensurable structure under the influence of external forces have been dis- 
cussed much less in the literature. In particular, the slip of the crystals on whose inter- 
face an incommensurable atomic structure forms is one of these forces. 

In this report we confine ourselves to the case of one-dimensional incommensurability, 
when the interatomic distances are incommensurable in the boundary plane in the = direction, 
but are commensurable in the perpendicular direction in the boundary plane. Such a boundary 
can be both interphase and intergranular. A boundary at which the faces (i00) and (ii0) ad- 
join crystals with cubic structures can serve as an example. 

We denote the crystallite periods i_n the direction of = by a I and a=. In the above the 
crystallographic directions [010] and [II0] of adjacent crystallites are located along ~, 
while the direction [001] is common to them. Then a~=o, a2-----o|J~ , where a is the lattice 
constant. 

We first consider the geometric pattern of the superpositions in the boundary plane. 
The positions of the atomic sites in the aggregate form a vernier in the " direction. We 
denote by ~ the displacement (distance) between two atoms of neighboring crystallites in the 

direction. It is characteristic of incommensurable periods that all ~ will be different 
and equally probable. The value ~ = 0 will be satisfied for only one pair of atoms. 

We introduce the density function n(~) of the distribution over ~. We plot the atomic 
sites of one crystallite in the ~ direction along the x axis, and the other along the y 
axis. Then the plane is covered by a rectangular lattice of points, each of which corres- 
ponds to a pair of sites. The distance ~ between the pair of sites of the incommensurable 
structure will be equal to the section of a straight line, parallel to the y axis and en- 
closed between the point corresponding to this pair of sites and the bisector y = x. If we 
now construct the straight lines y - x = ~ and y - x = ~ + ~, the number of points per unit 
length which are between these straight lines is equal to the number of atoms with distances 
from $ to ~ + &~, equal to n($)A$. Evidently, the point density is expressed in the form 

n(~) = ]/u~a2. (i) 

The relative displacement A~ of the crystallites along the boundary will be accompanied 
by coincidences of the positions of the atomic sites of neighboring crystallites at certain 
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Fig.  1. The dependence of  the  energy  on the  
d i s t a n c e  ~ (1) and t he  d i s t r i b u t i o n  f u n c t i o n  
wi th  r e s p e c t  to  ~ ( 2 ) .  

The number AN of such coincidences per unit length of the incommensurable struc- 

AN=n3~. (2)  

Therefore, the relative displacements of the crystallites, taken over AN coincidences per 
unit length of the incommensurable structure, is 

~ = ANa,a2. ( 3 )  

If dislocation representations are used, A~ denotes the displacement of the crystal 
due to the shift of the dislocations with the Burgers vector al, distributed in the slip plane 
with linear density AN, by a=. The relative displacement of the crystallites B in the case 
of a single migration per unit length (AN = I) is B = aza =. 

For the consideration of the actual pattern of the atomic motion in the case of the rela- 
tive displacements of the crystallites the interaction of the atoms in the contact region 
must be taken into account. The lower crystal can be replaced by the periodic potential field 
in which the atoms of the upper crystal move. We will assume for simplicity that one symmetric 
peak and well occurs for each period of the potential field. We consider an atom which is 
exactly on the peak of the potential relief. For the convenience of the subsequent discussion 
we assign the distance g = 0 to this atom, this corresponding to the displacement of the origin 
of the distance by half of the period of the potential relief. The position of the atom on 
the peak corresponds to unstable equilibrium. 

This statement is obvious when the interaction of the atoms on different sides of the 
boundary is greater than in the boundary plane. In the other limiting case for the estab- 
lishment of the fact of instability we can use the representations of the pinning of a soli- 
ton on a crystal lattice developed in [2], where it is shown that the pinning energy of the 
soliton decreases exponentially as the interaction between the atoms of neighboring lattices 
decreases, but does not vanish. Therefore, the atom which is exactly on the peak of the 
potential relief slides into one of two symmetrically positioned potential wells. 

If the two superimposed lattices are shifted so that the atom which was previously on 
the peak is displaced from it by the small distance ~, the curve of the potential energy as 
a function of the deviation of the atom from a certain mean position becomes asymmetric with 
a deeper potential well in the direction of displacement ~. For small ~, together with 
the continuous increase in the difference AE(~) between the two minimum energies there is, 
correspondingly, also an abrupt change. This last is due to the migrations of the atoms in 
the other sections of the incommensurable structure into deeper potential wells similar to 
that considered. Since such transitions are equivalent to the formation of a dislocation 
dipole with the dipole moment per unit length aza =, they lead to the development of the 
stresses o (i) ~ ~ala2/r 2, where V is the shear modulus, r is the distance between the two 
interacting atomic configurations. 

At the same time, AE changes by a jump to 
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The functional dependence r($) which indicates the sequence of coincidences of the positions 
of the atoms when the crystals are displaced represents one of the variants of the "devil's 
staircases" [i, 3] (see Fig. i). Below we discuss the relatively high jumps of AE which 

arise on the migration of adjacent atoms. 

Under conditions of static equilibrium it is evident that the right-hand wells are 
occupied for positive ~($ << az, a2) and the left-hand wells are occupied for negative $. 
After the application of external stresses a further difference in the levels of the energy 
minima appears, so that AE($) ~ AE(~) + oaza 2, as a result of which a thermal fluctuation 
transition into a lower potential well starts to occur. 

We will assume that the transition of the atomic row from one well into the other 
starts from the origin of a double kink, as this occurs at the dislocation. Then for the 
time of transition of the atomic row from one well into the other in the case of small o the 
following expression can be written [4]: 

.-: A / f f a , a 2  ~ AE (D). (4)  

The energy of the kink E0 appears in the coefficient A [4]. Here &E(~) is the difference 
between the bottoms of the left-hand and right-hand wells. 

In the initial period the slip velocity of the crystallites is determined by the transi- 
tions which have the finite time T. The boundary of the region of the values of ~ for which 
the transitions are accomplished is determined from the conditions 

AE(~) ----- --eala2. (5) 

Therefore, the initial velocity 

0 0 

d~ I [ (6) 

Thus, the initial velocity is determined by the hatched area S s in Fig. i. The in- 
crease in the stress-within one step leads to a linear increase in the initial velocity: 

0 

i i (7) V=Vo+ ~=, VO=.A. • ~=I~,I/A. 
h 

On the transition to a new step with an increase in o the proportionality factor changes 
by a jump to an = [r -- cz [ /A .  

On the  e x p i r a t i o n  o f  t h e  t ime o f  ad jus tmen t  a f t e r  t he  a p p l i c a t i o n  o f  the  e x t e r n a l  s t r e s s  a 
s t r u c t u r e  which be longs  t o  t h e  c a t e g o r y  of  d i s s i p a t i v e  s t r u c t u r e s  [5] and which remains t he  
same during the subsequent slip is established in the incormnensurable system. 

We introduce the probability f(~, t) that the atom is in the left-hand well. Under non- 
equilibrium conditions the following kinetic equation can be written down for the function 
f: 

= - f l ~ "  ( 8 )  

Here the relaxation time T depends not only on ~ but also on the rearrangements of the 
neighbors which reflect the correlation effects in the case of motion. Assuming, however, 
that T is determined by the initial distribution in the incommensurable system, it being 
possible to consider this as the first step of an iteration process, then setting f($, t) = 
f(~ + vt), this corresponding to a steady process, we obtain 

f3z, / 
f -. ='-- v - -  = O. 

Let an external stress be applied such that 

AE2 < oa~a~. 
AEI and AE 2 are shown in Fig. I. The solution of (9) is expressed in the form 

( 9 )  

( l O )  
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i ' •  
f ( U  = exp ( - -  ). 

I [ ' - . /  ( 1 1 )  

We find the slip velocity v, which appears as a parameter in (Ii), from the condition 

( 1 2 )  
- ~, = 1 f(0 d~, 

L 

which corresponds to the satisfaction of the equality of the areas S l and $2, hatched in Fig. 
i. 

In expression (ii) �9 changes abruptly on the transition from one step to another, in 
accordance with (5). Thus, the distribution function on the transition from one step to 
another is continuous with a bend at o = bEi/ala 2. 

We substitute (ii) in (12) and differentiate the two sides of the obtained equation 
with respect to v. After certain manipulations and the use of the relations d~/dv = 
(dT/do)/(do/dv) we obtain 

dv  a,a2 = ( 1 3 )  
= . . . . . . . .  (~ - -  ~,) exp -- dL 

d= A J, , 

Here 

The superscript of ~ in (14) indicates the lowest step from which the transitions are 
accomplished. 

Now let the external stress increase so that condition (10) is replaced by the condition 

A E l < o a l a 2 < A E o .  (15) 

Then both f(r and dv/do are expressed by the same equations (ii) and (13), only we have 
the subscript 0, and not i. We find the jump in the derivative of the velocity with respect 
to the stress, A~, on the transition from the first to the zeroth step. It is simplest of all 
to trace the change in dr/do at the time of transition from one step to another if the 
integrals in the numerator and denominator of (13) are represented in the form 

i i {...}d-~= s ~d~ ' }d,L I o . . j  "T" . . .  
Y 

Then after certain transformations we obtain 

( 1 6 )  

• = a ,aa  (~o + ~,) (~o ~,),,. .4~. ( 1 7 )  

Carrying out a rough estimate of the integral J0, we find J0 ~ v~ ~ l~01. Thus, the jump in 
the viscosity on the transition to the next step is equal in order of magnitude to a similar 
jump at the initial velocity. 

In conclusion we note that the functions v(a) obtained are due to two factors: the 
dependences of the mobility of the dislocation dipoles and their number on the external 
stresses. The relative slip of the crystallites which form an incommensurable structure 
at the joining point is realized rapidly by means of the thermally activated migration of 
the atoms in the two-well configurations with the simultaneous preparation of such configu- 
rations at new surface points. At the same time, the relative slip for one of the periods 
is realized by means of one migration of each of the atoms of the corresponding lattice. 
The mean distance ala2/~ between the atomic configurations which participate in the parallel 
process of rearrangement decreases as the stress increases, in accordance with Fig. i. 

The authors are grateful to V. E. Egorushkin for his discussion of the present paper. 
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