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Isotherms have been constructed and compressibilities and sound velocities have 
been calculated for the hydrides of alkaline metals on the basis of the functional 
theory of the local electron density, within the framework of the pseudopotential 
method. The expression obtained for the electron density distribution allows one 
to perform the analysis of the character of the binding forces and to determine 
the dependence of the degree of ionization on pressure in these compounds. 

Recently, investigation of the properties of metal hydrides has received great atten- 
tion. The band theoretical methods [I], as a rule, are too cumbersome to use for the 
description of thermodynamic properties of such systems. On the other hand, thermodynamic 
quantities are not very sensitive to the fine features of the electron spectrum [2]. The 
goal of this work is to calculate the thermodynamic functions of the hydrides of alkaline 
metals using the microscopic quantum-mechanical approach. There has been a calculation 
[3] of the binding energy and of the compressibility of these hydrides; however, the 
approach used in that paper was based on the postulated ionic character of the binding 
forces in the hydrides of alkaline metals. At the same time, the character of binding 
forces in these compounds is not obvious [4]. 

In order to construct a microscopic theory of binding forces and of thermodynamic 
functions of the hydrides of alkaline metals one can use the results of [5], where a cal- 
culation of the total binding energy for crystals with a nonmetallic character of binding 
forces has been performed. The method is based on a self-consistent solution of the equa- 
tions of the electron density functional theory of Hohenberg and Kohn (see, for example, 
[i]). In this approximation, the Schrodinger equation has the form 

1 ' W~ ' tV*C~(r)]+.(r) E.r (1) 
-- T "%-C -7 = 

where W~ is the unscreened pseudopotential, wscr(r) is the screening potential, which 
includes the Hartree potential and the exchange-correlation potential; ~g(r) is the pseudo- 
potential function, Egis the g-th energy level. The solution of Eq.(1) is sought in the 
form of a plane-wave expansion 

",5~(r) = [ K >  + ~_.~ a~(g) lx.Tg>. (2)  
g 

Here, [m > = |/QV2exP(iKr) is a plane wave. In [5], "effective matrix elements" were 
introduced, which can be expressed through coefficients ak(g) and are determined from the 
following system of equations: 

~~(g)= ~v(g)+ ~' ~'~(~') w(g-~') (3) 
~ , g  g~ - -  E~+~ 

where ~'(K) = < ~+giW(r) l~ > is the matrix element of the screened potential, 

~V~(g) = (E~--E~_K) ar(~) is the energy-dependent "effective matrix element." With the help 

of "effective matrix elements" the expressions for the wave function and the ~-th energy 
level can be written in the form 
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, ~ ( r ) =  .- > + ~ '  ~? ' ' ' ' " ( g ) ' ~c - : -g>  
- -  _Fg.r~ 

g (4) 

E~ = E~ ~ , l ~ , ( g ) W * ( E )  
--' E ~ - - E ~ + .  g 

(5) 

As is seen from Eqs. (3)-(5), the main difficulty in determining the wave function and the 
electron energy is due to the nonlocal character of "effective matrix elements." In 
order to avoid this difficulty one can average these equations over M by introducing instead 
of QM(g) the quantity W(g), which is independent of M and is determined from the following 
system of equations 

If' (g)  = W (g)  + %-Z ~; (g')  W (g--g')F(g'), ( 6 )  
g'  - g  

w h e r e  F ( g )  = < ( E ~ - - & ~ + ~ ) - I >  

occupied by electrons. In this case, expressions for the band structure energy and the 
Fourier components of the density distribution of conduction electrons can be written in 
the form 

g 

is the average value of the energy denominator in the band 

(7) 

j z/u,,, g=or 
P (g) 

[(Z,/~ C = [2 Re U~ (8") F (8") 2-, ~-~'IV (g --  g ' )  W* (g') X 
% g' . -g 

X ~ ( E - ' E ' ,  E') ] ,  E~O,  

where Z is the valence; ~o is the volume per ion; C is the normalization constant, which 
is determined from the condition that the number of particles in the system be conserved 

(8) 

, . ]-, ( 9 )  
c-'=[~ ~ ~ ' I ~ " ( ~ ) l ~ * ( e ,  g) , 

g 

~(g, g')= < [(E~--E~+,)(E~--E~'+,)] -a>. Expressions for the functions F(g) and r g' ), as 

well as the procedure for a self-consistent nonlinear screening of the matrix elements of 
the pseudopotential, can be found in [5]. Within the framework of the method described 
above, the total binding energy of a crystal may be represented in the form 

E .-~ Ees + E e + Ee,, ( 10 ) 

where Ees is the energy of the ion electrostatic interaction, calculated using the Ewald- 
Fuks method; E c is the band structure energy given by Eq. (7); Eel is the energy of the 
electron subsystem of the crystal 

Here, Eo= (3 ]0) Ze2~} is the average kinetic energy of electrons; ~f is the Fermi wave vector; 

e i s  t h e  e l e c t r o n  c h a r g e .  The s e c o n d  t e r m  i s  t h e  a v e r a g e  v a l u e  o f  t h e  e l e c t r o n - - p h o n o n  i n t e r -  
action 

< .  I t~'" (r)[~ > = z um [ W ~  4=e~ ] - -  ! 

_ ,  g .... ~og ~ j ( 12 ) 
K 

where We(g) is the unscreened matrix element of the pseudopotential. 
correlation energy of the homogeneous electr~Igas [6] 

E~c = Ze'-' [ -  0 485 r~ - -  0.(i5T5 --' 0.015,5 In (rsJ ], 

E~c is the exchange- 

(13) 
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TABLE i 

i Li 
4 

Na K ] Rb 
1 + 

Cs 

a 6,075 3.362 2,671 2,312 2.214 

re 0,363 0,487 0,689 0.775 0.871 

Eexp. J/mole --0,714 --0,606 --0.510 --0,484 --0,451 

E, J /mole  --0,670 --0,603 --0,512 --0,480 --0,453 

TABLE 2 

I LiH NaH KH RbH 
I 

CsH 

• Nlm2"10-t~ 3,472 . . . .  

z [3l , N/m2.-10-1e 3,436 2.288 1,479 1.294 1.156 

• N/m 2 . 10- 1 o 4.348 3,040 1.618 1.311 1,030 

t' s , m/sec, i0" 3 9,234 4,875 3,681 2.471 1,972 

Ef 

40/$ 

/ 
p, GPa 

o, GPa 4010 

$ .0,?250 2 4 6 GPa 

o tb z~ %qo~.= ' -win ~zeff 

F i g .  1 F i g .  2 

Fig. i. Isotherms for the hydrides of lithium (curve i), sodium 
(curve 2), and potassium (curve 3) at T = 0 K. 

Fig. 2. Pressure dependence of the effective charges of sodium 
and hydrogen ions in NaH compound: curve 1 is for sodium ion, 
curve 2 is for hydrogen ion. 

where r s = (3~0/4~z)i/s. AExc is the exchange-correlation energy of the inhomogeneous 
component of the electron distribution [5]; Eee is the electron-electron inter- 
action energy, which is taken into account twice in Eq. (7), and therefore must be sub- 
tracted from the total binding energy 

-% 4~. 12" Eel, = -- ~' --! ~ (g) 
2 --~ g~ g 

(i4) 

In calculating isotherms of the hydrides of alkaline metals the following equation of 
state for the crystal was solved 

(15) 
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from which the equilibrium value of the volume for a given pressure was found. The results 
of these calculations are presented in Fig. i. Pseudopotentials from [7] were used as 
pseudopotentials for alkaline metals; furthermore, their parameters were matched beforehand 
to the equilibrium condition (i5) with p = 0, and the energy was calculated using formula 
(10). Results of these calculations are presented in Table I, where calculated and experi- 
mental values of the total binding energy of these metals are also given. It is seen from 
Table 1 that the calculated values and the results of experiment are in very good agreement, 
which is evidence supporting the use of the pseudopotential method for calculating thermo- 
dynamic characteristics of alkaline metals. It is seen from Fig. i, where isotherms of 
the hydrides of alkaline metals are presented, that in the case of lithium hydride the iso- 
therm is almost vertical, whereas for potassium hydride it has a much greater slope. The 
slope of the isotherm is determined by the adiabatic compressibility, which is given by the 
following equality [8] : 

(16) 
kU>'- 

Knowing the compressibility, one can determine the velocity of sound in the substance (see 
for example [8]) 

where o is  the dens i ty  of the substance. Results of the ca l cu l a t i on  of the compress ib i l i t y  
and of the velocity of sound are presented in Table 2, where the results of [3] are also given. 
Unfortunately, experimental information on compressibility exists only for lithium hydride 
[3]; this value is also given in Table 2. It is seen from Table 2 that, as one would expect, 
the greatest compressibility is calculated for cesium hydride, and the smallest for lithium 
hydride; it is also seen that the calculated values of compressibility agree well with the 
data of [3] and with the experimental value for lithium hydride. 

Results of the calculation of the effective charges of metal and hydrogen ions as 
functions of pressure for sodium hydride are presented in Fig. 2. These effective charges 
may be determined by integrating the expression for the electron density over the spheres 
having the Pauling radius and by adding the charge of the ionic core. One can see from 
Fig. 2 that in sodium hydride mainly ionic bonding is realized; however, the magnitudes of 
the anion and the cation charges are not equal. This is evidence that one cannot talk about 
pure ionic or metallic bonds in hydrides. The values of the effective charges, apparently, 
cannot be obtained in a unique way because there is no criterion for the choice of the ionic 
radii of the compound components. In particular, instead of the Pauling radii one could 
choose such radii for which the equality zeffMe = [z~ff I is satisfied, as in the case in 

purely ionic comounds. This equality can be considered as an equation for determining the 
ion radii. However, solution of this equation for sodium hydride leads to an "overlap" be- 
tween ions. This overlap decreases as pressure increases, which is evidence for increased 
strength of the ionic bond in NaH. One can come to the same conclusions by analyzing the 
pressure dependence of the effective charges, determined with the help of the Pauling radii 
(see Fig. 2). One can see that increased pressure leads to an increase of the effective 
positive charge of the cation in the hydride and to an increase of the absolute value of the 
effective negative charge of the anion. 

Thus, the results obtained in this paper provide evidence for the fact that the des- 
cribed method gives the correct physical picture for the electron behavior in hydrides of 
alkaline metals and agrees with the existing ideas about the character of the binding forces 
in these compounds [4]. 

LITERATURE CITED 

i. V.V. Nemoshkalenko and V. N. Antonov, Methods of Computational Physics, Band Theory of 
Metals [in Russian], Naukova Dumka, Kiev (1985). 

2. H. Ehrenreich and L. Schwartz, Electronic Structure of Alloys [Russian translation], 
Mir, Moscow (1979). 

3. B.R.K. Gupta and V. Kumar, Czech. J. Phys., B33, I011 (1983). 
4. A.F. Zhigach and D. S. Stasievich, Chemistry of Hydrides [in Russian], Khimiya, 

Moscow (1969). 

758 



. 

6. 
7. 
8. 

G. L. Krasko, Z. Naturforsch., 36a, 1129 (1981). 
D. Pines and P. Nozieres, Theory of Quantum Liquids, Benjamin, Reading, MA (1966). 
G. L. Krasko and Z. A. Gurskii, Pis'ma Zh. Eksp. Teor. Fiz., ~, 596 (1969). 
R. Kubo, Thermodynamics, American Elsevier, New York (1968). 

ORIENTATIONAL BONDING OF PHASES ACCOMPANYING 

DIRECTED CRYSTALLIZATION OF THE EUTECTIC OF THE 

SYSTEM Si-TiSi 2 

L. S. Derevyagina and L. M. Butkevich UDC 669.295.5'782:536.421.4 

The characteristic features of structure formation in cast and direct crystallized 
alloys of the system Si-TiSi 2 were studied. It is shown that the predominant 
orientation of the bonding of the phases in directionally crystallized eutectics 
(DE) of the system Si-TiSi 2, observed at the stage of steady-state growth, already 
appears on the surface of nucleation, which apparently indicates that the nuclea- 
tion of the phases in the alloys of this system is of an epitaxial character. 

There are a large number of works on the crystallography of conjugate phases in direc- 
tionally crystallized eutectics (DE) [i, 2]. Their results, however, do not always agree, 
which is primarily a result of the local nature of the methods of study employed and the 
fact that only the stage of steady-state growth was analyzed. In [3] the stages of forma- 
tion of orientational bonding of phases in several metallic DE with a low entropy of 
melting of the phases were studied by the method of texture diffractometry, which has the 
advantage that the information is integrated over a large cross~sectional area of the sample. 
The crystallography of nucleation of DE is in most cases random and the orientational bonding 
is established in the course of subsequent growth. Epitaxial bonding of phases on the 
nucleation surface was observed only in DE of the system AI-$(AIAg). Directionally 
crystallized eutectics with a high entropy of melting of the phases (ASmelt > 23 J/(g'atom'K) 
[4]), having a tendency toward limitation during growth, have been virtually unstudied in 
this respect. In this work the formation of orientational bonding of phases in DE of the 
high-entropy system Si-TiSi 2 was studied. The entropies of melting of its phases equal 

S Si = 27.59 [5] and sTill2 = 33.8 J/(g'atom'K) [6] (estimated based on the latent heat of 
melt melt 
fusion), respectively. 

MATERIAL AND EXPERIMENTAL PROCEDURE 

The experiments were performed on alloys of the system Si-TiSi 2 with the eutectic (22% 
Ti by weight) and hypo- and hypereutectic (1-30% Ti by weight) compositions. The starting 
materials were titanium and silicon iodide of semiconductor purity. Directed crystalliza- 
tion was achieved following the procedure of [7] on a silicon seed with <iii> orientation. 
A crystallization rate in the range 1.7-2"10 -2 mm/sec was chosen, while the temperature 
gradient G on the crystallization front (qualitatively estimated from the angle of growth 
of the ingot) was varied by varying the magnitude of the overheating of the melt. The 
microstructure was determined by the procedure of [8] and studied under an MIM-7 microscope. 
The texture was determined on a DRON-3 diffractometer with a GP-2 attachment in Cu K radiation 
with back-and-forth motion of the sample in its own plane. The pole figures for the silicon 
phase were constructed for both the {220} and {iii} reflecting surfaces, whose x-ray inten- 
sity is high. Because of the weakness of the reflection from the (040) plane, the normal to 
which, according to the data of [8] is the axis of growth of TiSi2, the pole figures were 
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