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Classical Confidence Intervals and Bayesian 
Probability Estimates for Ends of  Local 

Taxon Ranges 1 

David Strauss 2 and Peter M. Sadler 3 

The observed local range of  a fossil taxon in a stratigraphic section is almost certainly a truncated 
version of  the true local range. True endpoints are parameters that may be estimated using only 
the assumption that fossil finds are distributed randomly between them. I f  thickness is rescaled so 
that true endpoints lie at 0 and 1, the joint distribution of  gap lengths between fossil finds is given 
by the Dirichlet distribution. Observed ends of  the range are maximum likelihood estimators o f  
true endpoints, but they are biased seriously. Extension o f  the observed range at each end by a 
distance equal to the average gap length yields unbiased point estimators. Classical statistics can 
generate confidence intervals for  ends o f  the taxon range; but with Bayesian inference, the prob- 
ability that true endpoints lie in a certain region can be stated. For a 95% confidence level (clas- 
sical) or a 95% probability (Bayesian), the range extensions exceed the observed range i f  the range 
is established on less than six finds; i f  only two finds are used, such range extensions are an order 
of  magnitude longer than the observed range. Evidently the standard biostratigraphic practice that 
identifies zonal boundaries as horizons rather than confidence intervals may not be justified at the 
resolution of  typical fossiliferous sections. 

KEY WORDS:  Difichlet distribution, range extension, biostratigraphy, extinction. 

1. INTRODUCTION 

The highest and lowest finds of a particular fossil in a sedimentary stratigraphic 
section are most important: they routinely are used to define ends of the local 
range of that taxon for correlation purposes, and to approximate migration and 
extinction events. Some intervals of  sedimentary rock within a local taxon range 
will have yielded fossils of  that taxon, but usually other intervals lie between 
the fossiliferous horizons and still appear to be barren, or are unsampled. Such 
barren intervals result from a failure of  either the preservation process or the 
collection process, but they obviously belong in the taxon range (Hazel, 1977). 
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If similar barren intervals occur just beyond the highest and lowest finds, how- 
ever, they will be excluded from the taxon range, and erroneously treated as if 
deposited before or after the local sojourn of the taxon. 

Clearly, observed ends of a taxon range zone include an uncertainty im- 
posed by the sampling strategy and another that results from vagaries of the 
preservation process. Where possible, these uncertainties should be stated ex- 
plicitly by, for example, addition of confidence intervals to the ends of the 
range. Following Edwards (1982), the probability of reworking, borehole cav- 
ing, and malpractice (contamination of samples, misidentification of taxa) is 
taken to be extremely small. Thus true ends of the local sojourn of the taxon 
correspond to horizons in the stratigraphic section that lie beyond the ends of 
the observed taxon range. 

Paul (1982; also McKinney, 1986; Springer and Lilje, 1988) has pointed 
out that barren intervals within the range ("gaps")  carry information about the 
discrepancy between observed and true ends of the local taxon range: the gaps 
and the discrepancy both result from failures in preservation and collection pro- 
cesses. From this, confidence intervals may be established for endpoints of 
ranges; the assumption is that finds of a taxon are distributed randomly within 
its range (in a sense to be made precise in Section 3). 

Shaw (1964), Paul (1982), Signor and Lipps (1982), McKinney (1986), 
Springer and Lilje (1988), and many others have used the simplifying assump- 
tion that fossils are distributed randomly. Paul (1982) and Springer and Lilje 
(1988) suggested tests for this assumption and, more significantly, showed that 
taxa and stratigraphic sections exist for which it is acceptable. Tests for ran- 
domness are relatively straightforward and are not discussed here. Even when 
the assumption of randomness is untested, an understanding of how confidence 
intervals depend on range length and number of fossiliferous horizons within 
the range can provide a baseline. 

The analysis here takes account of the fact that limits of the local sojourn 
are unobserved, but fixed, evolutionary or migration events. They are not ran- 
dom variables, but parameters that limit the interval in which finds of the taxon 
may be distributed randomly. Consequently, the classical statistical approach 
to the problem proposed by Springer and Lilje (1988) must be corrected. A 
second consequence is that classical statistics cannot assign probabilities to the 
position of true ends of the range. The following sections show how to set up 
confidence intervals in the classical statistical framework, and how to use Baye- 
sian inference to establish probability intervals. 

2. AN EXAMPLE: LATE CRETACEOUS AMMONITE RANGES 

The range of late Cretaceous ammonites reported by Macellari (1986, Fig. 
5) from Seymour Island in Antarctica will be used to illustrate methods as they 
are developed below. Macellari reports the position of ammonite finds within 
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taxon ranges, and only those ranges with three or more finds will be considered 
(Fig. 1). Several lines of  evidence indicate that the assumption of  random fossil 
distribution may be reasonable for this example. Lithology of  the Cretaceous 
section on Seymour Island is monotonously fine grained (Macellari, 1986; Sad- 
ler, 1989), and ammonites at the surface are obvious. The Antarctic conditions 
imposed a uniformity on the collecting strategy: uncertain weather and a short 
field season required that fossils be collected during measurement of  strati- 
graphic sections, and frozen ground prohibited excavation of fossils below the 
surface. 

The gap length distributions within 13 ranges were tested for exponential- 
ity and for absence of  serial correlation. As will be made clear in the next 
section, these are appropriate procedures for testing of  randomness (i.e., that 
fossil occurrence can be modeled by a Poisson process). If randomness is ac- 
cepted, the Dirichlet theory for statistical inference purposes must be used (Sec- 
tions 3 and 4). 

Only taxon 5 has a serial correlation coefficient above 0.15. Least-squares 
regression of the means on the standard deviation of  gap length gave over taxa 
a slope of 1.05, close to the value of  1.00 for an exponential distribution, al- 
though the regression is influenced strongly by one point. Furthermore, as in 
Springer and Lilje's (1988) examples, means were generally a little larger than 
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Fig .  1. Ammonite ranges in late Cretaceous strata of 
Seymour Island, Antarctic Peninsula. Observed local 
ranges (heavy vertical lines) and finds (filled circles) 
after Macellari (1986 ,  Fig.  5). Light vertical lines: 
upper range extension to unbiased point estimator. 
Dashed vertical lines: upper range extension to 9 5 %  

confidence interval. Taxa are numbered for ease of 
subsequent reference: 0 = Diplomoceras lambi; 1 = 

M a o r i t e s  s eymour ianus ;  2 = Kitchinites darwini; 3 

= Grossouvrites gemmatus; 4 --- M a o r i t e s  w e d d e l -  

liensis; 5 = M.  dens icos ta tus  m o r p h o t y p e - a l p h a ;  6 

= Kitchinites laurae; 7 = Anagaudryceras seymour- 
iense; 8 = M a o r i t e s  densicostatus morphotype- 
gamma; 9 = Pachydiscus riccardi; 10 = M a o r i t e s  

densicostatus morphotype-beta; 1I = P s e u d o p h y l -  

lites loryi; 12 = P a c h y d i s c u s  ultiraus. 
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standard deviations. Gap lengths for ammonite data roughly follow an expo- 
nential distribution truncated below 8.5 m. This is approximately the limit of 
resolution of Macellari's (1986) published illustration. Note that a limit to the 
resolution of field data should always be expected: fossils have finite size and, 
when close together, usually will be recorded as one site. Thus, a truncated 
distribution should be anticipated when testing for randomness in published 
data. 

After Macellari' s (1986) landmark study, Sadler (1989) mapped rocks near 
the upper limit of ammonite ranges as part of a test of extinction hypotheses. 
The mapping, which included rocks between Macellari's measured sections, 
increased the efficiency of ammonite collection near the top of their ranges, 
and, perhaps not surprisingly, discovered ammonites above their previously ob- 
served limits. The significance of the highest ammonites is controversial (Huber, 
1986; Sadler, 1989), but their presence warrants analysis of confidence intervals 
that might have been placed on Macellari's ammonite data. 

3. P R E L I M I N A R I E S  

The assumption of randomness of fossil distribution applies to the process 
which generates the fossil record, rather than the record itself. A Poisson pro- 
cess (see, for example, Ross, 1985) is a valid model for location of fossils if 
(i) Number of finds in an interval of the section follows the same Poisson prob- 
ability distribution for all intervals of a given length; and (ii) Numbers of finds 
in two disjoint intervals are independent. A find is a fossiliferous horizon ob- 
served to contain the taxon in question. Note that gaps (successive differences) 
between finds have independent exponential distributions 

fx(x) : ~ e -U,  x > 0 (1) 

where parameter k is the reciprocal of the expected gap length. (As is custom- 
ary, upper case letters are used here to denote random variables, and lower case 
letters denote their realized values.) The number of finds in a fixed interval is 
a Poisson random variable n whose mean is ~ times the interval length. Con- 
ditional on n, the n finds are independently uniformly distributed on the interval. 

The situation to be considered (Fig. 2) has parameters 01 and 02 which 
represent local origination/immigration and extinction/emigration of the species 
in question. The observed data consist of locations of n finds, assumed to rep- 
resent a random sample from a uniform distribution on (01, 02). This paper is 
concerned with the estimation and testing of hypotheses about the unknown 
parameters. 

Let Y, Z denote locations of first and last finds. These random variables 
are respectively the minimum and maximum of the n uniform variables. They 
are sufficient statistics (Hogg and Craig, 1978, p. 364) in the sense that all the 
information about 0j, 02 in the n observations is contained in them. For con- 
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Fig. 2. The relationship between fossil finds 
(filled circles), ends nf observed local range 
( y and z), and true ends nf range (0~ and 02). 
Vertical scale is height above an arbitrary da- 
tum in the stratigraphic sectinn. 

venience, the special case where 01 = 0 and 0 2 = 1 will be mentioned often. 
For this standard uniform distribution, 

P(Y___ y ,Z_<  Z) = ( z - y ) n ,  0 < y < Z < i (2) 

and hence, by differentiation, the joint density of Y, Z is 

fy, z(y,z) = Io(n-  1)(z-y)n-2 fo r0  < y  < z <  1 

otherwise (3) 

Marginal densities are 

fy(y) = n(1 - y )n - ,  0 < y < 1 

and 

f z ( z )  = nz ° - '  0 < z < 1 ( 4 )  

Springer and Lilje (1987) previously have considered the problem of in- 
ference about 01 and 0 2 based on the observed pattern of finds. They usefully 
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noted the analogy between the distribution of n finds between 01 and 0 2 and the 
"broken stick model ."  In the latter, a stick of length (02 - 01) is broken at n 
randomly chosen points; the result is n + 1 pieces, the length of the first and 
last being ( y  - 01) and (02 - z). Their paper rests on the claim that the 
distribution of sizes of the two pieces is exponential, as in (1). This claim is 
tempting but, unfortunately, incorrect. According to the Poisson process, gaps 
are indeed independent and exponentially distributed but, once one conditions 
on the event that n observations are in the range (01, 02), the property is lost. 
This is clear immediately from the fact that exponential variables have an infi- 
nite range, whereas gap lengths in the broken stick model are constrained to be 
less than (02 - 01). In particular, in the simple case n = 1, gap lengths are 
obviously uniformly distributed on (0, 02 - 01). In the case of n points, and 
with a rescaling so that 01 = 0 and 02 = 1, the joint distribution of the gap 
lengths under the broken stick model is known as the Dirichlet distribution 
(Hogg and Craig, 1978, p. 310). 

A further point, rather subtle but relevant to developments in the next sec- 
tion of this paper, also should be noted. This is that once endpoints y and z are 
taken to be observed data, lengths (02 - z) and ( y - 01) cannot be taken as 
random at all, at least within the framework of classical statistics. Thus, in that 
context, to speak of the distribution of these lengths would be improper; only 
"confidence intervals" for the parameters can be discussed properly. Methods 
for constructing such intervals will be developed shortly. If  endpoints 01 and 02 
are discussed as random quantities with probabilities of lying in various inter- 
vals, discussion is in the realm of Bayesian statistical inference. 

4. ENDPOINTS OF A SINGLE TAXON RANGE 

Unbiased estimators and confidence intervals will now be developed for 
endpoints of taxon range, based on the distance and the number of finds between 
first and last occurrences. 

4.1.  Point  Es t imat ion  

Maximum likelihood estimators of 01 and 02 are respectively y and z. These, 
however, are evidently biased, because Y > 01, Z < 02 with probability 1. To 
obtain unbiased estimators, note that in the uniform (0, 1) case, from Eq. (4), 

E ( Y )  = 1/(n + 1) 

E ( Z )  = n / (n  + 1) (5) 

where E ( .  ) denotes the expected value. Hence, with a linear transformation of 
y, z to make them uniform on (01, 02), 

e ( r )  = (O2 + nOl)/(n + 1) 

E ( Z )  = (0, + nO2)l(n + 1) (6) 
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Rearrangement of Eq. (6) yields 

E [ ( n V -  Z ) / ( , ,  - 1)] = 0, 

E [ ( n Z -  r ' ) l ( n -  1)] = 02 

Thus, the quantities 

(7) 

01 = ( n y  - z ) / ( n  - 1) 

02 : (nz  - y ) / ( n  - 1) (8) 

are unbiased estimators of 0t and 02. Standard theory (Hogg and Craig, 1978, 
p. 341) shows that they have the minimum variance of all unbiased estimators. 
At first sight, an estimator of 0~ (range top) involving y (lowest occurrence) 
may seem surprising, but this is in fact proper: without knowledge of y, no 
information exists on the scale factor and 02 cannot be estimated sensibly. 

Standard errors of the estimators (8) may be useful. The variance of 01 is 

1 
(n - 1) 2 [n2 Var r + VarZ  - 2n Cov (Y, Z)]  (9) 

Variances and covariance in Eq. (9) can be obtained from integration of Eqs. 
(3) and (4). After simplification, 

Var(01) = (02 - 0~) 2 n (10) 
( n -  1 ) ( n  + 1 ) ( n  + 2) 

The variance of 02 is the same. To use Eq. (10) in practice, an estimate of the 
unknown range (02 - 01 ) must be substituted. The obvious choice is 02 - 01, 
which is 

(z - y ) ( n  + 1)/(n - 1) (11) 

Note that Eqs. (8) and (10) cannot be used to provide confidence intervals in 
the usual way, because 0~, 02 are not distributed approximately normally, even 
when n is large. 

4.2. Confidence Intervals 

Confidence intervals for endpoints can be determined in numerous ways, 
but the most natural and convenient seem to be those of form 

y -  c ~ ( z -  y) < 0, < y (12) 

or 

z < 02 < z + y) (13) 

for suitably chosen c¢. Inequality (12) asserts that the origination point of the 
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species is lower than the first observed fossil by no more than a fraction a of 
the observed range. It is crucial that the probability p(c~) that the inequalities 
hold be independent of the parameters, and thus depend only on c~. To verify 
independence, 01 may be subtracted from all the variables and parameters, thus 
making the lower endpoint zero; then division throughout by (02 - 01 ) results 
in an upper endpoint of 1. Neither operation affects the probability. The next 
step is to find p ( a )  in the (0, 1 ) case, and thus relate a to the confidence level 
of the intervals. 

Consider first the single-parameter case. Let 

Pl  = P [ Y -  c~(Z - Y) < 0 < Y] (14) 

as in Eq. (12) with 01 = 0. The right-hand inequality is certain to hold, and 
needs no further consideration. Direct integration of Eq. (3) over the appropri- 
ate subset of the unit square would give p~, but a simpler argument is available. 
Note that 

Pl = P  Y <  1 + a  

Conditional on Z = z, one of the n observations must equal z, and the other (n 
- 1 ) observations are uniformly distributed on (0, z). Hence 1 - Pl is the 
probability that the minimum, and thus all (n - 1 ), of these values are between 
[ a / (1  + c~)] z and z. This probability is 

{1 - [ a / ( 1  + c Q ] ) ' - '  

and so 

Pl = 1 - (1 + . ) - (n- l )  (16) 

The result can be obtained by an alternative derivation, which shortly will prove 
useful. Let V~, II2, • • • be independent exponential random variables with means 
all equal to 1. Let 

T =  V 2 +  . . .  + V,  

Consider the quantity 

P ( V 1  > a T )  

Conditional on T = t, the probability is e -at .  Hence, the unconditional prob- 
ability is the expectation of e-St over the distribution of T. This is the moment 
generating function, with argument ( - a ) ,  of the sum of n - 1 independent 
exponential variables, and hence is given by 

(1 + ~)-(n--1) 

(Hogg and Craig, 1978, pp. 104-106). Observe that ratios of sums of the ex- 
ponential variables are independent of their sum, and hence probabilities of 
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events involving these ratios are unchanged if conditioned on the value of  ( V 1 
+ • • • + V, + ~ ). In particular, that value may be taken to be 1 without loss of  
generality. But in this case, V2, • • • , Vn may be taken as gaps between finds, 
and V1, V,+~ as intervals (0, y)  and (z, 1) respectively. Thus P(V 1 > at) is 
just 1 - Pl, and result (16) is established. 

Now consider the two-parameter problem. First compute 

P[Y - c~(Z - r )  < 0, z + c~(z - Y) > 1] (17) 

which can be found by some rather tedious integration. It is, however, much 
simpler to consider the exponential variables V 1, • • • , Vn + t- This requires 

P(V1 > o~T, V.+, > aT) 

Conditional on T = t, this is (exp ( - c~ t ) )  2 = exp ( - 2 c d ) .  Arguing as previ- 
ously, the unconditional probability (17) is 

(1 + 2~)  - ( n - l )  (18) 

The event of  interest for the confidence interval is 

[ Y -  c ~ ( Z -  Y) < 0, Z +  c ~ ( Z -  Y) > 1] 

which has probability 

P2 = 1 - P [ Y -  a ( Z -  Y) > 0] - P[Z + o ~ ( Z -  Y) < I]  

+ (1 + 2c~) - ( ' - 1 )  

in view of  Eqs. (17) and (18). From Eqs. (14) and (16), 

P2 --- 1 - 2(1 + o~) - ( n - I )  + (1 + 2a )  - ( ' - i )  (19) 

To use these results, a confidence level Pl orp2 is specified and Eqs. (16) 
or (19) are solved for the corresponding unique value of  oe. Equation (16) can 
be inverted to give 

c¢ = (1 - p t )  - ' / ( ' - * ) -  1 (20) 

and for Eq. (19) it is easy to find an oe by trim to give a specified pc. Values of  
c~ for various values of  n at confidence levels 80 and 95 % have been calculated 
(Table 1). For a two-parameter example, if y = 20, z = 30, n = 50, the 
statements 

30 < 02 '~ 30 + (0.078 X 10) 

20 - (0.078 x 10) < 01 < 20 

have jointly a 95 % level o f  confidence. Confidence intervals for the extinction 
points of  ammonites observed on Seymour Island (Fig. 1) are derived from 
Table 1, one-parameter case. 
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Table 1. c~ Values for One or Two Parameter Cases for Various Values of  n 

Confidence = 80% Confidence = 95% 

Number of One Two One Two 
finds parameter parameter parameter parameter 

2 4.000 6.316 19.000 28.830 
3 1,236 1.857 3.472 4.832 
4 0.710 1.044 1.714 2.299 
5 0.495 0,721 1.115 1.465 
6 0.380 0.550 0,821 1.064 
7 0.308 0.442 0.648 0,832 
8 0.258 0.370 0.534 0.682 
9 0,223 0.318 0.454 0.577 

10 0.196 0.279 0.394 0.500 
11 0.175 0,248 0.349 0.441 
12 0,158 0.224 0.313 0.394 
13 0.144 0.204 0,284 0,356 
14 0.132 0.187 0.259 0.325 
15 0,122 0.172 0.239 0.300 
16 0.113 0.160 0.221 0.277 
17 0.106 0.150 0.206 0.257 
18 0.100 0.140 0.193 0.241 
19 0.093 0,132 0,181 0.226 
20 0.088 0.125 0,171 0,213 
21 0.084 0.118 0.162 0.201 
22 0.080 0.112 0.153 0,191 
23 0.076 0.107 0.146 0.181 
24 0.072 0.102 0.139 0.173 
25 0.069 0.098 0.133 0.165 
30 0.056 0.079 0.109 0.131 
35 0.048 0.068 0.092 0.114 
40 0.042 0.059 0,080 0.099 
45 0.037 0.052 0.070 0.087 
50 0.033 0,047 0.063 0.078 
60 0.027 0.039 0.052 0,064 
70 0.024 0,033 0.044 0,055 
80 0.021 0.029 0.039 0.048 
90 0.018 0.026 0.034 0.042 

100 0,016 0.023 0,030 0.038 

,~ 0.000 0.000 0.000 0.000 

N o t e  t h a t  t h e  j o i n t  i n t e r v a l  d o e s  n o t  h a v e  to  b e  s y m m e t r i c  in  t h e  t w o  e n d -  

p o i n t s ;  

01 > Y -  c ~ ( z - y )  

02 < z + f i ( z  - y )  
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may easily be shown to be a 100p2% confidence interval provided that 

1 - (1 "~- O~) - ( n - l )  - -  (1 "~ 3)  - ( n - l )  ~- (1 + Oe + 3)  -~"-1~ = P2 (21)  

The choice c~ = 3, as in Eq. (19), does, however, minimize the total length (ce 
+ 3) (z - y) of intervals subject to Eq. (20); this can be verified quickly with 
the help of Lagrange multipliers. 

4.3.  Bayesian Est imation 

To speak of the probability that endpoints 01, 02 lie in a certain region is 
tempting. This is improper in the context of frequentist statistics, where 0's are 
regarded as unknown constants, but can be discussed legitimately in the frame- 
work of Bayesian inference (for an introductory treatment see, for example, 
Lindley, 1980). Here, a Bayesian approach to the estimation problem is 
sketched. 

For the prior distribution of (0~, 02), representing knowledge about the 
parameters before observing any data, one might take 

I ~  i f 0  < 0, < 02 < 1 
71"(01, 02) = (22) 

otherwise 

This is one representation of complete prior ignorance about the parameters, 
save that they lie in a certain interval that is scaled to be (0, 1 ). Other choices 
of prior knowledge are, of course, possible. For example, if species are cur- 
rently extant, range of 0t and 02 could be taken to be (0, ~ )  instead of (0, 1 ). 
In this case, several choices of prior knowledge could be reasonably said to 
reflect ignorance. Alternatively, a prior knowledge may be chosen to incorpo- 
rate a researcher's hunches about which values of the endpoint are more likely. 

Conditional on 01, 02, the joint distribution of the data x_ is taken again to 
be independent and uniform on (0~, 02), and thus has density 

~ ( 0 z -  0t) -n i f 0  < 0, < y < z < 0z 
f (x_]01,  02) (23) (0 otherwise 

Assume that n > 2; the case n = 2 would require a separate treatment. The 
joint density of the data and parameters is the product of Eqs. (22) and (23): 

~ 2 / ( 0 2 -  0~)" i f 0  < 0~ < y < z < 02 < 1 

f ( x ,  01, 02) : ( 0  otherwise 
(24) 

The marginal density of x_ is obtained by integration of Eq. (24) with respect to 
0~ and 02, ranges being respectively 0 to y and z to 1. This results in 

f ( x _ )  = 2u , , / [ (n  - 1 ) ( n  - 2 ) ] ,  0 < y < z < 1 (25) 
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where 

U n = ( Z  - -  y) -n+2  _ (1 -- y ) -n+2  _ z _ n +  2 -~ l 

From Eqs. (24) and (25), the conditional density of  Ol, 02 given the data is 

g(Ol, 02IX ) = (n -- 1 ) ( n  -- 2) (02 -- O1)-nlu., 

O < O l < y < z < O 2 <  1 

Finally, the posterior density of  02 is 

f y h(02 lx)  = g(O,, 02IX ) dO1, 0 < y < z < 02 < 1 
0 

or 

~ ( n - 2 ) [ ( 0 2  _ y ) - n + l  _02n+l]/Un i f z  < 02 < 1 
h(O21x) = (26) (0 otherwise 

Equation (26) gives the distribution of  extinction time given the data and as- 
suming prior distribution (22). As may have been expected, the density de- 
creases with 02 from its maximum at z. With a quadratic loss function, the Bayes 
point estimator of  02 is the mean of  Eq. (26), which can be shown to be 

(n - 2 ) u . _ 1  q'- y[(z  - y)--n+2 _ (I - y)-"+2]/u .  (27) 
(. - 3 ) . .  

~b 
, ' " " " 112 { )0 '  m '  " , . . . .  113 [~0 '  m '  " ' . . . .  I ' 

#!~b %5 

Fig. 3. Posterior distribution of upper endpoint 02 (extinction) in 
the Bayesian analysis for taxa 5 and 10. Shaded area: 95%. Also 
indicated are classical unbiased estimators (c), endpoints of clas- 
sical 95% confidence interval (95) and posterior mean [b: Baye- 
sian point estimates--see Eq. (4.22)]. Open arrows: taxon 10; 
closed arrows: taxon 5. 
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A probability interval for 02 can be constructed directly from quantiles of the 
posterior distribution. The distributions for ammonite taxa 5 and 10, the pos- 
terior means, calculated from Eq. (27), which provide Bayesian point estimates 
for 02, and the 95 % probability intervals are shown (Fig. 3). For comparison, 
the classical point estimators and confidence intervals are indicated. 

5. SEQUENCE OF ENDPOINTS FOR TWO OR MORE TAXON 
R A N G E S  

Using the above ideas on confidence intervals for endpoints of single taxon 
ranges, confidence in the preserved sequence of the first and last appearances 
of several taxa also may be quantified. Of  particular interest to the current search 
for evidence of mass extinctions is a format in which a confidence level is 
specified, and the question is asked whether the record is consistent with coin- 
cident upper endpoints. Other questions, such as that of  whether true ranges of 
several taxa overlap, can be treated in much the same way. 

Suppose that fossils of  two different taxa have been found. For the first 
taxon let 0~, 02, y, and z be defined as previously, and let a prime on these 
quantities denote the second taxon. Write r and r '  for ranges (z - y) and (z '  
- y '  ), where r is the value of a random variable R. A simple unbiased estimator 
of (02 - 0~) is (0a - 0~), as defined in (4). The confidence interval approach 
can be extended to provide confidence bounds for (02 - 0~). As has been shown 
above, 

P ( Z  < 02 < Z + o~R) = Pl (28) 

for a suitable value of o~ defined by Eq. (16) to give a desired value of p~. 
Similarly, 

P ( Z '  < O~ < Z '  + o~'R') = p,  (29) 

for a suitable e~'. (Unless the number of  finds is equal, o~ and ~ '  will be differ- 
ent.) Assuming that sampling procedures for the two taxa are independent, the 
events referred to in Eqs. (28) and (29) are independent. Thus, the probability 
that both occur is p~. This will exceed a specified level (1 - 3/) if pl = 1 - 
3,/2. (For example, a choice o f p l  = 0.975 ensures a confidence level of at 
least 95%.) Now if both events in Eqs. (28) and (29) do occur, 

( z  - z ' )  - < (02 - < ( Z  - Z ' )  + ( 3 0 )  

and thus, when sample values are substituted in Eq. (30), a confidence interval 
for (02 - 0~) with level at least (1 - 3') has been established. (Note that 
switching of primed and unprimed symbols in Eq. (30) gives the same result.) 
Further, by setting up the null hypothesis 

H0:0 2 = 0~ 
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and accepting H o if and only if the confidence interval contains zero, a hypoth- 
esis test with significance level at most y has been defined. The test in this 
sense is conservative, and is not the only possible approach, but it is simple to 
use, and expression (30) is easy to interpret. 

As an example, return to the ammonite data and consider the 16 finds of  
taxon 5 and the 8 finds of  taxon 10. The observed finds occur in the intervals 
800-1147 and 97%1091 m, respectively. Thus the ranges are 

R = 1147 - 800 = 347 

R ' =  1091 - 9 7 9  = 112 

Unbiased estimates (8) for the tops 02, 0~ are 

02 = (16 x 1147 - 800)/ (16 - 1) = 1170 

0~ = (8 x 1091 - 979) / (8  - 1) = 1107 

giving the unbiased estimate 1170 - 1107 = 63 m for (02 - 0~). Using Table 
1, 

(1147 - 1091) - 0.534 x 112 < 0 2 - O~ < (1147 -- 1091) 

i.e., 

+ 0.221 x 347 

- 3 . 8  < 0 2 -  0~ < 132.7 

can be asserted with confidence greater than 90 %. Thus, the hypothesis of  co- 
extinction would be accepted (if just barely) at the 10% level. 

The above method easily generalizes to the k-species case. For a test of  
specified significance level 3', set each of  the k quantities p~, p~, • • • to ( 1 - 
y / k ) .  The k inequalities such as Eq. (28) will hold simultaneously for every 
pair of  taxa with probability at least 1 - 3'. Thus a test procedure is to accept 
the simultaneous extinction hypothesis provided that all k ( k  - 1) /2  confidence 
intervals Eq. (30) contain zero. Again, other approaches are possible but this 
seems to be one of  the simplest. 

As an example, consider a test of  the hypothesis that ammonite taxa 3, 5, 
and 10 became extinct simultaneously. For a significance level of  5 %, the con- 
fidence level of  each species-pair is ( 1 - 0 . 0 5 / 3 ) .  From Eq. (30), the intervals 
a r e  

Species 3 to species 5 : - 1 0 8 . 3  to 99.2 

Species 3 to species 1 0 : - 3 2 . 5  to 115.2 

Species 5 to species 1 0 : - 3 2 . 5  to 164.3 
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Because all three intervals contain 0, the hypothesis is not rejected. By contrast, 

with 3' = 0.2, analogous calculations show that the hypothesis should be re- 

jected,  as the top for species 10 appears lower than the others. 
In a Bayesian treatment of  the two-species problem, 02 and 0~ would be 

regarded as independent random variables with distributions given by Eq. (26). 
By convolving the densities,  the density of  (02 - 0~) is obtained. This is in- 
convenient to express algebraically,  but numerical  integration is straightfor- 
ward. A prediction interval for (02 - 0~) is obtained from suitable quantiles of  
the distribution. The plausibil i ty of  simultaneous extinction can be assessed by 
observing the location of  the value zero in the distribution. I f  zero occurs below, 
say, the 0.025 quantile or  above the 0.975 quantile, the hypothesis might be 
rejected. 

In the case of  the example just  considered,  for taxa 5 and 10, the posterior 
distribution of  (02 - 0~) (Fig. 4) has a mean at 60 m; this is the Bayesian point 

estimate i f  the loss function is quadratic. Because all the parameters and vari- 
ables are taken to lie in (0,  1500), the range of(02 - 0~) is from - 3 5 3  ( = 1147 
- 1500) to 409 ( = 1500 - 1091). A 95% predict ion interval for (02 - 0~) is 
from - 2 4  to 150 m. The corresponding quantities from classical theory also 
are shown: the unbiased estimate of  (02 - 0~) is 63 m, and a 95% confidence 
interval is from - 2 2  to 153 m. Both classical and Bayesian estimates and in- 
tervals are in good agreement.  

A 
Fig. 4, Bayesian posterior distribution of (02 - 0~), the 
difference between true extinction points for taxon 5 and 
taxon 10. Vertical line is the mean: this is the Bayesian 
point estimate of (02 - 0~), assuming squared error loss. 
Shaded area: 95 % prediction intervals. Also indicated are 
classical point estimate (arrow) and 95 % confidence inter- 
val (crosses) for (02 - 0~). 
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6. CONCLUSION 

As is widely appreciated, the observed local range of a fossil taxon in a 
stratigraphic section is probably a truncated version of the true local range. 
Consequently, the fossil record does not always preserve the true sequence of 
migration and evolution events. Simple methods to attach confidence intervals 
to the ends of observed ranges, and thus deal with the inaccuracy, have been 
demonstrated. The lengths of extensions are a function of the chosen confidence 
level, number of  finds, and length of observed range. For the traditional 95 % 
confidence level, range extensions become longer than the observed range if 
the latter is established on less than 6 finds (Table 1). If  a taxon is found at 
only two horizons in a section, drawing a local range seems inadvisable because 
95 % confidence intervals are more than 10 times longer than the observed range. 
Ammonite ranges analyzed here were established by careful collection in an 
unusually fossiliferous and uniform section. Nevertheless, some substantial 
range extensions were calculated. This example suggests that standard bio- 
stratigraphic practice, which identifies zonal boundaries or extinction events as 
horizons, routinely makes interpretations at greater precision than local data can 
justify. 

Several methods of time correlation (summarized in Edwardsl 1982) seek 
to eliminate the inaccuracy of observed local ranges by combination of data 
from several independent sections. Confidence intervals described here can be 
established independently, taxon by taxon and section by section; thus they may 
be used to evaluate individual sections before the application of these correla- 
tion procedures. 

A C K N O W L E D G M E N T  

We are indebted to Barry Arnold, Lucy Edwards, and Thomas Starks for 
some helpful suggestions and criticisms. Mark Springer and Anneliese Lilje did 
not pursue our Bayesian suggestions, but we thank them for bringing this sub- 
ject to our attention. This work was supported in part by Grant EAR 8721192 
from the National Science Foundation. 

REFERENCES 

Edwards, Lucy E., 1982, Quantitative Biostratigraphy: The Methods Should Suit the Data: p. 45- 
60, in Cubitt, J. M. and Reyment, R. A. (eds.), Quantitative Stratigraphic Correlation: Wiley, 
Chichester. 

Hazel, J. E., 1977, Use of Certain Multivariate and Other Techniques in Assemblage Zonal Bio- 
stratigraphy: Example Utilizing Cambrian, Cretaceous, and Tertiary Benthic Invertebrates: p. 
187-212, in Kauffman, E. G. and Hazel, J. E. (eds.), Concepts and Methods of Biostratig- 
raphy: Dowden, Hutchinson and Ross, Stroudsborg, Pennsylvania. 



Ends of Local Taxon Ranges 427 

Hogg, R. V. and Craig, A. T., 1978, Introduction to Mathematical Statistics: Macmillan, New 
York, 438 p. 

Huber, Brian T., 1986, The Location of the Cretaceous-Tertiary Contact on Seymour Island, Ant- 
arctic Peninsula: Antarctic J. USA, Annu. Rev. 1985, v. 20(5), p. 46-48. 

Lindley, D. V., 1980, Introduction to Probability and Statistics from a Bayesian Viewpoint, Parts 
I and II (2nd ed.): Cambridge University Press, Cambridge, England, 270 p. and 300 p. 

Macellari, Carlos E., 1986, Late Campanian-Maastrichtian Ammonite Fauna from Seymour Island 
(Antarctic Peninsula): J. Paleont., v. 60, II, p. 1-55. 

McKinney, M. L., 1986, How Biostratigraphic Gaps Form: J. Geol., v. 94, p. 875-884. 
Paul, C. R. C., 1982, The Adequacy of the Fossil Record: p. 75-117, in Joysey, K. A. and Friday, 

A. E. (eds.), Problems of  Phylogenetic Reconstruction: Academic Press, London and New 
York. 

Ross, S. M., 1984, Introduction to Probability Models: 3rd ed.: Academic Press, New York, 272 
p. 

Sadler, Peter M., 1989, Geometry and Stratification of Uppermost Cretaceous and Paleogene Units 
on Seymour Island, Northern Antarctic Peninsula, in Feldmann, R. M. and Woodburne, M. 
O. (eds.), The Geology of Seymour Island, Antarctica: Geological Society of America, Mem- 
oir 169, p. 303-320. 

Shaw, A. B., 1964, Time in Stratigraphy: McGraw-Hill, 365 p. 
Signor, P. W. and Lipps, I. H., 1982, Sampling Bias, Gradual Extinction Patterns and Catastro- 

phes in the Fossil Record: p. 291-296, in Silver, L. T. and Schultz, P. H. (eds.), Geological 
Implications of lmpacts of Large Asteroids and Comets on the Earth: Geological Society of 
America, Special Paper 190. 

Springer, M. and Lilje, A., 1988, Biostratigraphy and Gap Analysis: The Expected Sequence of 
Biostratigraphic Events: J. Geol., v. 96, p. 228-236. 


