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Estimating a Favorability Equation For the 
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The notion of a favorability function for delineation of exploration targets has attracted attention 
among geologists and geomathematicians over the last decade, as indicated by the number of 
publications on this subject. Traditional estimation methods for a favorability equation carry sev- 
eral ambiguities in the meaning of the estimate: In order to avoid these problems, a special type 
of geological variable, referred to as the target variable appears in a favorability equation. Ex- 
planatory variables are usually physical and chemical descriptors of geologic objects, while target 
variables are usually available only in best explored regions. A favorability function should be 
defined as a linear combination of the explanatory variables, while the meaning of the function 
should be in terms of the target variables. Two objective methods, canonical correlation and 
weighted canonical correlation, are proposed in this paper. The estimation of a favorability equa- 
tion by these methods is predicted upon a criterion that maximizes the correlation of the estimate 
of the favorability function and the target variables. Both methods are demonstrated on a case 
study of epithermal gold-silver vein deposits in the 2 ° Walker Lake quadrangle of Nevada and 
California. Targets for mineral exploration of gold-silver deposits were identified on the basis of 
the favorability functions by means of optimum discretization. 

KEY WORDS: exploration target, favorability equation, weighted canonical correlation, gold- 
silver deposit, resource a s s e s s m e n t .  

INTRODUCTION 

Multiple regression models have been widely used in geodata analysis, either 
separately or jointly with other statistical methods (Harris, 1965; Agterberg and 
Gabilio, 1969; Jones 1972; McCammon,  1973; Ethridge and Davies, 1973; 
Mark and Church, 1977; Davis, 1986). Let Y be a random dependent variable 
and X l, X2 . . . . .  Xm be m independent variables. The basic linear regression 
model is 
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Y = [30 + [3jXl + . . .  + [3mXm + tt 

where It is a random error satisfying certain statistical conditions. The require- 
ment of a dependent variable is necessary in some cases when prediction of a 
measure is of primary interest, but it is not required in many other cases, for 
example, when the estimation of favorability of a region for mineral exploration 
is a major concern. In such cases, one may be more interested in the following 
model 

F = a l X  I + azXz  + . . .  + amXm (1) 

where F is called favorabi l i ty  func t ion  in terms of random variables Xi . . . . .  
X m, and F is meaningful with respect to certain stated objectives. In mineral 
exploration, F would characterize a particular type of mineralization given a 
collection of observations. F is sometimes regularized to the interval [ -  1, 1] 
with 1 indicating the region most favorable to the mineralization of interest, 
and - 1 representing most unfavorable. 

A slightly generalized form of Eq. (1) is 

F = XWa = a l W i X  1 + a 2 w 2 X  2 + . . .  + a m w m X  m (2) 

where W = diag (wl, w2 . . . . .  Win) with wj being an a priori  selected weight 
for X;, X = (XI, 3;2 . . . . .  Xm) and a = (al,  a2 . . . . .  am) r. A p r i o r i  information 
which should be independent of the information contained in the input data is 
not always available. An appropriate description of such information requires 
a thorough understanding of the geological features and their intrinsic relations 
to the mineralization processes. 

Several methods have been developed for the estimation of a favorability 
equation for the selection of exploration targets. Characteristic analysis 
(McCammon et al., 1983; Pan and Wang, 1987) involves the estimation of Eq. 
(1) by the principal components method. Reddy and Koch (1988a,b) estimated 
Eq. (1) by a subjective method based on the weighting factors from control 
sample units. Each of these weighting factors was determined using a priori  

information by recording the presence of transformed digitized variables in the 
control cells as a fraction of all the control cells. The most recent work was 
given by Luo (1990), who proposed a method for estimating Eq. (1) without 
defining a control area. 

As these methods present possible ambiguities in the meaning of the fa- 
vorability function, Harris and Pan (1987) and Pan (1989) proposed a method 
to improve the estimate, called weighted and targeted multivariate criterion. 
This paper examines some alternative objective methods of estimating Eqs. (1) 
or (2) by seeking a means of enhancing important information about the 
mineralization. Two such methods, canonical  correlation and weighted can- 

onical  correlation,  are proposed. A major goal of these methods is to explicitly 
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identify and incorporate a set of special geological features (Z l . . . . .  Zp) that 
provide firm evidence about the mineralization of interest. This reduces ambi- 
guities in the favorability function estimated by traditional methods, and hope- 
fully captures much of the useful information. These methods are demonstrated 
by a case study of exploration target areas for epithermal gold-silver deposits 
in the Walker Lake quadrangle of Nevada and California. The regions being 
potentially favorable to epithermal gold-silver mineral deposits are identified 
on the basis of the optimum favorability functions by means of optimum dis- 
cretization. 

BRIEF R E V I E W  

Characteristic analysis (McCammon et al., 1983; Pan and Wang, 1987) 
estimates Eq. (1) by means of a principal component method. Let S be the 
similarity matrix of X = (Xt ,)(2 . . . . .  Xm). The estimate of Eq. (1) by char- 
acteristic analysis is given by 

P = Xe (3) 

where e is the unit eigenvector associated with the largest eigenvalue of S. The 
magnitude of the coefficient, ej, measures the importance of the jth variable, 
Xj, to function F. The characteristic analysis assumes that geological charac- 
teristics are expressed as ternary or binary variables. One appealing feature of 
the method is that it can quantitatively integrate multiple forms and kinds of 
data, such as various modes of occurrence as well as qualitative geological 
variables which are often readily accessible but difficult to quantify. 

The principal component with the largest eigenvalue explains the largest 
portion of the total variability contained in a data structure; but unless the vari- 
ables are purposefully chosen, they may not necessarily contain any meaningful 
information about a particular type of mineralization. However, characteristic 
analysis is useful for the integration of mineral exploration data due to its par- 
ticular coding design. For example, when geological characteristics are coded 
in ternary form, a variable having a value of positive one at a location means 
that its presence is favorable to the mineralization at that location, while a vari- 
able taking a negative one implies that the presence of this variable is unfavor- 
able. Accordingly, the implications of F in Eq. (3) are partially implied a priori 
by the data coding requirements. Determination of which values of a variable 
would represent favorable or unfavorable state (1 or - 1 )  is still subjective. 

The estimation of the favorability function given by Luo (1990) is essen- 
tially a constrained least squares analysis. The criterion of his approach is to 
minimize the variance Var (F) = E[F - ~F] 2 with constraint I27= 1 aj/~j = #g, 
w h e r e  ~F : E(F) and t~j = E(Xj). The estimate for Eq. (1) is given by 

P = Z C ~  ~ (4) 
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where i a = (#~ . . . . .  /zm) T and C is the covariance matrix. This approach is 
subject to possible ambiguities in the meaning of the estimate of F, for the 
"optimization" is solely predicated upon the internal statistical structure (cov- 
ariance matrix) of X. In other words, the function F estimated above is useful 
to characterize a typical linear combination with the minimized variance of the 
favorability function, but not necessarily meaningful as being a "favorability 
indicator" for new mineral discoveries, unless the variables are appropriately 
pre-selected. 

Luo's method was developed without using a control area. However, it is 
necessary to select control areas when the study region is large, because of the 
non-homogeneities in the degree of mineral exploration and variability of geo- 
logical settings as some sub-regions might be better explored than others. A 
choice between using or not using control areas seems to be equivalent to the 
choice between preventing losses of useful information and avoiding difficulties 
in selecting control areas. Without defining control areas, one has to ignore 
those variables that are useful but available only in a small part of the region. 

The weighted and targeted multivariate criterion proposed by Harris and 
Pan (1987) and Pan (1989) may be considered as a variation of the principal 
components method. Enhancements of useful information about mineral re- 
sources are sought by maximizing the correlation between geological and pre- 
selected target variables which characterize the mineralization of interest. The 
techniques developed in this paper are predicated upon a similar idea, i.e., 
seeking an "external" enhancement. 

EXPLANATORY AND TARGET VARIABLES 

In regional mineral resources assessment, it is usually possible to identify 
two types of geological features. The first type, referred to as explanatory vari- 
ables, consists of the geological measurements, X I, X2 . . . . .  Xm, which are 
primary to Eq. (1). They are usually chemical and physical descriptors of geo- 
logic objects, which are generally observable throughout the entire study region 
by conventional sensing technologies. Stream sediment geochemical measure- 
ments, gravity observations, and intensity of magnetic flux are a few examples. 
The second type, referred to as target variables, includes mineral resource de- 
scriptors, critical genetic factors, or those directly related to these descriptors. 
These features are usually known only in the best explored parts of the study 
region and are unevaluated in the rest of the region. Their precision is highly 
dependent upon exploration levels. They usually characterize the major objec- 
tive of a study and are important criteria for the selection of control areas. Table 
1 contains an example of the two types of geological variable identified for 
epithermal gold-silver vein deposits in the Walker Lake quadrangle of Nevada 
and California. The variables in th e table are explained in a later section. 
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Table 1. The Explanatory and Target Variables for Epithermal Gold-Silver Deposits in the Walker 
Lake Quadrangle 

J 

Variable name Geological implication 

Explanatory variables set X1 Synthesized geochemical fields 
X2 Synthesized structural fields 
X3 Bandpass gravity fields 
X4 Band-pass magnetic fields 
X5 Ratio of geophysical fields 
X6 Correlation of geophysical fields 
X7 Host rocks of Au-Ag deposits 
X8 Estimate of depth to intrusives 

Target variables set ZI Hydrothermal alterations 
Z2 Tertiary intmsives 
Z3 Au-Ag mines or prospects 

m 

Since the two sets of  variables are not equal in terms of  their contributions 
to the prediction of  mineral targets or resources, their treatment in a lump would 
mask and even result in losses of  important information. Ideally, these two 
different types of  data should be identified, separated, and then correlated. 
Equation (1) contains only explanatory variables, while the meaning of  the 
favorability function is characterized by the information carried by target vari- 
ables. The optimum estimation of  favorability Eq. (1) is obtained by maximiz- 
ing the correlation between the explanatory and target variables. 

C A N O N I C A L  C O R R E L A T I O N  M E T H O D  

Let X = ( X I ,  X 2 . . . . .  Xm) and Z = (Z  I , Z2 . . . . .  Zp) be two vectors of  
m explanatory and p target variables, respectively. Consider the linear combi- 
nation 

G = Z b  = b l Z  l + . . .  + bpZp 

with b = (bj . . . . .  bp) T. Then, the coefficients a in Eq. (1) are selected such 
that the correlation of  F and G is maximized for all possible real values of  b. 
Clearly, this is a canonical correlation problem. Since the standard form of  
canonical correlation analysis for two sets of  variables is well-known (see Mar- 
dia et al., 1979; Seber, 1984; Johnson and Wichern, 1988), only the major 
results are summarized below. 

Let Cxx  = Cov (X T, X ) ,  C z z  = C o v  (Z r, Z ) ,  Cxz  = Cov (X r, Z) and 
Czx = C~z. The objective is now to find a and b such that Corr (F, G) = 

a r C x z b / ~ / ( a T C x x a )  (brCzzb) is maximized; this leads to the following main 
result 
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C -  i / 2  K-~ I"~-- 1 it-~ ~ - - 1 / 2  xx "-'xz'~zz "-'zx'-'xx dj = •j dj (5) 

C-I /2 t~  r - I  C x z C ~ / 2  ~,jej (6) ZZ ~--" ZX "--'XX e j  = 

The best solution for Eq. (1) is then given by 

f = X C:~,~/2 d I (7) 

where dl is the unit eigenvector associated with the largest eigenvalue X1. Al- 
ternatively, the favorability function F may be defined as G predicted through 
regressing the first canonical variable t~ = Z C ~ / 2  el of the target variables on 
F, the first canonical variable of m explanatory variables, by least squares 
method. Interpretation of the estimate may be aided by computing the correla- 
tion coefficients between/~ and each of explanatory and target variables (John- 
son and Wichern, 1988). 

Derivation of Eq. (7) considers only the first pair of canonical variables in 
Eqs. (5) and (6). It may be useful to ask whether the estimate in Eq. (7) is 
significantly correlated with the first canonical variate of the target variables. 
Several large sample tests are available (Seber, 1984; Fujikoshi, 1977), but 
each of them is established on normality assumption. One of the most com- 
monly used tests is the test that p - q (q _< p) of the smallest correlations are 
zero, that is, Hoq: P q + l  = P q + 2  = • • • = t°p ~-- 0 ( /gq  ~" 0 ) .  When Hoq is true, 
the canonical variables (Fj, Gj) ( j  = q + 1, . . . , p) have no predictive value 
for comparing X and Z, so that the relationship between X~ . . . .  , X,, and Zt, 
. . . .  Zp can be summarized by means of the first q canonical variables. Since 
we are concerned only with the first pair of canonical variables, set q = 0 and 
then test H0: p~ = . . .  = pp = 0. For this special case, the likelihood ratio test 
for testing H0 leads to the statistic (Bartlett, 1947; Seber, 1984; Davis, 1986) 

4) = (1 - pZO(1 - 022) . . .  (1 - p~) (8) 

and - 2 n  log ~ is asymptotically X~ with v = rap. Unfortunately, the statistic 
~b is not robust to departures from normality, particularly to the presence of 
outliers or long-tailed distributions. 

A W E I G H T E D  CANONICAL C O R R E L A T I O N  M E T H O D  

In the canonical correlation analysis, correlation between the two sets X1, 
. . . .  Xm and Z1, • • . , Zp has been isolated in the pairs of canonical variables. 
By design, the coefficient vector a in Eq. (1) is selected in accordance with the 
maximization of the correlation between F and G, where G is a particular linear 
combination of Zl . . . .  , Zp. This criterion, however, does not necessarily pro- 
vide estimates that account for the covariances between target variables, Z1, 
. . . .  Zp. The canonical variable G characterizes a certain direction in the target 
variable space, but not necessarily the direction with the maximum variability. 
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A simple numerical example may well illustrate this point (Johnson and Wich- 
ern, 1988). Let X = (X1, X2) and Z = (ZI, ~ )  and their covariance matrix be 

) Cx~ 
C - -  

Czx Czz L :1 
100 0 0 0 

0 l 0.95 

0 0.95 1 

0 0 0 100 

It can be readily calculated that F = X2 and G = ZI, which have correlation of 
0.95. However, G provides a very poor summary of the variability in the target 
variable set. Most of the variability in this set is in Z2, which is uncorrelated 
with (~ and F. Thus, the variability in the target variables is not satisfactorily 
captured by the estimated favorability function F. 

To characterize the largest variability in target variables, the coefficient 
vector b in canonical variate G may be pre-determined by the principal com- 
ponents method based upon solely the covariance matrix of target variables 
(Czz). Furthermore, the variability in a large data set may not be sufficiently 
represented by only one principal component, but may be approximated by sev- 
eral components. Therefore, instead of using only a single principal component, 
typically, q components (q < p) are simultaneously considered when a is es- 
timated. To be more general, Eq. (2) will be considered in the following de- 
velopment: 

Let Yj be thejth principal component of the covariance matrix Czz, i.e., 

Yj = Z b j  = b l j Z  , + b2 jZ  2 + . o .  + bpjZp, j = 1, 2 . . . . .  p 

Var (Yj) = Xj (thejth largest eigenvalue of C z z )  and Cov (Yj, Yk) = 0 ( j  
k). Suppose that the first q (_<p) principal components account for a sufficiently 
large proportion of the total variability in p target variables. Let B = (b~, b2, 
. . . .  bq) be the p x q matrix containing q eigenvectors associated with the first 
q largest eigenvalues of Czz. Denote Y = (Y~ . . . .  Yq) = Z B .  

Consider the criterion to determining coefficient vector a by maximizing 
the sum of the squared covariance between the favorability function F = XWa 
and each of the q principal components, Yj. Let 

q 

4~2(a) = ~ Cov 2 (Yj, F) (9) 
j = l  

Cov (Yj, F) = C o v  (Zbj, XWa) = bfCzxWa. Thus, Eq. (9) is rewritten as 
q 

q~2(a) = ~ arWCxzbjbfCzxWa = a r H a  (10) 
j = l  

where H = WCxzBBTCzxW. The variance of F is given by 
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ot2(a) = Var (F) = aTGa (11) 

where G = WCxxW. Using Eqs. (10) and (11) and a Lagrange multiplier, 
construct an objective function 

L(a, #) = aTHa - #(aTGa - 1) 

The coefficients a are chosen such that L is maximized. Taking the first-order 
partial derivatives of function L with respect to a and #, and setting them to 
zero, we have 

Ha = #Ga, a rGa  = 1 (12) 

If  G is positive definite, then G = G '/2G1/2. Thus, Eq. (12) is rewritten as 

Hue = #e (13) 

where Hg = G - l/2HG - l/2 and e = G l/2a. Hence, the estimate of Eq. (2) is 
given by 

/~ = X W G  - i /2  e (14) 

where e is the unit eigenvector associated with the largest eigenvalue of Hg. 
The interpretation of the estimates can be aided by computing the corre- 

lation coefficients between the estimated favorability function and explanatory 
and target variables as well as the principal components of the target variables. 
The covariances between F and X are 

Cov (X, F) = C o v  (X, XWa) = CxxWa 

Given the best estimate of a (meaning that Var (F) = arGa = 1), the corre- 
lation coefficient vector between F and X is 

Corr (X, F) = C - l / 2 C x x W a  (15) 

where C = diag (o~ . . . . .  0 2) with o} = Var (Xj). The correlation coefficient 
between F and Xj is 

m 

Con" (Xj, F) = E w~ak'~kOjk 
k = l  

where Pjk = Con" (Xj, X~). Thus, the correlation between the favorability func- 
tion F and the jth explanatory variable is a weighted sum of the correlation 
coefficient between Xj and each of the explanatory variables. A larger coefficient 
ak or weight Wk would suggest a bigger contribution from the kth explanatory 
variable to the correlation between F and Xj. This implies that interdependen- 
cies of  the explanatory variables are accounted for in the quantification of F. 

The covariance between F and Z is 

Cov (Z, F) = C o v  (Z, XWa) = CzxWa (16) 
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Given the optimum estimate of  a, their correlations can be computed by 

Corr (Z, F) = I" -l/2CzxWa (17) 

where r = diag (3"~ . . . . .  3,2q) with 3 '2 = Var (ZD. Furthermore, the correla- 
tion coefficient between F and Z/is 

m 

Corr (Zj, F)  = ~] Wkak3"kOt/i, 
k = l  

where otjk = Corr (Zj, Zk). This shows that larger weights ak and wk determine 
a larger contribution of the kth target variable to the correlation between the 
favorability function and the j th  target variable. 

Similarly, the covariance between F and Y is 

Cov (Y, F) = C o v  (ZB, XWa) = BrCzxWa 

[[Cov (Y, F)ll 2 = aTWCxzBBTCzxWa = aTHa = IZmax 

where/£max is the largest eigenvalue of matrix H given the optimum estimate of  
a. The correlation coefficient vector between F and Y is given by 

Corr (Y, F) = A -  1/2BTCzxW a (18) 

where A = diag (Xi . . . . .  Xq) with Xj = Var (Yj). 
Furthermore, given the best estimate of  a, the ~b 2 in Eq. (9) is rewritten as 

q q 

= Z C o v  F )  = Z = 
j = l  j = l  

where PjF = Corr (Yj, F). Thus, maximization of q~2 with constraint a rGa  = 1 
is equivalent to the maximization of the weighted sum of the squared correlation 
coefficients between the favorability function and each of the q principal com- 
ponents of target variables. The weights X/distinguish different contributions 
for different components. The maximization gives more consideration to those 
principal components characterizing the directions with larger variabilities in 
the target variable space and suppresses others with smaller variabilities. 

Now consider the sample estimate for Eq. (2). Suppose that both sets of 
explanatory and target variables are observed on a control sample of size n. Let 
X = (xl . . . . .  Xm) be an n × m data matrix for explanatory variables and Z 
= (z~ . . . . .  Zp) is an n × p data matrix for target variables. On this sample, 
let f = (fl . . . . .  f,)T be the vector of  realizations of  F given the set of obser- 
vations on the m explanatory variables. Thus, f = XWa. 

Furthermore, the first q sample principal components of the p target vari- 
ables are denoted by Y = (Yl . . . . .  yq) = ZU, where U = (ul . . . . .  Uq) with 
uj being the unit eigenvector associated with the jth largest eigenvalue of the 
sample covariance matrix between p target variables. Define 
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q 

O~(a) = E (yfQf)2  = aTSa 
j = l  

where Q = I - (1 /n ) J  with J = (1)n × n and S = WXrQZUUTZrQXW. The 
sample variance of F is ~ ~(a) = arDa with D = WXTQXW. The coefficient 
vector a is determined by maximizing ~b~ subject to the constraint c¢2n = 1, 
leading to the following 

Sa = /zDa (19) 

Hence, the estimate of Eq. (2) based on this sample is given by 

= X W D -  i/2 e (20) 

where e is the unit eigenvector associated with the largest eigenvalue of matrix 
D -  l /2SD- 1/e. Similarly, the sample correlations between F and X, Z, or Y can 
be computed on the basis of  the sample estimates. 

A CASE STUDY 

The Walker Lake quadrangle, which comprises the area between 38 ° and 
39 ° North latitude and 118 ° and 120 ° West longitude and includes parts of the 
states of California and Nevada (Fig. 1), is located at the western edge of the 
Great Basin. Epithermal gold-silver vein deposits of the Walker Lake quadran- 
gle serve as a case study for the demonstration of the methods proposed above. 

General Features of  the Walker Lake Quadrangle 

John et al. (1989), who examined timing and stratigraphic distribution in 
the Paradise Range, pointed out that the general age range of the neighboring 
regions, including the Walker Lake quadrangle, is very similar to the ages of 

Fig. 1. The index map of the Walker Lake quad- 
rangle, California and Nevada. 

~20 ° 118 ° 

59 ° 

38* 
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other well-studied sequences of late Tertiary rocks. In these adjacent areas, the 
extrusion is dominantly andesitic and thyodacitic intermediate lavas formed 
about 20-19 Ma. The geochemical samples from the Yerington district to the 
north of the Walker Lake quadrangle showed that the intermediate lavas are 
mainly calc-alkaline to calcic. Recent studies indicate that faulting, titling, dike 
orientations, and formation of late Tertiary sedimentary basins extended across 
several periods of Late Cenozoic in many parts of the Great Basin. Earlier 
extensions tends to have closely spaced normal faults and dominantly inter- 
mediate composition magmatism (John, 1986; John et al., 1989). There is a 
strong northwest-trending structural pattern in the northeastern part of the Walker 
Lake quadrangle. A prominent northwest-trending lineament occurs in the 
southern part of the region, along which a number of precious metal deposits 
were localized. 

Silberman et al. (1976) (also see Mckee and Noble, 1986) noted that the 
Walker Lane is a major tectonic feature in the Walker Lake quadrangle and 
contains a large number of late Tertiary-age precious (gold and silver) metal 
deposits. Stewart (1988) divided the Walker Lane into eight geological blocks 
according to the tectonic characteristics. Three major blocks are entirely or partly 
included in the Walker Lake quadrangle. The Walker Lake block contains the 
most important precious metal deposits and provides critical information about 
the relationships of volcanism, pre-Basin and Range extensional faulting, and 
precious metal mineralization. 

Most silicic and alunitic alteration is located along inferred high-angle faults 
within areas where low-angle faults are absent. In contrast, little hydrothermal 
alteration is associated with low-angle faults. In the Gabbs Valley Range, only 
throughgoing high-angle faults are mineralized, whereas detachment faults and 
listric normal faults are unmineralized (John et al., 1989). These relations sug- 
gest that circulation of hydrothermal fluids, which resulted in hydrothermal al- 
teration and local precious metal mineralization, were restricted to areas of deep, 
possibly recurrent, fracturing. During the Cenozoic, igneous activity, largely 
extrusive, produced varied assemblages of volcanic rocks, including bimodal 
basalt-rhyolite sequences. In this region, intermediate lavas are the most im- 
portant host rocks for late Tertiary-age volcanic-hosted precious metal deposits. 

A number of types of mineralization have been found in the Walker Lake 
quadrangle, including epithermal precious vein deposits, porphyry and skarn 
deposits, and placer deposits. More than seven different metals are found in the 
mineralization: gold, silver, copper, lead, zinc, tungsten, and iron. Mineral- 
ization of different types appear to be zoned. Major porphyry and skarn copper 
deposits are distributed chiefly in the northern part of the Walker Lake, whereas 
the bulk of epithermal gold-silver vein deposits are found mainly in the south- 
ern and western parts of the region. In addition to these two typical belts of 
mineralization, a transitional zone, where mineralization of different types co- 
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occur, lies between the two belts, mainly containing silver (gold)-lead and cop- 
per-gold (silver) (Harris and Pan, 1991). Strong hydrothermal alterations, 
chiefly argillization and silicification, are spatially associated with the occur- 
rence of gold-silver vein deposits. 

D a t a  

The map folio for the 2 ° Walker Lake quadrangle published by the U.S. 
Geological Survey, supplemented by various larger scale U.S. Geological Sur- 
vey maps, served as the sources for data on mineral occurrences, gold-silver 
deposits and mining districts, and lithology. A map of hydrothermal alteration, 
produced for the Walker Lake quadrangle through field evaluation of a limonite 
map compiled from digitally processed images from Landsat Satellite Multi- 
spectral Scanner (Rowan and Purdy, 1984), was the source of alteration infor- 
mation. 

The digital data of faults in the Walker Lake quadrangle prepared by the 
U.S. Geological Survey were used for structural analysis. Geochemical data 
(Chaffee et al., 1980) on the Walker Lake quadrangle consisted of 1116 stream- 
sediment samples analyzed for Fe, Mg, Ca, Ti, Mn, As, Au, B, Ba, Bi, Cd, 
Co, Cr, Cu, La, Mo, Nb, Ni, Pb, Sr, V, N, Y, Zn, and Th using a six-step 
semiquantitative emission spectrographic method; the elements with low detec- 
tion levels, Zn, Sb, Cd, Bi, and Au, also were analyzed by atomic absorption 
spectrometric analysis; these data were obtained from a magnetic tape through 
NTIS. Gravity data consisting of 3447 irregularly distributed measurements of 
isostatic gravity residuals (Plouff, 1982) were obtained from the U.S. Geolog- 
ical Survey. Several sets of digital magnetic data were collected to provide 
coverage of the Walker Lake quadrangle (Kucks and Hildenbrand, 1987; USGS, 
1979a,b, 1981, 1982). 

Processing of these data sets (Harris and Pan, 1987, 1988; Pan, 1989; Pan 
and Harris, 1991) produced the following eight synthesized explanatory vari- 
ables: 

X1: This is the geochemical field synthesized from 14 elements (Au, Ag, 
Cu, Pb, Zn, Fe, Ca, Sb, Zr, V, Bi, Mo, Be, and B) sampled from drainage 
basins and adjusted for mobility (Pan and Harris, 1990a). The synthesized geo- 
chemical scores were produced by a weighted linear combination of the 14 
elements. The scores were then filtered for noise. 

X2: This is a high-pass structural field synthesized from ten fault descrip- 
tors: numbers and lengths of major and minor faults, fault orientations, numbers 
of intersections of major and minor faults, etc., within a moving data window. 
The synthesized structural scores were generated by a weighted linear combi- 
nation of these descriptors. These scores were then filtered in the frequency 
domain to remove noise (random error). A final filtering to remove low fre- 
quencies produced the high-pass structural field. 
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X3: This is the band-pass gravity field derived from original isostatic re- 
siduals through three major steps. In the first step, the high-PaSS data were 
generated by filtering out low frequencies. Second, the high-pass field was cor- 
related with the filtered geochemical field in the frequency domainl Based upon 
this analysis, a range of frequencies for which coherencies between the gravity 
and geochemical data are maximized was determined. Finally, the field within 
the selected frequency band was selected by filtering out the data associated 
with other frequencies. 

X4: This variable is the band-pass magnetic field, derived by analysis 
similar to that applied to gravity data. Densities of several magnetic data sets 
were adjusted, and then merged into a uniform large set. After reduction to the 
pole and the filtering out of low frequencies, coherency of the high-pass mag- 
netic and geochemical fields was analyzed. Based on this analysis, a coherent 
frequency band was selected and the band-pass magnetic field was obtained. 

Xs: This variable represents the ratio of magnetic susceptibility contrast 
to density contrast estimated by a Poisson moving window, based upon high- 
pass gravity and high-pass magnetic fields. The derivation of the estimates of 
density and susceptibility contrasts is based upon the concept of pseudo-geo- 
physical fields. Using the Poisson relation, pseudo-gravity fields were generated 
from the observed magnetic fields. Then, regression analysis was applied to 
data sets within moving windows to obtain estimates of the ratio of magnetic 
susceptibility contrast to density contrast. 

X6: This is the value of the statistical correlation of high-pass gravity and 
high-pass magnetic fields within a data window. It was estimated in the same 
way as X 5, based upon the Poisson moving window. 

X7: This is the area (kin 2) of the cell that consists of host rocks for epi- 
thermal gold-silver mineral deposits. The major types of the host rocks include 
Tertiary volcanic rocks of dacite, rhyolite, and andesite compositions. 

Xs: This is the estimate of the depth (in km) from ground to the top 
surface of a Tertiary intrusive obtained by the inverse analysis of high pass 
gravity anomalies. The inverse analysis was performed in two-dimensional space 
by cutting the entire region into a number of parallel traverses along each of 
the north-south and east-west directions. Then, the final estimates were ob- 
tained by averaging the separate estimates along the two directions. 

The following three special features are selected as target variables, be- 
cause they are important descriptors of epithermal gold-silver deposits; the oc- 
currence of any of them at a location assures the existence of a heat source, 
which is a critical genetic factor for epithermal gold-silver mineralization. 

Z 1 : This is the number of epithermal gold-silver mineral occurrences (de- 
posits or prospects) within a cell. 

Z2: This is the area (km 2) of Tertiary intrusives that outcrop within a cell. 
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Z3: This is the area (km 2) of the cell with hydrothermal alteration (mainly 
argillaceous and silicious). 

The entire Walker Lake quadrangle was subdivided into a 55 x 55 grid 
and all 11 variables described above are evaluated on the centers of the cells. 
To implement analysis, an area containing 300 grid points in the best explored 
regions, including the Aurora, Bodie, and Masonic mining districts (see Fig. 
2) was selected to serve as a control for estimating Eq. (1). 

Estimation by the Canonical Correlation Method 

Table 2 contains the correlation matrix among the 11 variables, showing 
that in the control samples, the three target variables are highly intercorrelated. 
This is not unexpected because all of the target variables relate to a heat source, 
a critical genetic factor for the hydrothermal deposits. Among the eight explan- 
atory variables, geochemical field and host rock are most highly correlated with 
the three target variables, meaning that these two explanatory variables should 
reflect critical variations in the target variables. Among explanatory variables, 
the two comprehensive geophysical measures (ratio and correlation between 
magnetization and density contrast) are highly correlated, indicating similarity 
in both gravity and magnetic characteristics of geologic bodies. In addition, 
band pass gravity and magnetic fields are also moderately correlated with these 
measures. 

The result of canonical correlation analysis shows that the correlation (0.89) 
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Fig. 2. Distribution of mining districts in the Walker Lake quadrangle (from Pan and Harris, 1990b). 
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Table 2. Correlation Matrix Between Eight Exploratory and Three Target Variables 

ZI Z2 Z3 XI X2 X3 X4 X5 X6 X7 

191 

X8 

Z1 1.000 
Z2 0.505 1.000 
Z3 0.637 0.588 1.000 
X1 0.347 0.495 0.392 1.000 
X2 0.001 -0.037 0.025 -0.255 
X3 0.072 0.053 0.134 0.222 
X4 0.008 -0.005 0.073 0.069 
X5 0.009 0.046 0.024 -0.028 
X6 0.096 0.232 0.022 0.071 
X7 0.411 0.787 0.491 0.318 
X8 0.008 -0.273 -0 .080 -0.034 

1.000 
0.040 1.000 
0.001 0.368 1.000 
0.055 0.311 0.322 
0.133 0.251 0.t88 
0.008 0.044 0.043 

-0.040 0.171 0.024 

1.000 
0.605 1.000 
0.054 0.202 1.000 

-0.132 -0.126 -0.275 1.000 

between the first pair of canonical variables is highly significant at a level of 
one percent according to Bartlett's chi-square test. The favorability Eq. (1) is 
estimated by treating eight explanatory variables and three target variables as 
the first and second data sets and is given by 

f/ = 0.354xil + 0.029xi2 - 0.030xi3 - -  0 . 0 5 8 X i 4  - -  0.025xi5 

+ 0.105Xi6 + 0.791Xi7 -- 0.068Xi8 , (21) 

where f/ is the estimate of favorability function, F, at location (grid) i. The 
coefficients for the first canonical variable of the three target variables are 0.029, 
0.956, and 0.038, respectively, suggesting that Tertiary intrusives are a core 
target variable represented by Eq. (21). The values of the first canonical vari- 
able for target variables were also computed for the control area. The two sets 
of canonical variate values are plotted in Fig. 3. The favorability values com- 
puted from Eq. (21) for the entire Walker Lake quadrangle were contoured (Fig. 
4). Comparing with Fig. 2, most of the known mining districts are associated 
with the highest favorability values. For example, several areas with outstand- 
ing favorability values are consistent with the major mining districts at Can- 
delaria, Pine Grove, Patterson, etc. The mining district at Camp-Douglas is 
associated with moderate magnitude of favorability values. Several other re- 
gions having moderately high favorability values correspond to locations of 
mineral prospects. 

For cross-validation, each of the three target variables was transformed 
into a binary variable with two possible responses: 1 for presence, i.e., having 
a value greater than zero and 0 for absence, i.e., having a zero value. Fig. 5 
shows the spatial distribution of the logical combination of the three trans- 
formed variables. The observed target variables are primarily lined up along 
northeast and northwest zones. 
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Fig. 3. The scatterplot of the values for the first pair of canonical variables obtained from 
the canonical correlation analysis. 

Using an optimum discretization method, called partial rank correlation, 
proposed by Pan and Harris (1990b), the favorability values are transformed 
into a ternary form. Two optimum cutoffs for this conversion are 7.5 and 13.8. 
Fig. 6 shows the distribution of the transformed favorability values. A favor- 
ability value greater than 13.8 is highlighted by a solid rectangle, a value be- 
tween 7.5 and 13.8 by a cross symbol, and a value less than 7.5 is left blank. 
The distribution of the discretized favorability values is broadly correlated with 
that of discretized target variables in Fig. 5. The patterns of the largest favor- 
ability values are roughly consistent with those of mineral occurrences except 
for some regions in the north and the southwest corners. 

The correlation coefficients of the estimated favorability function (Eq. 21) 
with the explanatory and target variables were computed (Johnson and Wichern, 
1988) and listed in Table 3. F is most strongly correlated with X7 (the host rock) 
and X] (geochemical field), moderately correlated with X 6 (a combined geo- 
physical field), and negatively correlated with X8 (the estimate of depth to in- 
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Fig. 5. The distribution of the discretized target variables (a solid rectangle represents a cell 
with at least one mineral occurrence observed and a cross for a cell with occurrence of Tertiary 
intmsives or hydrothermal alterations but no mineral occurrences). 

trusives). All three target variables are highly correlated with the estimated fa- 
vorability function, indicating that P captured the major information contained 
in the target variables. The strongest information captured by/~, however, is 
the variability in Z2 (Tertiary intrusive), as indicated by the largest correlation 
coefficient. 

E s t i m a t i o n  b y  W e i g h t e d  C a n o n i c a l  C o r r e l a t i o n  M e t h o d  

In order to apply the weighted canonical correlation method, the principal 
components method was employed to convert the three target variables into 
orthogonal components. Table 4 summarizes the basic results of  this analysis. 
The first component loadings indicate that all three target variables are almost 
equally important, although mineral occurrence has a slightly higher weight. 
The first component accounts for more than 70% of the total variability in the 
data, while the first two components account more than 88 % of the total vari- 
ations. All three components (q = 3) are used in the subsequent analysis. The 
principal component scores at each sample location were computed based on 
the loadings in Table 4. 

The estimate of Eq. (1) by the weighted canonical correlation method is 
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Fig. 6. The distribution of the discretized favorability values estimated by canonical correlation 
method (a solid rectangle represents a cell with favor'ability value greater than 13.8, an X for a 
cell with the value in the interval 7.5-13.8, and the cells with values less than 7.5 are left blank). 

Table 3. Correlation Coefficients Between the F Estimated by Canonical Correlation Method with 
X and Z 

Corr. F and X Corr. F and Z 

x1 o. 5958 x5 0.0534 z! 0.4532 
x2 -0.0406 x6 0.2676 z2 0.8347 
x3 0.0702 x7 0.9353 z3 0.5249 
x4 -0.0006 x8 -0.3137 

f /  = 0 .542xa + 0.113Xiz - 0.0083xi3 - 0.047xi4 -Jr 0.037xi5 

- 0 . 0 0 3 5 x i 6  q- xi7 -'}- 0.027xi8. (22) 

A c c o r d i n g  to the e igenva lues ,  this es t imate  accounts  o v e r  95 % o f  the total vari-  

abi l i ty related to the covar iances  be tween  explanatory  var iables  and three prin- 

c ipal  componen t s  o f  the target  var iables .  

The  es t imated  favorabi l i ty  va lue  at each  locat ion was eva lua ted  f rom Eq.  

(22). Fig.  7 is the contoured  map  o f  these va lues  in the ent ire  W a l k e r  Lake  

quadrangle ,  showing  that all known min ing  districts,  excep t  for  part o f  the Sil- 

v e r  Mounta in ,  are associa ted  with  highest  favorabi l i ty  values .  The  general  lea-  
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Table 4. Principal Components Analysis of the Three. Target Variables 

Eigenvalue Proportion Cumulative 

Y1 2.15523 0.718409 0.71841 
Y2 0.49956 0.166521 0.88493 
Y3 0.34521 0.115071 1.00000 

Eigenvectors 

Yi Y2 Y3 

z1 0.574469 -0.610119 0.545655 
z2 0.556673 0.779942 0.286016 
z3 0.600084 -0.139444 -0.787690 

tures of this map are very similar to those in Fig. 4, but some known mining 
districts, like Camp-Douglas, are better outlined by this method. Using the 
same optimum discretization approach as used in the canonical correlation anal- 
ysis, two optimum thresholds, 9.5 and 14.1, were obtained. Based upon these 
cutoffs, the favorability values were discretized into a ternary variable, which 
is shown in Fig. 8. 

The cells having no known mines but having the favorability values greater 
than 13.8 in canonical correlation analysis and greater than 14.1 in weighted 
canonical correlation analysis are separated and shown in Fig. 9 (the cells lo- 
cated at pre-Tertiary regions are not included). These regions may be consid- 
ered as potential exploration targets for new discoveries of epithermal gold- 
silver deposits. 

Several correlation vectors computed from Eqs. (16), (17), and (18) are 
collected in Table 5. As expected from Eq. (22), the estimated favorability 
function is most strongly correlated with host rock (X 7) and geochemical field 
(X1), 'meaning that these two explanatory variables are most critical in deter- 
mining the favorability of a sample unit with respect to the occurrence of the 
target variables. X6 and X 8 are both moderately correlated with the estimated 
favorability function. Furthermore, the estimated favorability function is highly 
correlated with all three target variables, meaning that the estimate strongly 
reflects the heat source characterized by the target variables. The correlation of 

with the Tertiary intrusive (Z2) is particularly high, being consistent with the 
canonical correlation estimate. 

More interestingly, F is more strongly correlated with I11, the first principal 
component of the target variables, moderately correlated with the second prin- 
cipal component, the least correlated with the last component. Table 4 shows 
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Fig. 8. The distribution of the discretized favorability values estimated by weighted canonical 
correlation method (a solid rectangle represents a cell with the value greater than 14.1, an X for 
a cell with the value in the interval 9.5-14.1,  and other cells with the values less than 9.5 are 
left blank). 

that the first principal component is determined by the coordinate vector (0.5745, 
0.5567, 0.6001). The estimate/~ in Eq. (21) by the canonical correlation method 
characterizes its maximum correlation with a linear combination of the target 
variables with the coordinate vector (0.029, 0.956, 0.048). Clearly, the two 
coordinate vectors characterize two very different directions in the target vari- 
able space. The coordinate vector for the first principal component represents 
the direction with the largest variability. Therefore, the estimate by the weighted 
canonical correlation method captures the information related to the maximum 
variability in the three target variables, while the estimate by the canonical 
correlation method extracts the information primarily carried by the Tertiary 
intrusive. 

CONCLUDING REMARKS 

The notion of a favorability equation, which was introduced in the last 
decade, is useful in the integration of multivariate geological data into mineral 
resources assessment. Unlike regression analysis, estimating a favorability 
equation does not require a dependent variable to characterize some measure to 
be fitted. This notion is particularly useful when the relative magnitude of an 
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Table 5. Correlation Coefficients of the F Estimated by Weighted Canonical Correlation Method 
with Variables X, Z, and Y 

Corr. F and X Corr. F and Z Corr. F and Y 

X1 0.6492 X5 0.0456 Z1 0.47t6 Y1 0.9244 
X2 -0.0135 X6 0.2046 Z2 0.8235 Y2 0.2775 
X3 O. 1250 X7 0.9178 Z3 0.5517 Y3 0.0582 
X4 0.0331 X8 -0.2189 

i i i  

objective feature is of  primary interest. In mineral exploration, for instance, 
delineation of drilling targets often involves the separation of anomalies from 
background based upon relative measures. 

A primary goal of this paper is to define the meaning of a favorabitity 
function in terms of a set of  target variables, other than explanatory variables 
themselves, and to avoid possible ambiguities in the estimate of favorability 
function by traditional methods. The ordinary principal components method 
tends to lead to an estimate of F which characterizes the direction with the 
maximum variability in explanatory variable space, while the methods proposed 
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here give an est imate that maximizes  the correlation between explanatory and 
target variables.  The introduction of  target variables is a key improvement in 
that regard. A target variable is usually identified according to a prespecified 
objective.  The favorabil i ty analysis for mineral potential should maximally uti- 
l ize the information carried by target variables on critical controlling genetic 
factors o f  ore deposit ,  spatial existential evidence of  mineral descriptors,  as well 
as other geological  events related to mineral formation processes. 

Although the case study is satisfactory, there are still some important and 
fundamental  issues that remain to be further explored.  For  instance, there is a 
need for establishing a theoretical structure that allows one to make a rigorous 
statistical inference about the estimate of  the favorabil i ty function and to derive 
interval estimates for an established confidence level. 
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