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A Stochastic Approach to Optimum Decomposition 
of Cyclic Patterns in Sedimentary Processes 1 

Guocheng Pan 2 

This paper examines the issues of  sedimentary cycles by means of  reversible Markov chains. Two 
types of  cyclic patterns in sedimentary processes are considered in terms of  symmetric cycles 
( ABCDCBA ) and asymmetric cycles ( ABCDABCD ). By introducing concepts of  reversibility and 
unidirectionality, a general solution is given for decomposing all possible cyclic patterns of  these 
two types existing in a sedimentary sequence. On the basis of  two new measures fR and fe,  the most 
probable trends in a sequence can be identified in an optimum way. Effective and reliable use of  
the technique proposed here is demonstrated by a case study. 

KEY WORDS:  Markov chain, reversible process, unidirectional process, cyclic pattern, sedi- 
mentary sequence. 

INTRODUCTION 

The concept of cyclic properties in sedimentary processes has been long ac- 
cepted and widely examined (Gingerich, 1969; Schwarzacher, 1969; Merriam, 
1970; Hattori, 1976; Wang, 1981). Sedimentary cycles are so-called chiefly 
because of the occurrence of many lithologies in a sedimentary succession which 
seems to be cyclic to some extent. The study of cyclic properties in a sedimen- 
tary section is far from trivial because it often can show to a certain extent 
associations between changes of lithological facies and sedimentary environ- 
ments favorable to deposition of mineral resources. 

Several stochastic models have been proposed and employed in the past, 
serving to identify the cyclic patterns in a sedimentary sequence (Hattori, 1976; 
Wang, 1981; Pan, 1987). A common feature among these methodologies is that 
only one prevailing cyclic pattern can be discriminated from a lithological se- 
quence by means of somewhat ambiguous criterion although cycles of asym- 
metric type can be recognized partially by Pan's method. Cyclic patterns ex- 
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hibited in actual lithological successions, however, are much more complicated 
mainly due to complex mechanisms of sedimentary processes, superimposed 
geological structures, as well as other unobservable stochastic effects. Multi- 
patterns of sedimentary cycles can, therefore, be observed in many sedimentary 
sections even though a dominant trend might be essential to formation of a 
lithological succession. Thus, it would be worthwhile to identify all probably 
existing cyclic patterns from which some dominant sedimentary trends could be 
distinguished by some optimum criteria. 

Applications of  Markov chains or Markov processes to sedimentary prob- 
lems have been demonstrated during the past several decades. Recent work 
regarding this study can be found in the ideal granite model (Vistelius, 1976, 
1981; Vistelius and Harbaugh, 1980). The study of reversibility in a sedimen- 
tary process, however, has not appeared, even though the theory of mathemat- 
ical aspects about reversible Markov chains has been classified (Qian and Hou, 
1977). 

Theoretically, the following two cyclic types are generally considered: a 
symmetric pattern ( A B C D C B A )  and an asymmetric pattern ( A B C D A B C D )  
(Hattori, 1976). In most actual cases, however, the two typical cycles are not 
completely separated; instead, they are mixed to a certain extent in some com- 
plicated ways. Moreover, multipatterns of the same type often can be observed 
in an actual sequence. Therefore, a practical issue is how to identify these two 
cyclic types and separate different patterns of  the same type in an actual sedi- 
mentary section. The goal of this paper is to explore a feasible solution to the 
problem on the basis of the reversible concept. 

BASIC CONCEPTS AND EXAMPLES 

In this section, some basic definitions are presented, and two typical ex- 
amples are given to demonstrate the basic ideas that will be developed theoret- 
ically later and that will help to understand some essential features of cyclic 
patterns existing in a homogeneous sedimentary process. (Note: T in A r rep- 
resents the transition of vector or matrix A; I represents the unit matrix. ) 

Let E denote the limit set of stratum states identified in a sedimentary 
process X ( n )  (n > 0) which is assumed to be homogeneous Markov chain in 
the state space E with initial distribution u T = (Ul, u2, • " • , UN) ( N  is the 
number of  states in E) .  The matrix of  upward transitional probabilities is de- 
noted by P = ( P o ) ,  and the corresponding information matrix for process X ( n )  

is C = (uiPij). 
Definition 1. Q = (qi j )  is called a reversible cyclic matrix (RCM), if qij 

= qji(qij, elements of Q; i, j e E ); R = ( r  O ) is called a unidirectional cyclic 
matrix (UCM), i f  rorji = 0 and Eirij = T, irji ( i , j  ~ E ) ,  (assume qij, rij >- 0) .  
A sedimentary process is called a reversible process if C = ~iQi; a sedimentary 
process is called a unidirectional process if C = EiR i (Qi is RCM; Ri is UCM). 
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The following example shows that the information matrix C may be de- 
composed into the sum of  a RCM and a UCM; the general result is presented 
in a later section. 

Example  1. Suppose that the state space E = ( 1, 2, 3) and the matrix of  
upward transitional probabilities is 

I P l l  P12 P13 1 

P = P21 P22 P23 = (P I ,  P2, P3) 

~_P31 P32 P33 

By definition 

uj = urPj  j e E 

where u r = (ul, u2, u3) is the initial distribution, so that 

u lPI I  -I- u2P21 + u3P31 = U 1 

that is 

Hence 

u~p~2 + u2p22 + u3P32 = ///2 

UlPl3 + u2P23 + u3P33 = U 3 

u2P21 + u 3 P 3 1  = ul(P12 + P13) 

ulPI2 + u 3 P 3 2  = u2(P21 + P23) 

ulPI3 -1- u2P23 = b/3(P3l -~-P32) 

U l P l 2  - -  u2P21 = u2P23 -- u 3 P 3 2  = u3p31 - ulP~3 

If  we also assume that 

u l p 1 2  - -  u 2 p 2 1  = a 

the following result can be obtained 

u iP i ,  i+  1 -= l g i + l P i + l , i  -}- a i c e  i +  1 = 1 

Suppose a > 0, and denotes 

d 1 = u2P21 

C = (u ipo)  

3 + a  

when 

d2 = u3p3z d3 = u~P13 then 

dl + a d 3 

u2P22 d2 + 

d2 u3P33 

i = 3  
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I E: :1 
UlPll dl d3 0 a 0 

= d~ u2P22 d 2 + 0 

3 d 2 R3P33 0 

= Q + R  

Clearly, the first matrix in the decomposition is a RCM, whereas the second is 
a UCM. 

D e f i n i t i o n  2.  Matrix Q(I) = (qb l ) )  is called a reversible flow (RF) in 
sedimentary process X ( n )  (n > 0) if il ~ i2 ~ , • • • , ~ im andfR exist such 
that 

q ( i J . ) = q j ( i l ) = f R  i = i  k j = i k +  1 k =  1,2 ,  " ' "  , m -  1 i, j e E  

= 0 otherwise 

where fR is defined as the reversible degree of states i l, • • • , im e E, m > 2. 
D e f i n i t i o n  3. Matrix R ~l) = (r~ l) ) is called unidirectional flow (UF) in 

sedimentary process X ( n ) ( n  > 0), i f i l  4= i2 4: ,  " ' "  , ~ i m andfv  > 0 exist 
such that 

r~ l) = f ~  i = i k j = ik+ l k = 1, 2,  • • • , m ,  i m +  1 = i I 

= 0 otherwise 

wherefe  is defined as the unidirectional degree of states i l ,  i2, • • • , im E F ,  m 

> 2 .  
Definitions 2 and 3 correspond exactly to the symmetric type of cycles 

( A B C D C B A )  and the asymmetric type of cycles ( A B C D A B C D )  in a sedimen- 
tary sequence, respectively. These two types of cyclic patterns are assumed to 
be the only forms existing in sedimentary sections. This consideration ob- 
viously is an approximation to the real world. Magnitudes o f f n  and fu  values 
characterize intensities of  these two types of  cyclic flows. The larger the values 
are, the stronger the corresponding cyclic trends will be. 

Example 1 shows a special case because the process has a unique pattern 
of UF in three states so that the UCM is equal to the UF. Most practical sedi- 
mentary sequences, however, are much more complicated, especially when the 
number of  stratum states increases. This statement is explained by the following 
example. 

E x a m p l e  2.  Suppose that we have stratigraphic section from which 8 states 
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are identified, and that the matrix of upward transitional probability observed 
is 

P = ( p i j )  = 

w 

0.5 0.5 0 0 0 0 0 0 

0 0.5 0.5 0 0 0 0 0 

0 0 0.25 0.25 0 0 0 0.5 

0 0 0 0.5 0.5 0 0 0 

0 0 0 0 0.5 0.5 0 0 

0.25 0 0 0 0 0.25 0.5 0 j 

J 0 0 0.67 0 0 0 0.33 0 

0 0 0 0 0 0.67 0 0.33 

The initial (stationary) distribution obtained is 

( u , ,  u2,  - - .  , u s )  

A 

B 

C 

D 

E 

F 

G 

H 

= (1 /11 ,  1/11,  2 /11,  1/11, 1/11, 2 /11 ,  3/22,  3 /22)  

Following the same procedure performed in example 1, decomposition of 
the information matrix is 

C = (u ipq)  = ( 1 / 2 2 ) I  + (1 /22 )  

= ( 1 / 2 2 ) I  + R 

i 

0 1 0 0 0 0 0 0  

0 0 1 0 0 0 0 0  

0 0 0 1 0 0 0 2  

0 0 0 0 1 0 0 0  

0 0 0 0 0 1 0 0  

1 0 0 0 0 0 2 0  

0 0 2 0 0 0 0 0  

0 0 0 0 0 2 0 0  

Clearly, this process does not contain any RF; that is, the process is a 
purely unidirectional cyclic one. Let us look at the relationship between UCM 
(R) and UF [R(t~]. Obviously, R can be decomposed in the following two ways 
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(1) 

(2) 

1 
e ~ - -  

22 

- 0 1 0 0 0 0 0 0  

0 0 1 0 0 0 0 0  

0 0 0 1 0 0 0 0  

0 0 0 0 1 0 0 0  

0 0 0 0 0 1 0 0  

1 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0  

= R ( I ) + R  (2) 

1 

R = (1/22)  

+ (1/22)  

- 0 0 0 0 0 0 0 ~  

0 0 0 0 0 0 0 0  

0 0 0 1 0 0 0 0  

0 0 0 0 1 0 0 0  

0 0 0 0 0 1 0 0  

0 0 0 0 0 0 1 0  

0 0 1 0 0 0 0 0  

0 0 0 0 0 0 0 0  

0 1 0 0 0 0 0 0  

0 0 1 0 0 0 0 0  

0 0 0 0 0 0 0 1  

0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0  

1 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0  

0 0 0 0 0 1 0 0  

Pan 

m 

0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 1  

0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0  

0 0 0 0 0 0 1 0  

0 0 1 0 0 0 0 0  

0 0 0 0 0 1 0 0  
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+ ( 1 / 2 2 )  

I 
O 0 

0 0 

0 0 

0 0 

0 0 0 

0 0 0 

0 0 1 

0 0 0 

= R (3) + R (4) + R (5). 

m 

0 0 0 0 0 0  

0 0 0 0 0 0  

0 0 0 0 0 1  

0 0 0 0 0 0  

0 0 0 0 0  

0 0 0 1 0  

0 0 0 0 0  

0 0 1 0 0  

In the above decomposi t ions,  R (l) (1 = 1, • • • , 5) are unidirectional 
flows. Therefore,  in this case, a UCM is composed of  several unidirectional 
flows. Another  feature in this example is that decomposi t ion of  the UCM is not 

unique. In decomposi t ion (1), the result shows that two asymmetric  cycles exist 
in the process 

R ( ' I : A  ~ B > C - D > E > F -  > A ( f u =  1 / 2 2 )  

and 

R(2): C > H • F > G > C ( f v - -  1 / 1 1 )  

These decomposi t ions can be shown by the fol lowing 

A ~/22 A A 
sT " ~  x 

G// /  "~B "-" / /~  ' ' ~ '~  G B 

-. / H " \  , D 

" ' E  ~/ E~" E 

R R (t) R (2) 

Values o f f e  indicate that the cyclic trend R (2) is stronger than R (~). De- 
composit ion (2) indicates that three asymmetr ic  cycles exist 

R(3): C - > D ~ E :~ F -- G > C (f~: = 1 / 2 2 )  

R(4) :A ~ B > C - H ~- F ~ A ( f ~ =  1 / 2 2 )  and 

R(5): C > H - F - G ~ C (f~: = 1 / 2 2 )  
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Examining these cycles carefully, however, we find that they are not in- 
dependent. Clearly combination of F • G • C, a part of the transitional 
pattern in R (3), and C • H • F, a part of the transitional pattern in 
R (4), produces an asymmetric cycle C • H • F ~" G • C, 
which is exactly the same cycle as R (5~. Consequently, we have only two in- 
dependent patterns, among three, in decomposition (2). Moreover, R (5) is the 
same pattern as R (2), whereas the combination of R (3~ and R (4) can produce 
pattern R ( 1 ~. 

A GENERAL D E C O M P O S I T I O N  OF CYCLE TYPES FOR A 
H O M O G E N E O U S  SEDIMENTARY PROCESS 

According to examples presented in the previous section, a homogeneous 
sedimentary process generally has multipatterns of cycles, each of which can 
be separated; the resultant patterns are independent although cyclic patterns can 
be decomposed in different ways. Example 1 indicates that the information ma- 
trix can be expressed uniquely by the addition of one RCM and one UCM, 
which means that a general homogeneous sedimentary process is a mixture of 
a reversible cyclic process and a unidirectional cyclic one, and if d l =  d2 = d3 
= 0, the process is a pure unidirectional one. In this section, these results are 
proved in more general terms. For the sake of simplicity, we can assume that 
all diagonal elements in information matrix (C) ,  RCM, as well as UCM, are 
zeroes. 

Theorem 1. Any homogeneous sedimentary process X ( n )  (n > 0) with 
information matrix C = (uipij) can be decomposed uniquely into the addition 
of a reversible cyclic process and a unidirectional cyclic process. That is 

C = Q + R  

where Q is the information matrix of a reversible cycle process, whereas R is 
the information matrix of a unidirectional cycle process. Proof for the theorem 
is given in the Appendix. 

Theorem 2. Any homogeneous reversible sedimentary process can be de- 
composed uniquely into the sum of a limited number of independent reversible 
flows; and any homogeneous unidirectional process can be decomposed uniquely 
into the sum of a limited number of independent unidirectionary flows, that is 

T S 

Q = ~ Q(t) and R = ~ R (/) 
l = 1  I=1  

where Q (t) and R (t) are RF and UF, respectively; T and S are limiting positive 
integers. 

The first part of this theorem seems straightforward, so proof is only given 
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to the second part. The performance of  the proof is important because it pro- 

vides an explicit approach to identify the existing cyclic flows in a sedimentary 
sequence. 

Naturally, R :# (0)  is always assumed. This simply leads to a fact that 
jo (e  E )  and j~(e  E )  exist such that rjoj, > 0. Moreover, according to the def- 
inition of  UCM, J2(:#Jo) must exist in E such that rH_, > 0. In a similar way, 
if we begin with r j , j 2  > 0, a state J3(:#Jl)  can be found such that t)2j3 > 0. 
Analogously, a series of  states can be identified in E 

J0, Jl, " ' ' J k  k > 2 

where k is a first number in the sequence such that Jk e { J0, Jl, " " " , do- - 2 }- 
In general, ifjk = Jk0 where/Co e { 0, 1, 2, • • • , k - 2 }, we delete states 

J0, Jl, " " " , Jk0- ~, and denote 

il =J~o i2 = Jko+l, " ' "  , iM = J k - l ,  iM+! =Jko =Jk  = il 

SO that states i~, i 2 ,  • • • , i M are different from each other, and the following 
inequalities are guaranteed 

r i l l2 ,  t~i2i3 , " " " , FiM IiM, FiMil > 0 

In the following step, let 

f ~ =  min (rikik+,) > 0 
l < ~ i < _ M  

denote set 

O = [(i , ,  i2), (i2, i3), " ' "  , ( iM-l ,  ia4), (ira, i l )]  

( ' ) = f ~ ]  ( i , j ) i n D  rij 

and 

= 0 otherwise 

According to the definition, R (1~ [ r  (1)l = zj J is a unidirectional flow. Denote 

R 1 = [riA1) ] = (r~) - (r,~ l~) 

then, R 1 can be shown to be also a UCM, and the number of  nonzero elements 
in R l is less than that in R. I f  R1 = (0) ,  the procedure would be terminated; 
otherwise, repeating the steps above, a second matrix of  cyclic flow can be 
found: R (2) = [rb z~ 1, and the corresponding cyclic measure i s f ~  ) > 0. Again 
denote 

R 2 = [ r i j ( 2 ) ]  = [ r i j ( l ) ]  - [ r~? ) ]  
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The same performance will not be terminated until a number S is found 
such that [rb s+ 1)] = (0),  that is 

R = (ro) = [r/~ l) ] + g I 

= [rb ' ) ]  + Irk ?) ] + . . .  + [r bs)] 

S 

= ~] R (l) 
l = 1  

where R (t) = [rb t) ] and the corresponding measures are f(~ ),svr(2), . . . , f~ ) .  
Clearly the decomposition above is independent and unique. The same 

procedure can prove the reversible case in the theorem. From the two theorems 
above, the following corollary is obvious: 

Corollary: Any homogeneous sedimentary process can be decomposed 
uniquely into the sum of T independent reversible flows and S independent 
unidirectional flows (T, S < oo ). 

This result indicates that any sedimentary sequence contains a limited num- 
ber of independent symmetric and asymmetric cycles among available stratum 
states, and these cycles can be identified and separated. 

In summary, the following can be recognized on the basis of previous 
definitions and conclusions. 

1. A homogeneous sedimentary process is a pure reversible one if and only if 
no UF exists; that is, f v  = 0. 

2. A homogeneous sedimentary process is a pure unidirectional one if and only 
if only one UF exists and Nfv = 1. 

3. A homogeneous sedimentary process is a mixture of UF and RF, if and only 
i f l  -< S < ooUFs, 1 _< T <  ooRFs, andO < f c , , f n  < 1 / N e x i s t .  

Some important facts should be demonstrated also about initial distribu- 
tions. A sedimentary process X ( n )  will be stationary if no significant deposi- 
tional discontinuity or structural nonconformity occurs in the sequence. More- 
over, the universally assumed homogeneity indicates that the initial distribution 
should be equal to the stationary distribution which, in turn, is equal to the 
limited distribution in this situation. The statement can be proved mathemati- 
cally. This result is substantial because it provides an alternative means to es- 
timate initial distributions, instead of dealing directly with stationary distribu- 
tions. 
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PROCEDURE FOR I D E N T I F Y I N G  T H E  MOST PROBABLE 
CYCLE TYPES IN A SEDIMENTARY SEQUENCE 

Most actual sedimentary processes probably are mixtures between pure 
reversible and pure unidirectional cyclic parts. Two types of cyclic patterns also 
can be observed in one actual sequence because of uncontrollable probabilistic 
effects even though the process does have only one type of cycle. Effective use 
of Markov analysis will help us identify the real cyclic patterns by straining 
"white noises" out of the process. Optimum use of stochastic techniques, how- 
ever, will assist us to distinguish the most probable cyclic trends from a large 
number of  possible patterns on the basis of some quantitative criteria. Basically, 
theoretical solutions to the issues have been established in previous sections, 
but the following algorithm is necessary for us to search economically and ef- 
ficienctly for the solutions. 

1. Estimate the matrix of upward transitional probabilities ( P )  from observed 
frequencies of upward transitions on an actual sedimentary section. 

2. Calculate the limited distribution which can be regarded as an estimate of 
the stationary distribution (u).  

3. Decompose information matrix C = ( u i P i j )  into the sum of a RCM(Q ) and 
a UCM(R ) on the basis of Theorem 1. 

4. Search for possible cyclic patterns by following the description given below 
(taking UCM as an example). 

First, suppose that the number of nonzero elements in R is N 0. Define a 
measure as a cutoff, for instance 

C r = r + rOSr, where 

2 s r  = N o  I Z (r i j  - ?)2 
i , j~E 

? = N o  1 ~ rij 
i , j~E 

and r o is a nonnegative constant being determined, e.g., 0, 0.5, etc. 
Second, simplifying matrix R = ( r  0 ) to R = (?0) by deleting those ele- 

ments in R that are less than cr. Arrange nonzero elements in R in order from 
large to small in a vector w 

w r  = (~ i , j , ,  ~i2j2, " ""  , ~i~jm) 

where ~i, j ,  >- " " " >- ~'imjm and m is the number of nonzero elements in R. 
A criterion is necessary for ranking elements with equal values. When 

?ij = ~k, i f i  + j  > l + k o r i  + j  = l + k a n d i  > l, the two elements will 
be arranged on the order (?tk, PU); otherwise, they will be ordered to be 
( ~ ,  ~t~).  
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Finally, beginning with w, find all possible UFs and calculate measuresfu 
by means of the technique described in the previous sections. 

Obviously, the procedure can be used also to search for possible RFs in Q 
provided that some notations are changed. 

5. Identify the most probable cyclic patterns in the sedimentary sequence, mak- 
ing use of the criteria of measures fR and fu. 

A CASE STUDY 

As an illustration of the algorithm and effect of the technique proposed, a 
case study is presented. Data recorded by drilling in Shanxi are employed 
(Wang, 1981). 

The region is covered largely by Lower Jurassic sediments. River facies 
are extensively developed in most parts of the region whereas lake and marsh 
facies are found also on the alluvial plain. A striking feature of the Jurassic 
sedimentary formation is the occurrence of fine-sandy purple mudstone con- 
taining some perthitic lenses. Mineral content and structures permit five stratum 
states to be distinguished in the region as follows: coarse sandstone (A), fine 
sandstone (B), mudstone and clay siderite shale (C), sandy shale (D), carbon- 
aceous shale and coal (E). 

The total number of strata observed in a typical borehole is 89; the upward 
transitional frequencies recorded are 

A B 

F = 

A - 0  

B 7 

C 2 

D 1 

E 6 
m 

C D E sum 

2 6 2 17 

2 12 1 22 

0 1 3 7 

1 0 15 23 

2 4 0 20 

The matrix of upward transitional probabilities therefore is estimated as 

- 0 . 0  

0.32 

/3 = 0.29 

0.04 

0.30 
m 

0.41 0.12 0.35 0.12- 

0.0 0.09 0.55 0.04 

0.41 0.0 0.14 0.43 

0.27 0.04 0.0 0.65 

0.40 0.10 0.20 0.0 
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By definition, the limited distribution is 

d r =  (0.18 0.25 0.08 0.26 

A B C D 

The information matrix C is calculated to be 

-0 .0  

0.08 

0 = (~il~ij) = 0.02 

0.01 

0.07 
m 

0.23) 

E 

0.07 0.02 0.06 0.02- 

0.0 0.02 0.14 0.01 

0.01 0.0 0.01 0.03 

0.07 0.01 0.0 0.17 

0.09 0.02 0.05 0.0 

According to Theorem 1, C can be decomposed into the sum of a RCM(Q ) 
and a UCM(R ) as follows 

Q = ( q i j )  = 

-0  0.07 0.02 0.01 0 .02-  

0.0 0.01 0.07 0.01 

0.0 0.01 0.02 

0.0 0.05 

0.0 

and 

R = ( r i j )  = 

-0 .0  0. 0.0 0.05 0 . 0 -  

0.01 0.0 0.01 0.07 0.0 

0.0 0.0 0.0 0.0 0.01 

0.0 0.0 0.0 0.0 0.12 

0.05 0.08 0.0 0.0 0.0 

In the next step, possible cyclic pattems are recognized from matrices Q 
and R. For safety's sake, we take r o as zero. Therefore, calculations are needed 
only on average values ~ for Q and ? for R. The results obtained are ~ = 0.03 
and ? = 0.04; the cutoffs, accordingly, are: Cq = 0.03 and Cr ----- 0.04 for ma- 
trices Q and R, respectively. 

Replacing elements in Q which are less than the cutoff Cq by zeroes, Q is 
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simplified to be 

i 

Q = (qij) = 

- 0  0.07 

0.0 

0 0.0 

0 0.07 

0 0.0 

0.0 

0.0 

0.0 

0.0 

0.05 

0.0 

Nonzero elements in Q are arranged into the vector 

Vl r : (q,2, q2,, q24, q42, q45, q54) 

Thus, the first RF is found to be 

RF(1 ) :A  - B • D • B • 

and the corresponding measure f(R l) is 

f(R 1) = min (q12, q24) = 0.07 

Then, calculate 

0 1  = 0 - = 

-0  0 0 0 0 . 0 -  

0 0 0 0.0 

0 0 0.0 

0 0.05 

0.0 
m 

Pan 

0.0 0 0.05 0.0 

0.0 0 0.07 0.0 

0.0 0 0.0 0.0 

0.0 0 0.0 0.12 

0.08 0 0.0 0.0 

- 0 . 0  

0.0 

R = ( ~ , j )  = 0.0 

0.0 

0.05 
m 

I 

Q~ now contains only two states. In stratigraphic analysis, this situation is 
ignored generally (only those cycles in which more than two states are involved 
are considered in this analysis). Accordingly, this sequence contains only one 
possible reversible cycle. 

For decomposition of R, the same procedure is followed. By cutoff Cr, R 
is simplified to be 
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Vector w~ is constructed as 

w r = (~45, 752, ~24, ?14, Ysl) 

Therefore, the first unidirectional flow is found to be 

U F ( 1 ) : B  ~ D > E > B > D > 

f(~) = min (F45, r52, F24) = 0 . 0 7  

Matrix R1 next is calculated 

-0 .0  0.00 0 0,05 

0.0 0.00 0 0.00 

R~ = R-R(~) = 0.0 0.00 0 0.00 

0.0 0.00 0 0.00 

0.05 0.01 0 0.00 

Furthermore, R~ is simplified by cutoff Cr to be 

-0 .00  

0.00 

R2 = 0.00 

0.00 

0.05 

0 0 0.05 0 .00 -  

0 0 0.00 0.00 

0 0 0.00 0.00 

0 0 0.00 0.05 

0 0 0.00 0.00 

0 . 0 0 -  

0.00 

0.00 
t 

0.05 

0.00 
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and 

The second UF can be obtained from the following vector 

W T = ( r14 , rs1,  r 45 ) .  

Hence, 

U F ( 2 ) : D  > E > A • D > E ~ ' ~  A [~(2,] 

and the corresponding measure f v  is 

fv  = rain (Y14, r51, r45) = 0.05 

Checking that 

k2 = k ,  - k = (0 )  

we have two possible unidirectional flows in this sequence. 
In light of cyclic measures fR and fv,  patterns RF( 1 ) and UF( 1 ) should be 

regarded as major trends in sedimentation. This indicates that the process is a 
mixture of two types of cycles. Note that Q can be decomposed in other ways, 
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but results wiU be the same as that given above so long as independence is 
guaranteed among the different separated flows. 

Changes from coarse sandstone and fine sandstone to sandy shale are nor- 
mal transitions of lithologic facies in sedimentary environments, such as rivers 
and lakes. So symmetric cycle RF( 1 ) represents normal changes of facies. The 
transition of facies from sandy shales to carbonaceous shales also is natural in 
lake and marsh environments. Thus, asymmetric cycle UF( 1 ) is another rep- 
resentative sedimentation pattern in this sequence. Moreover, this cycle might 
be more important because it is associated with carbonaceous shale and coal, 
one of the major interests of this stratigraphic study. Change from carbonaceous 
shale to coarse sandstone, however, is somewhat odd. Probably, UF(2) rep- 
resents a disturbance of some unobservable factors during the normal sedimen- 
tation process. 

In addition, sandy shale has the largest limited probability (0.26), which 
indicates that it is a dominant state in the sequence. Once its deposition termi- 
nates in a period, it would give priority to the carbonaceous shale for its suc- 
cessor. Analogically, carbonaceous shale acted as an "absorber" of the sandy 
shale. 

CONCLUDING REMARKS 

Strictly speaking, perfectly reversible sedimentary processes rarely exists 
in the real world. Introduction of the concept, however, enables us to discrim- 
inate among existing asymmetric cycles in a sedimentary sequence by measur- 
ing the departure of an actual sequence from the ideal situation. Similarly, few 
pure unidirectional processes can be observed in actual studies. Use of the con- 
cept, again, is beneficial because it allows identification of probable symmetric 
cycles in a sequence by gauging deviation of the actual process from the ex- 
treme case. 

In general, a sedimentary process is a mixture of reversible and unidirec- 
tional ones. In many cases, however, one of these different types may play a 
dominant role in a sequence. These different situations can be clearly distin- 
guished by measures fR and fv  that mutually are comparable. If max { fR } = 
max { fv  } > max { Cr, Cq }, the sequence is a significant mixture of the two 
types; otherwise, if max { fe } = max { fv  } < min { cr, Cq }, the sequence 
would not have significant cyclic patterns even though some weak trends might 
exist. If max { fR } >> max { fu  }, the sequence is dominated by reversible 
cycles; otherwise, if max { f v  } >> max { fR }, the major trend in the sequence 
would be unidirectional cycles. 

Definition of cutoffs cr and cq are flexible. If they are zero, all possible 
RFs and UFs can be identified independently. But this treatment will increase 
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calculations, especially when the number of states is large. In this case, use of 
cutoffs (cr and Cq) will be effective not only to avoid a heavy burden of calcu- 
lation, but also eliminate trivial or unreal cycles in a sequence. 
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A P P E N D I X :  P R O O F  F O R  T H E O R E M  1 

Given the initial distribution 

~ = ( . 1 ,  . 2 ,  - "  , u N )  

and the matrix of the upward transitional probabilities as 

e : ( p ~ )  

The information matrix is 

C = (u~pij)  

Let 

Obviously 

Again let 

Therefore 

I f  uip  q 

Thus 

Ui p ( l )  : min { uiPij, ujpji } ( i ,  j ) ~ E 

0 < _ ( l )  < -- IJq -- Pij 

uip~t) = ujp}[)  ( i , j )  ~ E  

% = uiPo - u ip  (iJ) 

0 <_ rij <- u £ i j  i ~ j  

rii -= uiPii - u ip}/ )  = 0 

= ujpji, rij = rji = O; otherwise, if uiPlj > ujpji, uiP(iJ ~ = ujpji. 

rijrji = [uipq - u i p ~  ) ][uyPji - u j p J  )] = 0 
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The similar argument can show that if uiPij < ujpji,  rji rij = O. 
In summary, we have 

Moreover 

I f R  = ( r i j )  

ro~  i : 0 (1) 

Z rij = ~ u i P i j -  ~ uiP(iJ ) 
i~E i~E i~E 

= i~E ~ UiPij -- i~E ~ uiPij + i~e rji 

= u j -  uj + "~E rji 
l 

= N r j i  
i~E 

(2) 

¢ (0) ,  combination of  Eqs. (1) and (2) shows that R is a 
UCM. 

In the next step, we let 

qij = uiPij - r~j 

qij - qji = uipq - rij - (ujPji  - rji ) 

: - u j p ) ?  

: min {u ipo ,  ujPji } - min {ujPji ,  uiPij } 

= 0  

Then 

Hence 

qij -~- qji ( i , j )  ~ E 

Equation (3) shows that if Q = ( q q )  4: ( 0 ) ,  Q is a RCM. Finally 

C = Q + R  

This theorem is an extension of  Qian and Hou 's  result (1977). 

(3) 
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