
quantity (~-~(p) + a)-~ has a complex pole and r-~sin(~r + d) if it has a real pole. 

Screening will also exist in a system of three-color quarks and antiquarks. In this 
case the term describing the quark-quark interaction in the functional (3) is replaced by 

(x - y) ( ~  (x) Ira%# b (x))  ~ (y) I ~ d  (y)),  

where a, b, c, d are "color" indices, and the Lagrangians L~ and L~ in (4) are replaced by 

L~ = --  i ~  (~) t~%~ ~ (~) ~m (X), Lo = -- ! ~ (x) ~-~ (x --  y) ~ (y). 
2 

Hence the polarization term in (6) is multiplied by the quantity I = Imablmba (no summation 
with respect to m). We have I = 3 for a system of quarks and I = 6 for a system of quarks 
and antiquarks. 

We have calculated the screening of the potential at T = 0. Screening also takes place 
when the temperature is nonzero. In the approximation p << 2W~mT, 0 << mT=/e 2 (9 is the den- 
sity) se can obtain an expression analogous to (7) with ~ = 8~e0T -I. 

Hence in a many-quark system the quark-quark interaction may not provide the formation 
of a condensate of the necessary type. In several models the quark condensate is constructed 
from the same type of four-fermion interaction ~ as the Cooper pair condensate [4]. How- 
ever the question arises as to the nature of this interaction. In the case of a Cooper con- 
densate it is produced by interactions between electrons due to phonons in the lattice of 
ions. Therefore to model the Higgs field as a quark condensate it is necessary to assume 
the existence of an analogous "phonon" interaction between quarks, and also a '~edium" in 
which these phonons arise. The role of such a medium could be played either by the gluon 
vacuum (condensate), since in this case it is not required to have flavor, or any type of 
pre-Onnes vacuum. 

. 

4. 

l) 

2. 
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ENERGY SPECTRUM OF THE DIRAC EQUATION FOR THE SCHARZSCHILD AND KERR FIELDS 

I. M. Ternov and A. B. Gaina L~C 531.51:524.8;531.51.51;52-i/-8 

We consider the effect of relativistic corrections and rotation of the central 
body on the structure of the energy spectrum of a particle with spin in the 
Schwarzchild and Kerr fields. A splitting of levels is obtained, which corre- 
sponds to the classical shift of the perihelion of the orbit and precession of 
the plane of the gravitational spin-orbit interaction and several nonlinear spin 
effects are calculated. 

The discrete spectrum of resonance states in the case of finite motion (E < ~.c 2) of 
spinless and spinning particles in the Schwarzschild and Kerr fields was considered in 
[I, 2]. In the case of particles with spin one-half, if 

�9 I GM 
~ o  % = 2 G ~ N I  l~c ~ 1, a ~ ~ ~ - -  (1) 

M c  c ~ 

t h e n  t h e s e  s t a t e s  a r e  c h a r a c t e r i z e d  by the  n o n r e l a t i v i s t i c  h y d r o g e n i c  s p e c t r u m  [ 2 ] .  However 
it is obvious that relativistic and spin effects, and also the rotation of the central body, 
must lead to a more complicated spectrum. This question is considered in the present paper. 

Although separation of variables can be done exactly for the Dirac equation in the Kerr 
field [3], the nonlinear effects that arise when a + GM/c =, are difficult to take into ac- 
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COU~t. 
can be linearized. 

Therefore we consider the ease of slow rotation (a << DM/ca), when the Kerr metric 

(2) 

it has the form 

In the region 

r ".-~. r+ = GM.c"- + } ' ~ O " M "  c ~ - -  a ~ ~2GM. , ' c ' -  

d s  ~ = e~d t  '-' - -  e;'dr'- -- r '  (dO e + sin'-' Od? ~) 
4 M a  

-- -- sin e 9da, d t ,  (3) 

where 

e ~= e -~ = I -- Ra/r--Y:; I =Man~; Ro = 2M. (4) 

(Here and below we use a system of units in which c = h = G = i). 

We consider the Dirac equation in this metric: 

~ W ~  + i~O = O, (5) 

where y~ are the generalized Dirac matrices, which satisfy the relations 

7 ~  + ~ = 2 g ~ .  (6) 

The covariant derivatives 7~ of the spinor is determined with the help of the Rock--lvanenko 
coefficients [4]: 

I 

4 
i. In the case of the Schwarzschild metric the variables can be separated with the help 

of the usual spherical spinors (see [5], [6]). It is necessary to choose the matrices in 
the form 

~, = e-~:~ ~o = e - ,  2 3; ~; = r -~ sin -xO (sin =','~ -- cos O~=), 

- @), X~ = e -x:2 (sin O cos .,'," -]- sin O sin v ~ + cos 

.0 = r-~ (cos 0 cos ":-~' .'-- cos 0 sin .~X -~ --  sin 6xa). | 

( 8 )  

Then 

where 

~'F = P - I o ,  4 o - i . t  I F (r) ) '?/J) (0, ?) ] 

- i O ( r ) ( n ,  =) Y ? / J ) ( O ,  =.) ' 
(9) 

)"'/'/;=~:-~"~' iO, .f) = (-- t)~'i I 
' - ,  / " j  4- ttl j ~m -" o I I - V V -  ' J 

J - -  iG (r)  (n,  =) }"'/'Y~ (0, ~)  

(io.i) 

(lO.2) 

y?y=~-v_ ,~  (~, .~) = 
I j - = m j d -  1 ~ .. . . . .  1.2/r, ~) ] 

l . / "  27"--2 ~ lJ ~'~, 

/ ] j '~. m j a -  1 v m.+I=ln  
/ 2 j  ~ '2 * l .1 " ~ ,  ?) 

and oi are the Pauli matrices; (n, ~) = sin e cos~oz + sin 0 sin ~ a  + cos Oos, 

!o,) (o, 1 (,o) 
0"1 = �9 =2 ---- ~3 = " 

, 1 0  i 0 , '  0 - - 1  

(ll) 

(12) 

The radial function solutions (9) satisfy the equations 

e-~ '*F" + ~ F = [e -~%)  = !~1 G, 
F 

(13) 

where the number 

e_~;20, _ tc O = [ - -  e-~i%) - -  ~.] F,  
F 

runs through positive and negative integers 

(14) 
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g l , I ! 1 I I~ l ,  K>O,  (15) = ] g ~  --i---- ~,, 

I 2 ! 2 tiK f - 1 ,  w<O. 

The number mj is the projection of the total angular momentum of the particle in the z-direc- 
tion (0 = 0), Z is the orbital quantum number, j = I<I - 1/2 is the total angular momentum 
of the particle. The numbers ~, mj, j are constants of the motion, as in any central field. 
From the definition of the current density four-vector 

I~  = ~ 9 , {  = 0"3 ( 1 6 )  

we obtain the normalization integral for the stationary states 

( ~ 1 / - -  ge'"2dax =Jo( ]  F 12 §  ~) dr. (17)  
r>R O 

ombining the  e q u a t i o n s  (13) and (14) ,  we f i n d  f o r  the  f u n c t i o n  F 

where 

]}A ~r162 1) F =  Q.F, (18) 
/-2 

QK = y--_~ § ~ y i ys " (19) 
r ~ ~ p 7 

If we use the fact that K(< + I) = ~(~ + i>, it is not difficult to show that if we formally 
put QK = 0, we obtain an equation for the radial functions of a spinless particle in the 
Schwarzschild field. The equation for the function G can be obtained from (18)^with the help 
of the substitutions ~ ~--m, K +--<. It will be shown below that the operator Q< contains a 
gravitational spin-orbit interaction and other nonlinear spin effects. 

In the nonrelativistic (Pauli) approximation, the formation G can be assumed to be equal 
to zero, and the normalized function F for bound states can be expressed in terms of Laguerre 
polynomials [7]. Introducing m = u + ~, where lel << ~, we obtain 

- - = 1  ~ - 1 - - - - ,  n = l + l _ n ~ = I ,  2, 3 ..... (20) 

which agrees with the result of [2]. 

In the next (weakly relativistic) approximation we carry out the necessary expansions 
in (18) and (19) to terms of order v2/c 2, and introducing the coordinate o = r -- RG, we ob- 
tain 

1 d ~ i (l @l) ] 
<27 d--- ~ ~-~ -- V.,, . , F = ( V  o) + V o) + V ,a)-~ V (4)) F, (21) 

5" j 

where 

V , u -  FM (22) 
? 

while the right-hand side is a sum of perturbing potentials, which will be given below. In 
this approximation we have, according to (13) 

G=--I (F '  '~ ~ F ~ 
2p ,  T 7 '  (23) 

hence the normalization condition takes the form 

oo 

,J -? / (24) 

We consider separately each of the terms of the perturbation. The term V ~) results 
from the renormalization of the energy of the particle in the gravitational field and does 
not remove the degeneracy with respect to the orbital quantum number l: 

159 



1 < V0~ > ~- A-=_~ = --~15 ~4Mi (25) 

a 8 n ~ 

The interaction V (a) corresponds to the classical effect of a cumulative shift in the peri- 
helion of the orbit of the spinless particle. It removes the degeneracy with respect to the 
orbital quantum number ~: 

~.__jt = I < V~) > = 3 (~MP I -- ~ ~;~ (26) 

\ --/ 

The additional perturbation V(s) can be interpreted as a gravitational spin-orbit interac- 
tion. It can be written in the form 

V~)= (L~) dV~ (27) 
4~"p dp 

where (La) = --(I + <). 

This interaction gives the following contribution to the energy of the particle 

A~__L = _ ~ 4 M ~  ( 1 -- ~ t~ (28) 

4nat~ (l  + I /2)  

This contribution is positive for ~ < 0, i.e., j = ~ + x/~ (spin parallel to the orbital 
angular momentum) and negative for ~ > 0, i.e., j = Z -- ~/=. The effect of the gravitational 
spin-orbit interaction was discussed by Mitskevich in the linear approximation in the gravi- 
tational constant and in the chronometrically invariant formulation of the Dirac equation. 
We note that in our case equation (27) for the energy of the gravitational spin--orbit inter- 
action is six times smaller than that obtained in [8]. 
spin of the particle: 

--I < Vt4)> = // 34 d~=__ 

The term V (4) is also due to the 

~ M  4 ( 1 - -  ~l,,) 

2 n 3 l ( l  § 21--)(/+1) " 
(29) 

The final expression for the energy of a Dirac particle in the Schwarzschild field for 
2uM << Z + I/z has the form 

~"~ -- I p'2M~ 3[~M~ n I -- --g~o 6- (I -- g1,:) -- + - -  -- 5 1 (30) 

We now discuss the fact that inclusion of relativistic and spin effects removes the degen- 
eracy with respect to both the total angular momentum and the orbital angular momentum, in 
contrast to the Coulomb electric field in flat space, in which it is well-known that the 
energies of the bound states of an electron depend only on the numbers n and j. For a given 

value of Z the binding energy of the particle is smaller for ~--~ 0 ( j  = [ r - i !  than when 

Ic> 0 j = l-- The contribution of nonlinear spin effects, as is evident from (30), is 
�9 / 

comparable to the contribution of the spin-orbit interaction only for the lowest levels. 

2. We determine the y-matrices for the linearized Kerr metric (3) in terms of the y- 
matrices corresponding to the Scharzschild geometry: 

~t " "(31) "[, = , , 7 ,  = 7~ = gt.='F,  Y= : "~ § .gt=7, Y~.= = i~, 

where the boldface quantities corresp.ond to the Kerr metric. Using the definition (8) of 
the y-matrices and the fact that e -Iy2 = I in the region of interest here, we can write 
the Hamiltonian of the system in the form 

A A ~ t  A o ( [ . L )  1 ( ~ = ,  (32 )  
H = H r 2 4 7  , = H ~ - -  - , 

r z 2 

where H s is the Hamiltonian of a particle in the Schwarzschild metric, and ~ is the angular 
velocity of the Lenz--Thirring precession: 
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!1 = r -3 {3 ( l . n )  n -- I}. (33) 

Before discussing the results of the calculation we note that the interaction HI is of the 
same form as the interaction between the dipole moment of the central body and the orbital 
angular momentum of a spinless particle. However, in the case of a particle with spin the 
operator ~z no longer has a definite value in states with given n, Z, and J. This leads to 
to a different valu~ ~or the splitting in energy. Comparing Hi with magnitude of the spin-- 
orbit interaction V <a: characteristic of fine structure, it is not difficult to see that 
when Ua << 1 it will lead to a hyperfine structure of the levels. Considering Ha + Hi as 
a perturbation, we write the Dirac equation in the form 

-- - ' 2: 1 d Z(Z + l ) : .  

where 

($I ) = Fm (P) Y~J()) ( 0, ?). 

The calculation of the matrix elements is not difficult and leads to 

and also 

(35) 

1 < H, > 4m: t~ac,~M)4i~ ! 
- -  - -  - -  ' ' ( 3 6 )  

F 2 l ~ - 1  h a l ( l +  ( / + 1 )  

1 i  m}~- l ' i  
zw--fj -3  ( T) 

__ = / Mct ~ 4m: ' , : ' (37) l,x < tzlji h'2 i nl: > ~ 2r ---f / (2/ --- 1 ) (2 /~-  1 ) ( 2 / +  3) 
' r " 

Therefore all of the electron levels (except the ground state) are split into 2j + i sub- 
levels, corresponding to the number of possible projections of the angular momentum onto 
the rotation axis of the central body: 

3 , - f :  
2m.t !*a ( : ,3" I ) "  2 ] :c ! - -  ( 2 / - -  1 ) t2l .- 3) = ) 

i ~ ~ A ~4~ 

2Z-b-1 ' ~ H i I - - T ) ( I + I ) '  - i 2 ' " !  ,-!- 3 ( m s +  l ' - ~ - - [ ( l - i - 1 ) + 3 { / [ "  1 - - ' t 4  ] ' 2 i 

t : ' (2/--- 1) t2[ - 3) 

(38) 

The upper expression inside the brackets (corresponding to the upper sign in (37)) is chosen 
when j = I + i/=, < < 0, and the lower expression is chosen when j = Z -- i/2, < > 0. 

3. We have shown that relativistic gravitational effects, the rotation of the central 
body, and spin, lead to a complicated structure of the spectrum of quasibound states of a 
Dirac particle in the Schwarzschild and Kerr fields. These factors create fine and hyper- 
fine splitting of the levels of the nonrelativistic hydrogenic spectrum if the condition (I) 
is satisfied. A specific relativistic effect is the splitting of the 2p and 2s levels in 
the Schwarzschild field, and, as a result of the gravitational spin-orbit interaction, there 
are two possible transitions: 

E~p~--f~s~2 2 8 : G ~ : 4 i  ~. E2:,:~o-E.~s:~ 31(GI~.W~ 
= - - I  , -- , �9 ( 3 9 )  

Fc ~ 96t. lic / ~c ~ 96~ hc / 

In this way the Schwarzschild gravitational field is different from the Coulomb electric field 
in flat space. Another difference is the absence of a contact interaction in the s-state, 
and also the presence of nonlinear spin effects. 

The Hamiltonian of the dipole--orbital and dipole-spin interactions (32), due to the rota- 
tion of the central body, resembles in form the Hamiltonian of the hyperfine structure of a 
hydrogenic atom, due to the interaction between the magnetic moment of the nucleus and that 
of the electron [9]. However, in our case) as before, the contact interaction is absent. 
In addition, the effective gravitational g-factor of an electron is equal to one, whereas 
in the electromagnetic case it is equal to two.* The splitting of the 2pv2 level into two 
sublevels and the splitting of the 2p{2 level into four sublevels is specific to the inter- 
action considered here. In particular} 

�9 The gravitational g-factor of the electron was discussed earlier in [i0]. 
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es,= 

~S~/z 

*M2 ~ ',-112 
- -  "2%/2 ~ - I / 2  

- -  2Pl2 - - ~ §  
- -  2S~/2 ~ t / 2  

ISi/2 

a b c 

Fig. i. Energy level diagram of the lowest levels of a Dirac 
particle in the Schwarzschild and Kerr fields: a) degenerate 
nonrelativistic spectrum in the Scharzschild field (hydro- 
genic); b) same field, but with the inclusion of relativis- 
tic and spin effects. Here the degeneracy with respect to 
the orbital and internal quantum numbers is removed; c) re- 
moval of the spatial degeneracy of the spectrum in the Kerr 
field. The numbers to the right are the values of the pro- 
jections of the total angular momentum onto the rotation axis 
of the central body. 

- \ - h - ~  ' \ h c  / ' 

1 ? 
= - -  uCz (40.2) 

a-ev'~"2- " 24 '  \ :-~l j ~, hc } ' 

= - -  ., / ~ a c ~ / U ~ M  ~ ~EmO=• 3 :*c- ( 4 0 . 3 )  
eu,..: 40 t 7  ) ~-hc--c J" 

An energy-level diagram for the lowest levels of a Dirac particle is shown in Fig. i. 
In conclusion, we note that spin effects and the gravitational spin-orbit interaction in 
particular become significant when ~M ~ M~L. An estimate of the wave length of radiation 
emitted by the electron in the transitions (39) is: 

k= [1.14} ( g , 8 5 . t O - ~ e m l a  for .x/=(), 
[1.02 10-9 \ Ra cm ' (41) , , for A j =  l. 

and so fine structure effects could appear in principle in the radiation and interaction of 
a "gravitational atom" with radiation. The role of such an atom could be played by a pri- 
mary microscopic black hole (R G 2 10 -12 ) cm) with filled levels and in a state of quantum 
thermal vaporization. 

If ~ac ~ h, then the interaction of the dipole moment of the central body with the spin 
of the particle also becomes significant. When a ~ GM/c 2 and ~M/M~L ~mj the structure of 
the spectrum will be determined Dn a large degree by nonlinear effects, Study of these prob- 
lems may be considered in the future. 
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ASYMPTOTIC BEHAVIOR OF THE EFFECTIVE POTENTIAL OF COMPOSITE 

FIELDS IN A CURVED SPACE-TIME 

I. L. Bukhbinder and S. D. Odintsov UDC 530.12:531.51 

Renormalization group equations are obtained, which allow studying the asymptotic 
behavior of the effective potential of composite fields in an external gravitation- 
al field. For asymptotically free theories, the behavior of the effective poten- 
tial is found for large values of composite fields and of the space-time curvature. 

i. In this paper we continue studying the asymptotic behavior of the effective action 
in an external gravitational field, starting in [i]. There we considered the behavior of the 
effective potential of elementary fields in the limit of large curvature and/or large values 
of scalar fields. Now we shall consider the asymptoaic behavior of the effective potential 
of composite fields. The interest towards studying composite fields arose because they pro- 
vide a possibility of dynamical generation of particle masses, in analogy to the Bardeen-- 
Cooper--Schrieffer model in the theory of superconductivity (see, e.g., [2, 3]), and recently, 
due to the studying of the gluon condensate (see, e.g., ~4]). Also notice that composite 
fields proved to be useful in studying fluctuations in the expanding Universe model [5]. 

The asymptotic behavior of the effective potential of c~mposite fields in fiat space 
was studied in [6] using the renormalization group equations. It was established that the 
condition of stability of the theory in the limit of large composite fields poses constraints 
on the multiplet content of the theory. 

In the present work we shall show how one can obtain various renormalization group equa- 
tions for the effective potential of composite fields in an external gravitational field. 
These equations allow us to study the behavior of the effective potential not only in the 
limit of large composite fields (as in the case of a flat space), but also in the limit of 
large curvature, or in both limits. 

"-~ ~ and gauge fields A~,, both of 2. Consider an arbitrary theory containing the scalars ~, 
which we shall denote as m. Let us also define the composite fields =-- ...... .45: j"~ Let us 
denote o--___ {w, ~: -~ The generating functional for the Green functions of fields ~ is: 

(,i~<,(L K~ = ~ d~,~L. " 

Here S is the renormalized action of the theory in an external gravitational field (taking 
the ghosts and the gauge conditions into account, the integration over the ghosts being in- 
cluded into de); I and K are the sources of the fields ~ and o, respectively. Denote N-------{/, K} 
The functional W0([, K) leads to a finite theory for K = 0. The Green functions containing 
composite field insertions, are divergent. In order to find out the structure of these 
divergences, let us consider the Ko terms as additional vertices in the Lagrangian. Then, 
computing the index of a divergence, it is easy to see that the diagrams containing K in the 
first and second power are the only divergent ones. Hence the generating functional W R, which 
leads to finite Green functions of both elementary and composite fields (as well as the vacuum 
energy, due to the presence of vacuum counterterms [7, 9] in S), has the form 

e ~ ~  --- 1' d~;e ~ I s+ .[':'" ) : -~ ~:'~+J"z~::§176 (1) 

Here ZK~, ZK~,Z (~), Z(=), Z(3) are the renormalization constants~ of which only Z(~), ZK~ are 
dimensional; R is the scalar curvature. The constants ZKo, ZKw,Z ~), Z(=) are the same as in 
the case of a flat space [6], while Z(3) is a new constant which has no flat-space analog. 
The functional W R depends on the sources N, the ensemble of charges f, and the renormaiiza- 
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