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One of the numerical methods for solving spatial thermoplasticity problems [5] is the 
finite element method~ A three-dimensional thermoelastic-plastic analysis of a number of 
bodies of different configuration is made on its basis [i, 2, 4]. The necessity occurs here 
to solve large systems of linear algebraic equations (SLAE). The direct methods applied in 
the papers mentioned above result in large machine time expenditures and require a consider- 
able volume of electronic computer storage. 

We use gradient methods to solve thermoplasticity problems since only nonzero SLAE ma- 
trix elements are used in them. The quantity of these elements per matrix row is determined 
only by the mesh topology and is independent of the quantity of nodes, which permits a signi- 
ficant saving in electronic computer resources when investigating bodies of complex geometry. 

i. Formulation of the Problem and Introduction of the Finite-Element Approximation 

Let us consider a body of arbitrary shape subjected to the action of a nonstationary -> -> 

temperature field T and volume forces K(KI, K2, K~). Surface forces tn(t,1, tn2, tn3) act 
on part of the body surface It, while displacements u~=(u~1, uX2, uX3) are given on the re- 
mainder of the body surface I u. The temperature value T o corresponds to the natural (un- 
stressed) state of the body. The mechanical properties of the body material depend on the 
temperature. 

We will solve the problem under consideration in a quasistatic formulation. The creep 
strains are assumed neglibibly small as compared with the instantaneous elastic-plastic 
strains. For this, the range of variation of the load, temperature, and time in all the body 
elements should lie below the Surface of the conditional creep limit [5]. 

Let us assume that the appearance of plastic strains in the body is possible under the 
action of the mentioned load and loading is realized along rectilinear strain trajectories 
or those deviating slightly from them, for which the following equations of state are valid 
[5] 

oij = 2G*su + 3~*~06~j-- oa, (i. i) 

where oij and eij are stress and strain tensor components, respectively 

a. , ~p K ~ r S i j ;  ij -= 20  eii q- ( 1 . 2  ) 

~* = ( g - -  20*)/3; ( 1 . 3  ) 

O* = [ S/2F ( under active loading) ; 
G ( under elastic unloading) ; ( i. 4 ) 

ei j lp are the plastic strain components occurring in a body element up to the time of unload- 
ing (we set EijlP = 0 under active loading) ET = ~T( T - To) is the purely thermal strain, s T 
is the coefficient of linear thermal expansion, K is the volume expansion modulus, G is the 
shear modulus, S = (sijsij/2)i/2 is the tangential stress intensity, si~ = oij - Okk6ij/3; 
F = (ei.ei./2) I/~ is the shear strain intensity, e i. = gi" - ~06i'; e0 ~ gkk/3; 6i" is the 

o . o 3 3 J 
Kronecker ~elta. Summation between 1 and 3 zs performed over repeated subscripts zn the 
monomial expressions if other limits of their variation are not given. 

In the general case the tangential stress intensity S is a functional of the shear 
strain intensity F and the temperature T [5], but this dependence is described simply by 
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functions under the assumptions made. It is assumed that the latter is independent of the 
kind of stress state and is determined from test data on uniaxial tension of cylindrical 
specimens for different fixed temperature values, 

We realize the solution Of the thermoplasticity problem in a Cartesian coordinate system 
on the basis of the Lagrange variational equation [5], which, under the assumption of invari- 
ability of the volume and surface forces, the additional stresses a~, and the variable 
elasticity parameters G* and ~* with relationships (1.1)-(1.4) takenJinto account, take the 
form 

6 9 = 0 ,  (1.5) 
where !( 3 )  

= 2G.r, + T Ke~ d v - -  ~" (o~18 . + K,u,) dV-- ~ t.,u,dZ. 
V ]~t 

( 1 . 6 )  

The Cauchy relationships 

and kinematic boundary conditions 

I 
e~j = -~ (%1 + u].~) ( 1 .7  ) 

UI=U; on ~u" (1.8) 

must be added to the variational formulation of the problem (1.5) and (1.6). 

We use tetrahedral finite elements with a linear approximation of the displacements to 
discretize the functional (1.6). We assume that the body volume V is represented here by the 
sum of M tetrahedra, the body surface E is the sum of L triangles for a total quantity N of 
nodes. Let Xip be coordinates and Uip the displacement of the node numbered p (p = I, N). 
Then the displacements of an arbitrary point of the m-th element whose vertices have the num- 
bers nl, n2, n3, n4 are evaluated from the formula 

{ u ~ }  m m m = ul~ (Dpi~ + D~4 )/19 m ~ = nl, n2, n3, n,), ( 1 . 9  ) 

where 

x~., x2~ ~ x3. ' ill  
D = = d e t  x~n' x2~'  xsn' 1 

Xlns X2n a X3n s 1 ]] ; 
Xln, X2n. L X3n" 1 

(l.ZO) 

Dpj m are algebraic cofactors to Xjp in D m, Dp4 m is the algebraic cofactor to one in the row 
of D m that contains coordinates of the node numbered p (p = nl, n2, n 3, n4), xj are coordi- 
nates of a point within the element. Here and henceforth, it is assumed that the quantities 
within the braces with subscript m are determined within the m-th element. 

Taking account of the approximation (1.9), the Cauchy relationships (1.7) yield expres- 
sions for the strain in an element 

2D m (u~pD~/~u:vD~) ( P =  nl, th, ns, n4). ( 1 . 1 1 )  

Let  us r e p l a c e  t h e  i n t e g r a l  ove r  t he  body volume V in  ( 1 . 6 )  by a sum of  i n t e g r a l s  ove r  
volumes o f  a l l  t h e  e l e m e n t s  and t h e  i n t e g r a l  ove r  t h e  s u r f a c e  Z t by a sum of  i n t e g r a l s  ove r  
a l l  t he  l oaded  b o u n d a r i e s  o f  t h e  f i n i t e  e l e m e n t s .  Taking  t he  a v e r a g e  o f  t he  volume f o r c e  
and t e m p e r a t u r e  v a l u e s  in  each  e l emen t  and t he  v a l u e s  o f  t he  s u r f a c e  l oads  in  each t r i a n g l e  
b e l o n g i n g  to  t h e  s u r f a c e  Zt ,  and i n t e g r a t i n g ,  we o b t a i n  t he  d i s c r e t e  ana log  of  t he  f u n c t i o n a l  
( 1 . 6 )  

M L 

(z.12) 
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where 

,( 

B 

B . / . ,  ,'~X 2 

x; g2s ~o7 0 

Fig. i 

(r i ) 

= (o'~)= {%j}~ + ~ (.,., + u.,, + u~., + u.,,) (K*).,) I D"  t; 

9t 1 = U~k,) t,,~Sl, z . .~  (u~k ' + u,k,  + t . 

( l . 1 3 )  

(1,14) 

(1.15) 

the angular brackets <'.o>m denote the mean values of the corresponding quantities in the 
element numbered m, tni s are the mean values of the surface load components in the triangle 
numbered s formed by the nodes kz, k2, k3, and Ss is the area of this triangle. 

Therefore, according to (i.ii) and (1.13)-(1.15) the functional (1.12) is a function of 
discrete values of the displacement components at the nodal points of a finite-element mesh. 
Then differentiation of (1.12) with respect to the nodal displacements with the relationships 
(1.1)-(1.4), (i. Ii), and (1.13)-(1.15) taken into account yields an expression for the gradient 
component of the functional (1.12). 

geP='6 ~ ((;u)mD"istgnD -- ~ (Ks)~'ID"'; T ~' ' m �9 m -- tins t (p= I,N). (1.16) 
r~ m f 

Here the summation in the first two sums is over all finite elements containing nodes nua~bered 
p, and in the last overall loaded faces of the finite elements containing this node. 

2. Construction and Approval of. the Al~orithm to Solve the Problem 

We trace the body loading history by separating the whole loading process into a number 
of stages in such a manner that the times delimiting them would, if possible, agree with the 
times of the change in direction of the strain process for the separate body elements from 
active loading to unloading, and conversely [5]. We use the method of variable elasticity 
parameters to construct the algorithm of the Solution in each loading stage. In a first ap- 
proximation we set here G* = G, X* = (K - 2G)/3. As values of the plastic strains eijlP at 
the unloading time we use their value at the end of the preceding stage (we set eijIP = 0 in 
the first stage). We find the displacement of the nodes of the finite-element mesh Uip (p = 
I, N) by minimizing the functional (1.12) by using gradient methods. We check the convergence 
of these latter by the diminution of the absolute value of the gradient vector (1.16) rela- 
tive to its value for zero displacements 
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(g~veiv) 'r  (p = I, iv). ( 2 . 1  ) 
~ = (g~,g~,)l/217_-o 

We take account of the kinematic boundary conditions (1.8) by using given values of the dis- 
placements for the calculation of the gradient (1.16). Since the given displacements do not 
vary, then the gradient comRonents (1.16), obtained by differentiating the functional 
(1.12) with respect to these displacements must be made zero. 

We determine the strains eij (i.ii) from the displacements found, and from them we cal- 
culate the strain deviator components eij and the shear strain intensity F in all the finite 
elements. Then by using the functional dependence S = S(F, T), we find the tangential stress 
intensity S and we refine the variable elasticity parameters G* and %* (1.3) and (1.4). We 
determine the directivity of the process by the increment in the plastic strain intensity in 
a first approximation. If this increment is non-negative, then we set gijlP = 0 for all the 
subsequent approximations of this stage. Afterwards we turn to the second approximation, etc. 
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We cut off the successive approximations when the condition 

( z .  2 ) 

is satisfied in all the elements, where F(n'l) and F(n) are values of the shear strain inten- 
sity at two successive iterations, and ~ is the given accuracy. 

Approval of the method elucidated above and its comparison with the method utilized in 
[2] were realized in a number of problems for prismatic bodies, published in [5]. The compu- 
tations performed for a different quantity of nodes for both uniform and nonuniform partition 
of the body volume permit making the following deductions. 

i. All the tested gradient methods (steepest descent, conjugate gradients, upper re- 
laxation methods) are well recommended for solving problems on a uniform mesh and for a weak 
change in G* within the body limits. The most effective of these, the conjugate gradient 
method, permits the solution to be obtained considerably more rapidly than the other method 
[2]. 

2. The nonuniformity of the partitioning and the strong change in G* result in strong 
prolateness of the equipotential surfaces of the functional (1.12) in the space of the dis- 
placements Uip. This substantially reduces the efficiency of the conjugate gradient method 
which it is expedient to use only for final refinement of the solution in this case. It is 
more preferable to use the upper relaxation method in the first iterations in G*. 

3. It is sufficient to limit oneself to a diminution of the parameter ~i (2.1) by 4-5 
orders of magnitude (by 2 orders in certain problems) in each approximation in G*. A more 
exact estimate can be obtained in each specific case by investigating the spectral properties 
of the Hess matrix of the functional (1.12). 

3. Example of a Computation 

A quadrangular vessel with a conical hole in the center of the bottom, fabricated from 
the heat-resistant alloy ~l-395(the thermomechanical characteristics are presented in the 
monograph [5]) is subjected to slow heating withoutresulting in the origination of unload- 
ing. At the end of the heating the temperature at the outer surface equals the initial value 
of 20~ while it is 820~ at the inner and varies linearly over the wall and bottom thick- 
ness. Consequently, the computation of the thermoplastic stress state of the body can be per- 
formed in one stage. It is assumed that the vessel is mounted in a rigid horizontal plane 
and that points of its base do not emerge outside the limits of this plane during deformation. 
The presence of symmetry conditions permits limiting oneself to analysis of the stress state 
of the quarter of the vessel displayed in Fig. I. The normal shifts and tangential stresses 
in the planes xl = 0, x 2 = 0, and x~ = 0 are here assumed to equal zero while the remaining 
part of the body surface is free of external load. 

Discretization of the body volume into finite elements was performed automatically by 
the method elucidated in [3]. Partitioning of the body into hexahedral cells in the form of 
curvilinear parallelepipeds (4 cells over the wall thickness and 18 over the height) was re- 
alized in the first stage. Then each of the cells was partitioned into 5 tetrahedra. In all 
6920 finite elements were obtained for 1910 nodes. The analysis was performed by the method 
elucidated above with accuracy ~2 = 0,01. 

Figures 2 and 3 show the stress distribution oll (MPa) at points of the planes marked 
in Fig. 1 by the dashed lines A and B, respectively. The stresses o~3 (MPa) are presented 
in Fig. 4 (plane A) and Fig. 5 (plane B). 

Analysis of the results shows that the normal stresses reach a maximum at points lying 
near the outer body surface, in the neighborhood of the hole in the bottom, and in the zone 
of wall connection to the bottom. The maximal values of the stresses G11 and o33 here exceed 
the maximal values of the stress o22 by almost three times while the maximal values of the 
tangential stress are an order below the normal stress. The most complex nature of the stress 
distribution is in the neighborhood of the hole and near the inner surface of the bottom. 
Plasticity domains occur at these same sites and are developed in the whole bottom thickness 
near the hole. In order to verify the reliability of the results, satisfaction of the static 
boundary conditions was investigated. The stress on the free part of the body surface, ob- 
tained by linear extrapolation of their values at points near the boundary, does not here ex- 
ceed 3-4% of the maximal stress. This is a guarantee of satisfactory compliance with the 
boundary conditions. 
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The computation results described above permit making the deduction that the method de- 
veloped can be used successfully for a thermoplastic three-dimensional analysis of bodies of 
complex geometry. 
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ELASTIC EQUILIBRIUM IN A LAYER INHOMOGENEOUS WITH DEPTH 

A. N. Borodachev UDC 539.3.01 

It is well known that boundary value problems of the theory of elasticity are difficult 
to solve analytically in the inhomogeneous case. Therefore various simplified models of the 
inhomogeneities of an elastic material have been widely used. The most often-used assumption 
is that the Poisson coefficient of the material is a constant, while the shear modulus (or 
modulus of elasticity) varies with one of the coordinates as a power law or an exponential 
[3-5, 9]. 

In the present paper we consider a somewhat more general model of an inhomogeneous elas- 
tic material, in which the shear modulus is assumed constant, while the Poisson coefficient 
(or the modulus of elasticity) depends on one of the coordinates in an arbitrary manner. In 
this model one can introduce stress functions which satisfy second-order partial differential 
equations with constant coefficients. 

With the help of the stress functions and the two-dimensional Fourier transform we con- 
struct the general solution (in transform space) of the problem for the equilibrium of a layer 
inhomogeneous with depth for different types of boundary conditions on its surfaces. The case 
when the surfaces of the layer are free from tangential stresses is discussed in detail. We 
obtain an explicit expression for the characteristic kernel for a layer lying on a perfectly 
rigid substrate, in the absence of friction. 

i. General Solution of the Problem. We consider the equilibrium of an infinite elastic 
layer S = {x~ < =, 0 ~ x 3 E h}, where x ~ = (xl, x2, x3) ~ (x, x3) , x = (x I, x2), 0 < h < 

is the thickness of the layer, and xl, x2, x 3 are rectangular coordinates. The shear modu- 
lus ~ > 0 of the layer is constant, while the Poisson coefficient v(x3) is an arbitrary, but 
sufficiently smooth, function satisfying the usual condition -i < v(x 3) < 1/2 [i0]. In this 
case the modulus of elasticity of the material E(x3) = 2~[i + v(x3) ] is a positive-definite 
function of the coordinate x 3. 
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