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i. INTRODUCTION 

It is well known that the recently most popular theories in physics of gauge fields 
belong to the so-called singular Lagrangian theories. In the general case these theories 
contain relations (between the coordinates and velocities in the Lagrangian formalism or 
coordinates and momenta in the Hamiltonian formalism) and degeneracy of the equations of mo- 
tion, so that solution of the latter include functional arbitrariness. Dirac's method [4], 
based on a Hamiltonian formalism, canonical quantization, was used successfully [i-3] to 
quantize theories of the type mentioned (particularly specific theories, such as Yang-Mills 
theories, gravitation, etc.). Thus, corresponding continual representations for the S-ma- 
trix were naturally obtained by this method. (We are not concerned here with the parallel de- 
velopment of the Lagrangian quantization formulation of singular theories.) Nevertheless, 
it must be pointed out that the general formulation of the method of canonical quantization 
of singular theories has not yet achieved its final form. This is related to a num- 
ber of unsolved problems, generated at the classical level already. To these belong, in 
particular, problems of correspondence between the presence of first type connections in 
Hamiltonian formulation and Lagrangian gauge invariance, the occurrence of a certain number 
of Lagrange multipliers not determined in the Dirac method, the presence of first type connec- 
tions and the degree of degeneracy of the Lagrange equations of motion, problems of physical 
variables, problems of supplementary conditions in the Lagrangian and Hamiltonian formalisms, 
etc. 

The present work is devoted to studying the structure of singular theories in the Hamil- 
tonian and Lagrangian formalisms, as applied to the method of canonical quantization. For 
clarity of exposition we first review the Dirac method. We further establish the structure 
of the Hamiltonian and of the connections in a special canonical coordinate system. This 
makes it possible to find a correspondence between the degree of degeneracy of the Lagrange 
equations, between first type connections and the presence of a certain number of Lagrange 
multipliers undetermined by the Dirac method. The physical interpretation of a degenerate 
theory is discussed, the physical sector of gange theories is described in the Hamiltonian 
formulation, and the gauge problem is considered from this point of view, in particular, 
canonical gauges in the Hamiltonian formulation. Finally, a one-to-one correspondence is 
established between first kind connections and a gauge invariant Lagrangian; and at the same 
time the structure of generators of gauge transformations is described. The treatment is 
carried out on the example of classical systems with a finite number of degrees of freedom; 
nevertheless, all basic conclusions and results are easily carried over, by well-known pro- 
cedures, to field theory, which is, ultimately, the main topic of interest. 

2. HAMILTONIAN FORMULATION OF SINGULAR THEORIES 

Consider a classical mechanical system, described by a Lagrangian dependent only on gen- 
eralized coordinates and velocities L = L(q, ~), = (ql ..... qn). We are interested in gen- 
eralized theories for which the rank of the Hessian is lower than the number of degrees of 
free dom: 

rank ~02L = R, n - -  R = m > O. (1 )  

In this case we assume that relationship (I) retains its form in some neighborhood, for ex- 
ample, of vanishing coordinates and velocities. This implies that the rank of the Hessian 
is determined by the part of the Lagrangian which is quadratic in coordinates and velocities 
Lo, (L = Lo + AL). In this we mention a number of restriction~ on the shape of Lagrangians 
considered here. Besides, all our statements will refer, generally speaking, only to some 
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neighborhood of vanishing coordinates and velocities (momenta). This will not be mentioned 

again specifically in the following. It is easily verified that the presence of some connec- 
tions between coordinates and velocities is already a consequence of (i) in the Lagrangian 
formulation. Relationship (i) is also the reason that the equations 

OL 
th -- 0qi (2)  

do n o t  d e t e r m i n e  a l l  ~ as un ique  f u n c t i o n s  o f  q and p ,  and i t  seems i m p o s s i b l e  t o  c a r r y  ou t  
the  s t a n d a r d  t r a n s i t i o n  to t h e  H a m i l t o n i a n  f o r m u l a t i o n ,  i n  which  t h e  q u a n t i z a t i o n  p rob l em i s  
s o l v e d  by w e l l - k n o w n  methods [ 5 ] .  N e v e r t h e l e s s ,  some a n a l o g  H a m i l t o n i a n  f o r m u l a t i o n  can be 
c o n s t r u c t e d ,  as we w i l l  show, and by i t s  h e l p  t he  p rob lem o f  c a n o n i c a l  q u a n t i z a t i o n  o f  s i n g u -  
l a r  t h e o r i e s  i s  s o l v e d .  

The o r i g i n a l  e q u a t i o n s  r e q u i r e d  by us a r e  n a t u r a l l y  g e n e r a t e d  by s t a t i n g  the v a r i a t i o n a l  
p rob l em f o r  the  e o n d i t i o n a l  extre'mum o f  the  a c t i o n  [6] 

S = ~ L ( q, v) at,  Z. (q, v) --- L (q, 4) 1~ z, 

w i t h  the  s u p p l e m e n t a r y  c o n d i t i o n s  q i  = v i .  0 b v i o u s l y ,  t h i s  p rob lem i s  e q u i v a l e n t  to  the 
problem of an unconditional extremum of the functionalt 

S = f [L(q,  v)-{-pi( 'q,--vi)]dt ,  

where a l l  q,  p ,  v a r e  i n d e p e n d e n t  f u n c t i o n s  o f  t i m e ,  s u b j e c t  to  v a r i a t i o n .  The c o r r e s p o n d i n g  
equations on the extrema are 

�9 OL OL ( 3 )  
q i = v i ,  P l=-~q , P,=ov-- ~ .  

It is easily verified that in the sector of variables q the system of equations (3) is fully 
equivalent to the Lagrange equations 

~S _ OL d OL [~ 
~q, Oq, at  Oq, 0, S L (q, q) dt .  (4) 

If the Hessian theories were nonvanishing, from the last group of equations (3) the 
functions v could be expressed in terms of q and p. Substituting them in the first two 
groups of Eqs. (3), we would reach Hamiltonian equations. In the given case (i) this can- 
not be done literally. Nevertheless, we introduce the function H* = pivi -- L(q, v). With 
its aid Eqs. (3) can be written as follows: 

q~ = {qt, H":'}, Pl = {Pi, H~}, OH'::" __ O. (5) 
Ov~ 

( I n  (5) { . . . }  i s  the o r d i n a r y  P o i s s o n  b r a c k e t ,  s u b j e c t  o n l y  to the v a r i a b l e s  (q ,  p ) . )  Con- 
sider in more detail the structure of the equations obtained. First, without loss of general- 
ity we renumber the coordinates in such a manner that in the matrix (i) the minor of maximum 
rank is located in the top left corner. This is always pomsible, since in a symmetric ma- 
trix there exists a major minor of maximum rank. In this case the coordinates q and the cor- 
responding quantities p, v are partitioned into two groups, which we often denote as follows: 

X= = q=, 11==- p=, V= = v,, ~ = 1 .... R, (6) 

Xa = qR+a, r'a =PR+a,  },,, = v#+~,, a = 1,...m, 

Ii O-'L (7) d~r ~ ~ 0 .  

Due to  c o n d i t i o n  ( 7 ) ,  from the  e q u a t i o n  

l~ 0L ('0H ~ ] 
. . . .  o (8) 

O V '  ~, OV ,I 
one can find all 

V =  V(q, II, },). (9) 

S u b s t i t u t i n g  (9) i n t o  the  r e m a i n i n g  e q u a t i o n s  ~ = aL/3~,  [( .3H*/3t) = 0 ] ,  we o b t a i n  r e -  
l a t i o n s  of the form 
~Repeated subscripts always imply summation. 
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(I)~)= =a--fa(q, ] l ) - -  O, a - -  1 .... m, (i0) 

not containing the function I. Indeed, if one of the functions contained ~, this would con- 
tradict (i). Thus, relations (i0) for the coordinates and momenta follow directly from the 
last group of Eqs. (5). These relations are called primary. 

It can be shown that if (9) is substituted into the expression for H*, we reach the 

following results : 

H':' Iv=~i~ = '~f(~ = If :-~-)a(D~, ~), (ii) 

wh ere 

H = [oq__q~ .... L (q, ~t) 

Despite the fact that Eqs. (2) do not allow one to express all ~ in terms of q, p in the 
case under consideration, the Hamiltonian H depends under conditions (2) only on coordinates 
and momenta [4]; more precisely, only on q and Y. 

Equations (5) can now be written in the form 

#~ = {qr H('I}, /~, = {p., H~'I}. (Or 0. ( 1 2 )  

This equation is handled by the Dirac method [4]. It is seen that the velocities Xt not de- 
termined from Eqs. (2), must be identified with the Lagrange multipliers undetermined by this 

method. 

Following Dirac [4], consider the time conservation conditions of the primary connec- 
tions, which by account of the equations of motion (12) are reduced to the form 

4)~ ) = {~.('~, H(')) ~'~~ . . . .  H} + { ~ ) ,  ~ ~  --  tub s "b - 0. ( 1 3 )  

All functions X can be determined from (13) if 

detll{ a)m, q)r176 II @ O. (14) 

When condition (!4) is not satisfied, only part of Eqs. (13) determines several of the func- 
tions %, while the other part equates to zero several functions of q, p, and, consequently, 
are connections. New connections can appear among them, not functionally dependent on the 
primary ones. From the time conservation conditions similar to these connections one can 
again determine several I and establish some new connections. Continuing this process, we 
finally reach a situation when new connections will not be obtained. We name the whole set 
of connections, functionally independent of each other and of the primary connections, second- 
ary connections, and denote them by ~(2). The set of all connections, both primary and 
secondary, is simply denoted by $ = ($(i), 0(2)). We note that for quadratic Lagrangians 
the connections are nothing else than linear combinations of coordinates and momenta. For 
general Lagrangian types considered by us the connections differ from the connections of the 
corresponding quadratic theories only by nonlinear corrections. In particular, the hyper- 
surface of connections passes through the point q = p = O. We will always assume that the 
nonlinear corrections do not increase the ranks of matrices (of the type of Jacobians, Pois- 
son brackets) in the exact theory as compared with the corresponding quantities in the quad- 
ratic theory. These assumptions refer to the restrictions on the shape of the Lagrangians 

discussed here. 

Two cases are possible:* 

detll{q), ~)}II ~ O, ( !5)  
detll{~D, (D}[[ = O, [ ~ ]  - -  rankl[{cD, tl)}H = M > O .  ( 1 6 )  

We c o n s i d e r  t h e  c a s e  ( 1 5 ) ,  t o  w h i c h  a l s o  r e f e r s  t h e  s i t u a t i o n  d e s c r i b e d  b y  c o n d i t i o n  ( 1 4 ) .  

I n  t h i s  e a s e  X c a n  b e  d e t e r m i n e d  f r o m  t h e  t i m e  c o n s e r v a t i o n  c o n d i t i o n s  o f  a l l  c o n n e c t i o n s ,  
which on account of the equations of motion (12) can be written as: 

(1)~ q) t = {(Dr, HcI~} = {~/)t, 17[} -~- {if)t, (1). ~ k,~ = O. ( 1 7 )  

Recalling that ~(~) is part of ~, we obtain 

).,,~ = -  ({(D, (D})Tt 1 {(Dr, H},  a =-- 1 .... m, 

*Here [~] is the amount of ~; similar notation is also used in what follows. 

425 



({~, (D})ij~ {~l', H} = O, 1 ~-~- 1 .... m. 

This result makes it possible to write Eqs. (12) as a system of differential equations, de- 
termining only the trajectories in phase space: 

qi : {qi, n }o ,  ,b~ = {p~, HID, ~ ,  : O. (18)  

Here we denote by {...}D the Dirac bracket [4]: 

{A, B}o = {A, B } -  {A, O~} ({~, @})})] {qb,. B}. 

The s y s t e m  o f  i n d e p e n d e n t  e q u a t i o n s  o f  a l l  c o n n e c t i o n s  ~ = 0 d e s c r i b e s  some h y p e r s u r -  
face in phase space, which in what follows will be called the hypersurface of all connec- 
tions. If the system of independent equations ~ = 0, [~] -- [r describes the same hypersur- 
face, with ~ and ~ connected nonsingularly on the surface of transformation connections, then 
the set of functions P will be called equivalent to the system of connections ~. It can be 
shown that if in (18) all connections ~ are replaced by the system of equivalent connections 
~, then an equivalent system of equations is obtained. (Also in Eq. (12) all connections 
~(~) can be accurately replaced by an equivalent system of connections.) The following 
theorem [7] is important for what follows. 

THEOREM I. Let there be given a system of independent connections ~ = 0, 

D (cD) 
rank - -  = [~OI, with det  l11 , o} 11 ~= 0; 

D (q, p 

t h e n  t h e r e  e x i s t s  a t i m e - i n d e P e n d e n t  c a n o n i c a l  t r a n s f o r m a t i o n  from the v a r i a b l e s  (q ,  p) to 
the  v a r i a b l e s  ,(~, m), [fl] = [ 0 ] ,  a = ( n q a ,  a p e ) ,  m ; (Wqa , O~pa) , such  t h a t  an e q u i v a l e n t  s y s -  
tem o f  c o n n e c t i o n s  i n  the new v a r i a b l e s  i s *  a =  0. 

In the variables (~, m) the Dirac bracket with fi connections acquires a particularly 
simple fo~m: 

{A, B}~'~= {A, BI% (19) 

where { . . .  }m i s  the  P o i s s o n  b r a c k e t  i n  the  v a r i a b l e s  w. Due to  t h i s  f a c t  Eqs.  (18) in  t he  
variables (~, ~) can be written as: 

o ,={~ ,  H(,~))% P. = 0 ,  H(o 0=Hl{ , ,~0 ,  (20) 

We turn now to case (16). It can be shown that there exist here linear combinations of 
connections in the manifold M, commuting in the sense of the Poisson bracket with all con- 
nections, which, according to Dirac's terminology , are first type connections. In particular, 
the whole system of connections ~ can be chosen in such a manner that some of the ~ will 
directly be first type connections. In What follows we assume that our system of connections 
is precisely such, that part of the connections of ~, which are first type connections, will 
be sometimes denoted by X- The connections not possessing the properties mentioned are com- 
monly ca&led second type connections. Thus, in case (15) we dealt only with second type con- 
nections. 

If it were possible in case (16) that 

rank 11 {{v, ;I = l C' l, (21) 

t h i s  wou ld  imply  t h a t  a l l  t can be d e t e r m i n e d  f rom Eqs .  (17)o The s a t i s f a c t i o n  o f  (21) a l s o  
i m p l i e s  t h a t  among the p r i m a r y  c o n n e c t i o n s  t h e r e  a r e  no f i r s t  t y p e  c o n n e c t i o n s .  We show, 

however , ,  t h a t  i n  c a s e  (16) c o n d i t i o n  (21) c a n n o t  be s a t i s f i e d ,  so t h a t  among the f i r s t  type  
c o n n e c t i o n s  t h e r e  s u r e l y  : e x i s t  p r i m a r y  c o n n e c t i o n s  i n  the  m a n i f o l d  V = [~ (~ ) ]  - - r a n k l [ { ~ ,  
~(i)}II, in which r of the functions % in the same manifold is not determined 
from Eqs. (17). Moreover, we show that these functions % are even not determined by the 
whole system of equations of motion (12). For what follows we need a theorem, being a ten- 

*The subscripts q, p at the variables ~, m determine whether these variables are "coordi- 
nates" or "momenta" conjugate to them, and have no relation to the original variables q, p. 

{~q, ~p[~} = ~ ,  {t~ ~ = gab, 
::2.%. p.@ = lap, ep~} = {O!q, ~%} = {o~pa, ,,p~} =0.  
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eralization of Theorem I, which is formulated as follows [8]: 

THEOREM II. Let there be given a system of independent connections ~ = 0, 

rank D(~___Z) = [~l ,  
D (q, p) 

the  f i r s t  o f  which  a r e  c a l l e d  p r i m a r y  and a r e  d e n o t e d  by ~ (z ) .  Then t h e r e  e x i s t s  a t i m e -  
i n d e p e n d e n t  c a n o n i c a l  t r a n s f o r m a t i o n  f rom the  v a r i a b l e s  (q, p) to  t he  v a r i a b l e s *  

,~q , 9(pl); .,~ z; Q~I~, p(1); ..~),~q, ~(2).,p , 0(~), p(2); ~a, 0~,) (22) 

such t h a t  the  e q u i v a l e n t  s y s t e m  o f  a l l  c o n n e c t i o n s  in  t h e s e  v a r i a b l e s  i s  

-(2----0, (_2= (~(O, ~, • p(0, ~(2), p(2)), (23) 

while 

~.(1)=0, ~Q(1)___-- (~(1), • po)) (24) 

is an equivalent system of primary connections, and 

~)----0, ~(2)= (~, ~(z), p~2)) (25) 

is an equivalent system of secondary connections. 

As already mentioned, Theorem II is a generalization of Theorem I, and this generaliza- 
tion is concerned with two aspects. First, the satisfaction of condition (15) is not re- 
quired, which makes it possible to apply this theorem to theories with first type connec- 
tions; and, secondly, the possibility occurs of such a choice of new variables, so as to re- 
tain the partition of connections into primary and secondary. Obviously, in the new momentum 
variables P = (p(1), p(2)) are first type connections, where p(1) are first type primary con- 
nections, and p(2) are secondary. It follows from the equivalence of connections (23) to 
all connections ~, and of connections (24) to the primary connections ~(i) that the ranks of 
the corresponding matrices, consisting of Poisson brackets, coincide, and, consequently, both 
the manifold of all first type connections and the manifold Of first type primary connec- 
tions in these and the other variables coincide. This implies that 

[P] = [X] = M ,  [P(')] = ~ .  

The m a n i f o l d s  o f  p r i m a r y  and of  a l l  c o n n e c t i o n s ,  and,  in  p a r t i c u l a r ,  c o n n e c t i o n s  o f  t h e  f i r s t  
and second  type  i n  t h e  f u l l  t h e o r y  and in  i t s  q u a d r a t i c  v a r i a n t  a l s o  c o i n c i d e  ( t h i s ,  in  f a c t ,  
i s  an a s s u m p t i o n ;  we w i l l  c o n s i d e r  o n l y  s u c h  t h e o r i e s ) ~  Thus,  i n  a q u a d r a t i c  t h e o r y  the  
t r a n s f o r m a t i o n  o f  Theorem I I  i s  l i n e a r .  

We t u r n  now to  Eqs .  (.12), which in  the  new ~ a r i a b l e s ,  due to the  t r a n s f o r m a t i o n s  b e i n g  
c a n o n i c a l ,  r e t a i n  t h e i r  s t r u c t u r e ,  where i n s t e a d  o f  the e q u a t i o n s  ~(~) = 0 we must  w r i t e  
Eqs. (24 ) .  The H a m i l t o n i a n  f u n c t i o n  H(~) i s  r e p r e s e n t e d  as f o l l o w s  in the  new v a r i a b l e s :  

'jqo) =/-/o + K(I~. ~(1) -k ~,~.z + ),p(1)p(1) 47 A ' I  ~ q- B. ~ q- C. ~') q- all. (26) 

H e r e  Ho = H(*) [~=o  = H,[~=o; AH i s  the  p a r t  o f  H(~) which i s  q u a d r a t i c  and h i g h e r  in  
secondary connections of ~(=J and is independent of the primary connections ~(~), and A, B, 
and C are independent of the connections of the ~ functions. * Equation (26) is an expansion 
of H(~) in a series in the variable connections. We investigate the structure of Hi ~) in 
the form (26). First, it can be established that Ho depends on the variables ~ only. Bv 
the construction of the function Ho it could also depend on the variables Q = (Q(~), Q(~)), 
however from the time conservation of the connections P 

OHo {~)} 0, {H~'~, P} = ~ - - +  = 

where t h e  n o t a t i o n  {~} was i n t r o d u c e d  f o r  a r b i t r a r y  terms p r o p o r t i o n a l  to  c o n n e c t i o n s ,  and 
from the i n d e p e n d e n c e  o f  Ho on c o n n e c t i o n s  f o l l o w s  the Q - i n d e p e n d e n c e  o f  Ho. Thus,  Ho = 

�9 In (22) the points with the commas differ from each other by a canonical pair (coordinate, 
momentum) ; see also the comment to Theorem I concerning the subscripts q, p of the variables 
~, ~, and other possible subscripts, such as (~, • • are omitted. The same abbrevia- 
tions are used in all subsequent equations. 

�9 We assume that A varies not less than linearly with its variable. This can always be sup- 
plemented by shifting the variable by a constant. 
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H]~2= o = H(co). 

Similar considerations on the basis of the relations 

{fl(,), • = B + [ m } =  o, {fl(~), ~c~)} = _ +  c + [ m }  = 0 

make it possible to conclude that the functions B and C vanish identically. 

We write now the conservation conditions of all connections (23) on the equation of mo- 
tion, which <will, obviously, be similar to Eqs. (17): 

{9(1! /-/(n} = t }b(~) = O, {~, ]-](1~} = ) .~  = O~ ( 2 7 )  

OAH 35H 
{H(t), z} . . . .  0, {~(~), H0)} = 7~< -- 0, (28) 

O~ ogc ~ 

{H(l) p} = 0A p{2) + __0AH = O. (29) 
oO aQ 

We know t h a t  the  s e c o n d a r y  c o n n e c t i o n s  o f  the  t h e o r y  a re  a consequence  o f  Eqs.  (17) and of  
t he  p r i m a r y  c o n n e c t i o n  e q u a t i o n s .  S ince  the p a r t i t i o n  i n t o  p r i m a r y  and s e c o n d a r y  connec -  
t i o n s  i s  c o n s e r v e d  i n  the  new v a r i a b l e s ,  Eqs .  (25) mus t  be a consequence  o f  (24) and ( 2 7 ) -  
( 2 9 ) ,  o r ,  i n  d i f f e r e n t  words ,  (25) i s  the  s o l u t i o n  o f  s y s t e m  ( 2 7 ) - ( 2 9 )  under  c o n d i t i o n  (24) .  

We n o t e  t h a t  w i t h i n  t he  a s s u m p t i o n s  e a r l i e r  made on the  s t r u c t u r e  o f  c o n n e c t i o n s  i n  the  
f u l l  t h e o r y  and in  i t s  q u a d r a t i c  v a r i a n t  the  s o l u t i o n  (25) mus t  a l s o  h o l d  in  the  q u a d r a t i c  
t h e o r y .  For  the  l a t t e r  A a re  s i m p l y  l i n e a r  f u n c t i o n s ,  and AH i s  q u a d r a t i c  i n  the  s e c o n d a r y  
c o n n e c t i o n s  and,  c o n s e q u e n t l y ,  i n d e p e n d e n t  o f  t he  o t h e r  v a r i a b l e s ,  s i n c e  in  t h i s  case  H(1) 
i s  q u a d r a t i c  i n  t h e  new v a r i a b l e s  due to the  l i n e a r i t y  o f  the  c a n o n i c a l  t r a n s f o r m a t i o n ,  e s -  
t a b l i s h e d  by Theorem I I  f o r  t h e  q u a d r a t i c  c a s e .  C o n s i d e r  the a p p r o x i m a t e  q u a d r a t i c  t h e o r y .  
I n  t h i s  c a s e  (29) c o n t a i n s  o n l y  s e c o n d a r y  c o n n e c t i o n s  of  the  f i r s t  type  p ( 2 ) ,  and s e c o n d a r y  
c o n n e c t i o n s  o f  t h e  s econd  t y p e  ~ and ~ ( 2 )  a r e  c o n t a i n e d  o n l y  in  Eqs.  (28 ) ,  whose number 
e q u a l s  e x a c t l y  the  number o f  t h e s e  c o n n e c t i o n s .  C o n s e q u e n t l y ,  t he  s e c o n d a r y  c o n n e c t i o n s  o f  
the  f i r s t  t y p e  can i n  t h i s  c a s e  be a consequence  o f  Eqs.  (29) o n l y ,  w h i l e  t he  s e c o n d a r y  con-  
n e c t i o n s  of  t h e  s e c o n d  t y p e  a r e  a c o n s e q u e n c e  o f  Eqs.  (28) o n l y .  ( I f  p ( 2 )  = 0 i s  n o t  a con-  
s e q u e n c e  o f  (29) o n l y ,  t hen  Eqs .  (29) a r e  d e p e n d e n t ,  t h e i r  number i s  s m a l l e r  than  [ P ] ,  b u t  
then  t h e  t o t a l  number o f  Eqs.  (28 ) ,  (29) i s  s m a l l e r  t h a n  the  t o t a l  number o f  s e c o n d a r y  con-  
nections,:~which is impossible. ) This implies that the generation process of secondary con- 
nections of the first type starts with commutation of the functions H(~) with primary con- 
nections of the first type p(1), and is then extended by commutation of H(I) with the gener- 
ated seconda.ry connections of the first type, etc. The secondary connections of the second 
type ~ and ~(=) are first generated by commutation of H(~) with the primary connections of 
the second type, and then extended by commutation of H(~) only with the generated secondary 
connections there must necessarily exist primary connections of the first type (and among 
second type connections -- second-type primary connections). Although this observation was 
made for the quadratic approximation, it also remains valid in the complete theory, since 
the structure of connections in the complete theory and in its quadratic approximation are 
identical (see remark preceding Eq. 26). Thus, among first-type connections there must 
necessarily exist first-type primary connections, and among second-type connections- second- 
type primary connections. Since this statement is independent of the choice of canonical ~ 
variables, this proves that conditions (16) and (21) are incompatible. This also implies 
that the functions % are not determined from the conditions of time conservation of connec- 
tions ~, where ~ equals the number of first-type primary connections. In the variables of 
(22) this is easily seen from Eqs. (27).(29), from which 9~v(l> and X~ are determined, while 
~p(1) , corresponding to first-type primary connections, are not determined (they generally 
drop out of these equations). Moreover, it can now be shown that ).p(1) are also not deter- 
mined from the complete system of equations of motion. For this we write the equations of 
motion in the new variables. They are of the form 

= {,~, H ( ~ ) F ,  ~q = o, ( 3 0 )  

Q(~> := >~v(1), (~(2~ = A.  

We recall that the funfit$ons A may depend on Q and ~. The equations for ~ for Hamiltonians 
with a determining Hamilton function H(~) are also independent of the remaining variables. 
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It is now seen that the remaining equations, not counting the connection equations, can be 
considered as equations for Q. These equations have solutions for any functions %p(i). Thus 
the functions %p(1) of the full :system of equations of motion are not determined, and appear 
in the solutions of the equations as arbitrary functions, the Hamiltonian theory of degener- 
acy. It is easily seen that %p(1) [i0] occupy an important role in the original function 
(that is, rankD%/D%p(1) = [%p(i)] = ~). Since the equations of motion contain ~ = % (see 
Eqs. (3) and (6)), this implies that the solutions of the Hamilton equations for x essential- 
ly contain ~ arbitrary functions of time. It follows from the equivalence of the Hamiltonian 
and Lagrangian equations that the solutions of the Lagrangian equations are also degenerate, 
while their degree of degeneracy is at least ~ or, which is the same, the number of first- 
type primary connections in the Hamiltonian formulation. It is shown below that imposing 
conditions reduces the degeneracy of the Hamiltonian, and, consequently, also of the La- 
grangian equations. We also obtain the result that the solutions of the Lagrangian equa- 
tions contain precisely ~ arbitrary functions of time. It is natural to expect that in this 
case there exist ~ variables for which there are no equations, and that there exist ~ rela- 
tions between the equations of motion. It is shown in Section 6 that these assumptions are 
correct. 

3. PIIYSICAL INTERPRETATION OF DEGENERATE THEORIES 

We now discuss the possibility of describing physical systems on the basis of degener- 
ate theories. In this case we consider physical systems for which the following is assumed. 

One can introduce the concept of a system state at each moment of time, such that assign- 
ing the state at one moment of time determines the state at remaining moments of time. All 
physical quantities referring to the system described at a given moment of time are single- 
valued functions of state. The state is completely determined by assigning all possible 
physical quantities corresponding to the system at the given moment of time. 

On the other hand, let there exist some theorywhich is determined by the set of variables 
and the equations of motion M[n] = 0. Such a theory will be denoted by (N; M). If the 

theory is degenerate, the same initial data generally corresponds to a set of differ- 
ent trajectories ~(t). (The initial data to the equations of motion of a degenerate theory 
are conditionally called the set of all variables and their derivatives, selected at the 
given moment of time together with the equations of motion. This set will also be called the 
instantaneous trajectory state~ Finally, if the equations of motion make it possible to ex- 
press the whole set of coordinates and derivatives at the given moment of time only in terms 
of part of them, as initial data it is sufficient to select precisely that part which is usu- 
ally selected in the nondegenerate cases.) 

l~lus, at first glance a noncorrespondence is generated between timewise causally related 
states of a physical system and the functional arbitrariness in the solutions of the degen- 
erate theory, occurring in the absence of one-to-one correspondence between the instantaneous 
trajectory states of the degenerate theory. To overcome this noncorrespondence, and to de- 
scribe compatibly physical systems of the type mentioned within degenerate theories one can 
adopt the following natural interpretation, which practically consists of two points: a) the 
state of the physical system, and consequently all physical quantities uniquely related with 
the instantaneous trajectory state of the corresponding theory; b) all physical quantities 
coincide at simultaneous points of intersecting trajectories of the theory. (Two trajec- 
tories ~ and ~' are called intersecting if their instantaneous states coincide at some moment 
of time. In what follows this fact will be denoted as ~I ~ N') 

Point (b) guarantees the independence of physical quantities of the arbitrariness associ- 
ated with solutions of the degenerate theory, and reconciles point (a) with causal time evolu- 
tions of the physical state. It follows from point (a) that any physical quantity A can be 
described by functions of the form A(~, ~, q" .... ). In this case point (a) imposes a restric- 
tion on the possible shape of these functions. More precisely, 

A(~I, ~q . . . .  ) : A ( r l ' ,  ~', ...), :~t, ~, ~lN~l', M[~I]~---M[~I']=O. (31)  

Functions of the instantaneous trajectory state satisfying Eq. (31) will be called physical, 
and will be denoted in the following by A ~. 

We call different trajectories N equivalent if all physical quantities coincide on these 
trajectories. Thus, the whole set of trajectories q is decomposed into classes of equivalent 
trajectories. It can then be concluded that to each physical state s there corresponds a 
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class of equivalent trajectories there corresponds one and the same physical state. Here by 
physical state we imply the set of instantaneous physical states transforming to each other 
in time. In what follows we often understand a physical state in the extended sense. We 
denote by Ks(q ; M) the class of equivalent trajectories of the theory (q; M) corresponding 
to the state s. In these theories what was said above can be written as: 

.4" (% "~,...) A ''~ (~,', "' N' ~ (32) -- -~ .... ), , / t ,  v A  '~', ',/-,~, (-K~('~; M), s. 

It is clear that all intersecting trajectories occur in one class of equivalent tra- 
jectories. 

We call physical functions A~ and A~ equivalent if their values coincide on any equiva- 
lent trajectories of any classes Ks(q ; M). Obviously, if a physical quantity A is described 
by some function A ~, it can also be described by any other equivalent function. Thus, all 
physical functions are decomposed into classes of equivalent functions. Let FA(~ ; M) be a 
class of equivalent functions of the theory (~; M); then 

A"; (-q, ' i . ... ) = A'~' (~,', ~ ' , . . . ) ,  ',:, t ,  :," ",,, ~' (: K s ( ~ ;  ,4I). 
:,:~ s, q At' , A .~' Q FA (~i: :~I ). (33)  

We a d d r e s s  now the  f o l l o w i n g  p rob lem.  Can t h e  p h y s i c a l  s y s t e m  d e s c r i b e d  by  the  t h e o r y  
(q; M) be d e s c r i b e d  w i t h i n  some o t h e r  t h e o r y ,  f o r  example ,  (g;  N)? The answer  to  t h i s  q u e s -  
t i o n  must  be  assumed p o s i t i v e  i f  f o r  an a r b i t r a r y  c l a s s  Ks(q ; M) and any c l a s s  FA(n ; M)' o f  
the  t h e o r y  (q; M) t h e r e  e x i s t  in  t h e  new t h e o r y  (g; N) some c l a s s e s  K s (g ;  N /q ;  M) o f  t r a -  
j e c t o r i e s  g and c l a s s e s  FA(g ; N /q ;  M) o f  f u n c t i o n s  BA(g , ~ . . . .  ) ,  such  t h a t  

BA (~, ~ .... ) = A'~(-6,  "~, .... ), v t ,  ~ : , :~Ks(~;  M ) ,  

:~A'~'~FA('q; M), v ~ K s ( ~ ;  N/~; M), (34) 

'~BA EFA (~; N:=,]; M). 

�9 The classes of trajectories Ks(~ , N/q; M) and functions FA(~ ; N/q; M) will be called a 
physical sector of the theory (~; N) with respect to the theory (q; M). It must be noted 
that the theory (~; N) considered regardless of the theory (q; M) would produce, generally 
speaking, its class of equivalent trajectories Kl(~; N) and another compound of physical 
functions and their equivalent classes FB(~ ; N). The theories (~; N) possessing a physical 
sector equivalent to the theory (q; M) will be simply called in what follows physically 
equivalent theories. 

�9 it is necessary to transform from a description of a physical system in 
terms Of a degenerate theory to a description in terms of a nondegenerate theory. Ob- 
viously, the corresponding nondegenerate theory must he physically equivalent to the origi- 
nal theory. This transition will be called gauge application to the theory. 

In our problem there is no detailed and exhaustive description of all possible gauges. 
We dwell only on some of them�9 We consider a class of gauges, naturally called minimal. In 
applying such gauges we transform from the theory (q ; M) to a physically equivalent theory 
(n; G) with the same set of variables, while for any physical quantity A it is possible to 
mention a physical function A ~, describing it both in the theory (q; M) and in the theory 
(n; G). That is, the classes FA(q; M) and FA(q ; G/n; M) necessarily intersect: 

FA (~; M)I-]FA (-~; O/'~; M) + 0, ~ A .  

In  t h e  t r a n s i t i o n  t o  such a gauge we h a v e ,  removing  t h e  d e g e n e r a c y ,  m i n i m a l l y  changed 
the originally degenerate theory, remaining within the original variables and the original 
physical functions. Minimal gauges can occur without violating the equations of motion. 
This implies that the trajectories of the physical sector satisfy the original equations of 
motion. In the ,language of classes Ks(n ; G/q; M) and Ks(q ; M) this imples that 

K~(~; G/rl; M) ~ K~(n; M). 

Important among the gauges are those which can be called rigid. In this case each 
class Ks(~; N/q; M) contains only one trajectory. The rigid minimal gauge which does not 
violate the equations of motion is quite obvious�9 Obviously, such gauging reduces to the 
fact that from each class Ks(n ; M) of the original theory one representation is somehow re- 
moved, so that each physical state is reached from one trajectory of the original theory. 

Thus, the transition to some gauge makes it possible to describe the original physical 
system in terms of a nondegenerate theory. By the construction this description is fully 
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equivalent to the original theory, therefore the physical responses are independent of the 
choice of the gauge. The possibility of describing the same physical System within different 
gauges will be called gauge invariance. 

One often considers some set of minimal gauges G~, G=, ..., Gk, ..., such that the inter- 
section of all classes FA(q ; M), FA,(~; Gi/n ; M), i = i, ...k, .... which we denote by FA, is 
not empty for any physical quantity A. This imples that for each physical quantity A there 
exist functions A ~, which describe it both in the original theory and in any of the gauges 
Gi, i = i, ...k, .... That is, 

A'"(-~,, -~ .... ) : :  A"' (.~, ~ .... ), "~, t, :V A'~ 6 f'A, ~,~- A, (35 )  
~-~(~K~(-,~; M), :-,~K~(~; O/~,,; M),  ~,~i. 

In this class of gauges the gauge invariance appears in the fact that the function describ= 
ing the physical quantity is independent of the gauge. In this case the property (35) is 
commonly called gauge invariance of physical functions. 

In conclusion, we note that a wider implication of the transition to some gauge is also 
possible, as a transition from a given theory (not necessarily degenerate) to a physically 
equivalent nondegenerate theory. 

4. CANONICAL GAUGES 

In light of the discussion above consider the interpretation of a singular theory with 
first type connections. We start the analysis in a special coordinate system, in which the 
variables of the theory are the canonical coordinates (22) and the functions %. The oon- 
traction of all these variables will be denoted by q,= (~, Q, ~, %). According to the assump ~ 
tions made in Section 3, we assume that each physical quantity A can be described by a func- 
tion of the form A(n, ~, ...). Since it follows from the equations of motion (30) that ~ = 
X~ = %~(i) = 0, all the derivatives with respect to ~ can be expressed only in terms of m, 
all derivatives with respect to Q(1) can be expressed only in terms of Q, m, and the deriva- 
tives with respect~ to Q(1), and the functions %p(I) and all their derivatives can be ex- 
pressed only in terms of the derivatives with respect to Q(1), then among the functions equiv- 
alent to the functions A(q, q, ...) there are always functions of the form 

A(o, Q, Q(0 Q(0 .... ). (36) 

We use the following to establish what restrictions are imposed on the structure of the 
functions (36) by condition (32). Consider the trajectory of.variahles m, Q, whose state at 
t = to and t = to + A is given by the set of values (no, Qo, Qo(1) ", ~(i! ...) and (no + Am .... 
Qo + AQ, .Q!. ~) + AQ (I), .Q(1) + AQ(~) .... ), respectively. The equatio6w 6f motion (30) are 
such* that AQ, AQ(1),... can be quantities assigned ahead. Consequently, there exists a set 
of intersecting trajectories at t = to, differing from each other at t =to + A by the values 
O, Q(~), ~(1), ... . Condition (32) requires that any physical functions coincide on these 
trajectories. This implies that for ~ =0 physicalfunctions of the form(36) mustbe independent 
of O,Q(~), Q(~), ... �9 Hencealso follows that ineach classof physicallyequivalent functions 
there existnecessarily functions of the form A(~). Differently speaking, any physical quantity A 
may describe functions of the variables m only, A = A(~). Therefore the variables ~ are 27~qi 
naturally called physical. It is easily established that any physical quantity can also be 
described by functions of the variables q, p only. This is indeed so, since an assignment 
of q, p uniquely determines ~. We write down the Structure of the physical functions A~(q, 
p). Transforming in these functions to the variables ~, Q, m, 0he can write 

A ~'(q, p) - -A (co) -FA(~, Q, r �9 f~ (37) 

where A(m) is a function of the variables m, describing the same physical quantity, so that 
both A~(q, p) and A are functions without singularities at 9 = 0. Consequently, 

OA ~ _  = {A,~ ' p}  =--OA. ~q. (38) 

oQ o q  

We now recall that P is a system of connections, equivalent to all first type connections X, 
while ~ is a system Of connections, equivalent to all connections ~. By definition equiva- 
lent connections are expressed in terms of each other by means of nonsingular matrices, so 

*Restrictions on the size of this paper do not allow us to prove this statement. 
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that (38) can be rew• in the form 

{A"' (q, p), z(q, p))={O} (39) 

Thus, it has been established that any physical quantity can be described by functions 
of q, p only. By Eq. (37) all equivalent physical functions of q, p,differ from each other 
only by terms proportional to connections. The physical functions of q, p must satisfy Eq. 
(39). 

Further, one can describe classes of equivalent trajectories. According to the discus- 
sion above, one class contains all trajectories for which the variables ~ coincide. These 
sets of trajectories differ from each other o~ly by the variables Q (~ = 0 for all trajec- 
tories). The transition to a near trajectory, differing from the given one only by the vari- 
ables Q, can be represented by an infinitely small canonical transformation with generating 
functions 6W = X " a g~a, where 6~ a are arbitrarily small functions of time. Thus, all first 
type connections generate nonphysical changes of state! 

Now, having discussed in detail the structure of degenerate theories in the Hamiltonian 
formulation, we write several gauges in general form. For example, one of the possible 
gauges is the theory in the variables ~ with equations of motion 

g={~, H(o)} ~ (40) 

and with physical functions A(~) of the original classes of physically equivalent functions. 

Consider gauges in the variables ~, Q, ~. To achieve the purpose of gauging we must 
remove the degeneracy, i.e., remove the functional arbitrariness in the solutions of the equa- 
tions of motion (30). For this, generallv speaking, it is sufficient to introduce certain 
functions %p(I) in these equations, We equate them, for example, to zero. This is equiva- 
lent to the fact that the equations of motion are supplemented by the conditions Q(1) = const 
at first type primary connections. It hence follows, in particular, that the degeneracy of 
solutions of Lagrangian equations cannot exceed ~, and consequently, by the proof in Sec. 2, 
is exactly equal to ~. Which functions can be used to describe physical quantities in such 
a gauge? Obviously, these can be all original functions A~(~, Q, ~) of the form (37). In- 
deed, we have not violated the original equations of motion, particularly the equations ~ = 
0. The condition ~ = :0 guarantees the coincidence of values of these functions on trajec- 
tories with values of functions A(w) of the variables w, for which the equations are also not 
x~iolated. Thus, we have an example of a minimal gauge without violation of the equations of 
motion. However, the gauge considered is not rigid. Indeed, Eqs. (30) for Q(2) are of first 
order. For given functions Q(1) and m they have a set of solutions according to the possi- 
bility of selecting different initial data. Consequently, in the gauge under consideration 
there exists a set of trajectorieS, equivalent from the point of view of the original theory. 
The variables ~ coincide in them, but the variables Q(2) are different. 

It is now clear that if we wish to apply a minimal rigid gauge, we must somehow fix all 
variables Q. The equations of such a gauge can, for example, be 

m----{m, H(~)}" , Q=0, Q--W(~)----0. (41) 

In this case all physical quantities can be primarily described by the original func- 
tions (37). As is seen, the gauge under consideration consists of the fact that the dif- 
ferential equations in the variables Q are replaced bv additional conditions of the form 

Q W(m)-----0 (42) 

in all first-type connections. We note now that relations (42) are connections, so that in 
Eqs. (41) the hypersurface of connections is described by the equations 

Q-----0. Q--~r (~) =0 (43) 

and, consequently, the whole system of connections is of second type. Moreover, Eqs. (41) 
are equations of some Hamiltonian theory with second-type connections (43) and with a Hamil- 
tonian 

H O ) = t / ( c 0 ) + ~  o . Q + Z Q .  (Q ~F(~0)). 

It is easily verified that all ~ are determined from the conditions of time conservation of 
connections (43); these quantities simply vanish here, so that the equations of motion 

~--{o, H0)}, Q=0, Q--~(o) ~---0 (44) 

432 



indeed have the form (41). 

This observation makes it possible to formulate a similar gauge in the variables q, p. 
In these variables this gauge is 

# = {q, H~ /~ ---- {p, M('}}D, ~ ----O, (45) 

where ~ = (~, ~G), while ~ are all connections of the original theory, and ~G is some sys- 
tem of connections (supplementary conditions)i, selected in such a manner that the whole sys- 
tem of connections ~ be of second type, i.e., 

rank  O(O____~} = [ ~ ] ,  det[[{O, *}11 # o. ( 4 6 )  
D(q, p) 

Gauges of this type are called canonical. We note that it follows from (46) that 

[qJ~] = [%], detll{ ap~ x}ll=#=O, (47) 

so that the supplementary conditions are in some sense associated with all first-type con- 
nections, which seems quite clear in the variables (~, Q, m). 

Transforming in (45) to the variables (~, Q, ~), it can be shown directly that in these 
variables the equations of motion have the form (41), i.e., (45) is a minimal rigid ~au~e. 
By the selection of suitable supplementary conditions, they can sometimes be supplemented in such a 

manner that the canonical gauge does not violate the equations of motion. 

It follows from the discussion above that the physical functions A~(q, p) satisfying con- 
ditions (39) describe physical quantities in any of the canonical gauges. In this sense the 
functions are gauge invariant with respect to a choice of canonical gauges. This result can 
also be proved directly by remaining within the variables q, p. It is therefore natural to 
call conditions (39) a condition of gauge invariance of physical quantities. 

It must be emphasized that the solutions of the equations in an arbitrary canonical 
gauge do not satisfy the equations of the original theory. In this case we say that the 
gauge violates the equations of motion. In this case, however, the equations are violated 
only for nonphysical variables Q, while the physical sector of the theory is not violated. 
The possibility of violating the equations for nonphysical variables Q leads to the fact that 
among the physically equivalent theories with the same state of physical functions A~(q, p) 
there exists a theory described by the equations 

= {q, H(I' ')}, /) = {p, H~1,2)}, r = O, 

H (1'2/ ---- H "~- Ztfl)t, 

where ~ are all connections of the original theory. 

Differently stated, the Hamiltonian H(~) can be supplemented by all secondary connec- 
tions with corresponding ~ factors, while the physical sector of the theory is not changed'! 
This statement is most simply verified in the variables (~, Q, m). The corresponding equa- 
tions of motion are obtained from Eqs. (30) by replacing all functions A by the functions ~. 

5. QUANTI ZATI ON 

One possible point of view consists of the fact that to construct a quantum theory of 
some system it is sufficient to "quantize" some of the corresponding physically equivalent 
classical theories. Considering the problem interesting us from this point of view, it can 
be said that to quantize a singular theory, generally speaking, it is sufficient to "quan- 
tize" it in some gauge. Even here the most suitable candidate, at first glance, is the 

gauge (40), which is the standard Hamiltonian theory in variables ~ with Hamiltonian H(~). 
This gauge occurs for singular degenerate theories with first type connections, as well 
as in its special case of theories with second-type^connections. In this gauge the quan- 
tization is standard. We label all m by operators ~ with canonical commutation relations 

A A A A A A 
[~oq=, ~p~] = i ~ ,  [%~, ~oq~] = [O~p~, ~o~] = 0 , .  ( 4 8 )  

where the energy operator H is constructed from the classical Hamiltonian H(~). ~ 

*Here and in the following we do not touch on the well-known problems of comparing classical 

functions with operators. 
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Sometimes, however, finding the variables ~ can be a technically nontrivial problem.* 
For this reason a formulation is necessary in terms of the original variables q, p. For 
quantization of singular theories of general form it is sufficient to formulate the proce- 
dure of quantization for theories with second-type connections only, since, as we saw, for 
theories with first-type connections there always exists a canonical gauge. 

The corresponding compatible quantization theory with second-type connections is as 
follows [4]: all q, p are labeled by operators q, p, for which the following operator 
equalities are satisfied 

A A A 
[~i, ~,'] = i{N, "~:}D] ^ ,  (D('fl)=0, ~ = (q, p). (49) 

l 
The energy operator H is constructed from the classical Hamiltonian H(q, p). The quan- 

tization (49) of theories with second-type connections is called Dirac quantization. The 
existence of canonical gauges earlier proved for theories with first-type connections makes 
their Dirac quantization also possible. 

It must be noted that in the general case of Dirac quantization the problem arises of 
realization of the operator relations (49), as well as the problem of proving the indepen- 
dence of constructing the quantum theory of the choice of one or another canonical gauge. 

Consider now how Dirac quantization appears in the special variables (~, m). Since 
in the variables mentioned the Dirac bracket has the form (19), the canonical commutation 

^ 

relations (48) are satisfied for the operator m, and, besides, 

A a " ~i] " [,~, ~.] = [9., = 0 ,  . q=O.  (50 )  

The energy operator H is constructed from the classical Hamiltonian N in the variables 
~, ~, while from condition (50) it simply coincides with the energy operator constructed from 
the operator H(~). It is easily argued that despite the formal presence of additional de- 
grees of freedom, related to the variables ~, Dirac quantization in the variables (~, ~) and 
quantization in the gauge (40) practically lead to identical quantum theories. It can be 
verified that Dirac quantization sas the correspondence principle in the sense that 
for h + 0 the Heisenberg equations can be reduced to a form coinciding with the form of the 
classical equations of motion. 

Finally, we note that all results given in the present paper can be generalized to 
cases when the Lagrangian depends not only on ordinary commuting (boson) variables, but 
also on anticommuting (fermion) variables, formed by some Grassman algebra [9]. In this 
case all equations retain their form if the derivatives with respect to coordinates are 
always assumed to be right-handed, and with respect to momentum- left-handed, while the 
Poisson bracket is redefined as follows [2] : 

{ , 4 ,  = o,1 (_ OA, 
Oqi O& Oqi @i 

where n A and n B are the Grassman parities of the quantities A and B (for A even n A = O, for 
A odd n A = I, etc.), while in quantizing fermion variables commutators are replaced by anti- 
commutato rs. 

6. CONCLUSION. FIRST--TYPE CONNECTIONS AND GAUGE 

INVARIANCE OF THE LAGRANGIAN 

It follows from the results of Sec. 2 that if there exist first-type connections in the 
Hamiltonian formulation of a singular theory, then the solutions of both Hamiltonian and La- 
grangian equations of motion contain a functional arbitrariness in the number of first-type 
primary connections, which are necessarily present in this case. What expresses this fact 
in the Lagrangian formulation? We show that here there exists a one-to-one relationship with 
the invariance of the action (4) with respect to gauge transformations 

q-~q'=O(q, ~), (S(q) =S(q')),  (51) 

where in the general case G is a functional of q and ~ of arbitrary functions of time ~a(t), 

*Most of the well-known theories have a special structure, allowing one, not having found 
the variables ~, m, to establish quite simply the shape of the Hamiltonian H(~), which is, 
obviously, sufficient for the purpose of quantization. 
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a = I, ... , p, where all functions ~ appear essentially in G [i0], so that for an infinitely 
small transformation (51). 

qi = q~ -J- R,% (52) 
G a 

implies independence of the generators R i (that is, from nGR i it ,must follow that n a = 0) 
We note that (52) is a contracted description of the expression qi(t) = qi(t) + fR~(t, t'i 
~a(t')dt', where R~(t, t') is in the general case a functional of q. This form is also used 
in what follows. 

Thus, let the action (4) be invariant with respect to transformation (51), then it is ~ 
also invariant with respect to the infinitely small transformations (52). Due to independence 
of the generators R~ this leads to the presence of p identities of the form 

__ e= 0, (53) 
Bqi 

which, obviously, is an identity between Lagrange equations, so that the number of indepen- 
dent equations of motion is decreased, at least by p. Therefore, the solutions of Lag~angian 
(and consequently, also Hamiltonian) equations of motion contain a functional arbitrariness 
not smaller than ~. It can be shown that in this case there exists a nonsingular replace- 
ment of variables q-+(x~, x ll), [x! ]-----p, so that the action S is generally independent of the 
variables xll. One form of this replacement is, for example: 

q = G ( q ,  ~) ~=~xZ), 
I~=x  II 

where~(x J-) is the solution of the system of equations W(~) = O, [W] = p, expressed in terms 
of the [q] -- p independent variables ~- Thus, x II is generally separated from the equations 
of motion, and the presence of arbitrariness in the solutions becomes particularly trans- 
parent. 

More complicated is the proof that if the solutions of the Lag~ange equations contain 
a certain number of arbitrary functions, then there exists a gauge invariance of action of 
the form (51) with a number of important parameters exactly equal to the number of these arbi- 
trary functions. In this case it is sufficient to establish the invariance of the action with 
respect to infinitely small transformations (52) ; then, as shown in [ii], these transforma- 
tions can always be integrated by parts. The proof of existence of infinitely small trans- 
formations obviously reduces to a proof of presence of identities between equations of motion 

dl 
of the form (53) with independent generators R i. For simplicity we consider this problem for 
an aribtrary system of first-order ordinary differential equations, where the scheme of the 
proof is also easily generalized to second-order equations, to which belong the Lagrange equa- 
tions, or the results obtained can be applied directly to equations of motion of arbitrary 
order (including equations of theories with high-order derivatives), if the latter are writ- 
ten in the form of first-order equations. Thus, let 

F' (~, ~.) --: 0, ['~] == [Fl (54) 

be a system of first-order differential equations, with 

rank D ( F ) _  ? < [F]. (55) 

I n  t he  c a s e  (55) Eqs .  (54) c a n n o t  be r e p r e s e n t e d  in  a fo rm.  decomposed  in  t h e  d e r i v a t i v e s  ~. 
C o n d i t i o n  (55) i m p l i e s  t h a t  F ,  c o n s i d e r e d  as  f u n c t i o n s  o f  q ,  a r e  d e p e n d e n t ,  so  t h a t  t hey  can 
be decomposed  i n t o  two g r o u p s :  

F = ( F , ,  f , ) ,  rank D r / , )  .... [ f , ] = p ,  
O(~)  

with F~ = a~.f~ + u, where u are some functions of q only. Let them be dependent, i.e., 

rank D ( u )  -- r < [u]. 
D ( ~ )  

We d e n o t e  t h e  i n d e p e n d e n t  f u n c t i o n s  o f  u by ~ : :  

rank D__(O~) _ [q)~] = r. 
,o(~) 

One can then write (assuming that all functions encountered are analytic and do not contain 

undetermined terms) : 
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ul=[St  �9 CP,, r ank  ~ = [ d O ~ ] ,  F ~ = c q  �9 [~+~l  �9 tb~. (56)  

We now d e c o m p o s e  a l l  f u n c t i o n s  F~ i n t o  two g r o u p s :  F1 = ( F z ,  _F1), so  t h a t  [ F , ]  = [ r  F1 = 
_ ~ l " f ,  + B ~ ' r  d e t  01 # O. I t  i s  e a s i l y  v e r i f i e d  t h a t  t h e  o r i g i n a l  f u n c t i o n s  F = (F1 ,  _F~, 
f~ )  a r e r e l a t e d  to  t h e  f u n c t i o n s  F1 = (FI~  f l ,  Ca) by  n o n s i n g u l a r  m a t r i c e s  -x0,~: 

F := z~ F~ ---- x"~ x ~'~ = (x~ -1 .  

Therefore the equations F = 0 and F, = 0 are equivalent. 
the functions Fa appear. 
written as 

or 

Consider relations (56), in which 
They represent identities between the functions Fx, which can be 

~', ~: : - ' I , .F, ,  ~'~ = F~, F, = ( f , ,  @,) 

R1"FI=--0 ,  Ri = ii, 
o 
1 

- - ' h  

I! 
Thus, of the equations F, = O, only the equations F, = 0 are important. They are completely 
equivalent to the original equations (54). 

Let now the functions fl and ~i depend on the variable n, i.e., 

rank D ( / , ,  d ) , ) P ,  < I f , ]  _x_ [(I)~l" 
D (;,) 

There exists then a partition of the function fl into two groups: fl = (F2, f2), so that, 
similarly to the preceding situation, 

rank D ( f 2 ,  ~ , )  ___ [f~] +. [@,] = p,, (57) 
D(4~) 

Fe = % ' f ~  q- ~x "~ ,  + ~x, "@1 + ~ 'gP i ,  rank  ~ = [a)~ 1, 

w h e r e  r --- i z ( ~ )  i s  a f u n c t i o n  i n d e p e n d e n t  o f  t h e  f u n c t i o n  $~:  

rank D (~) ' '  @") = [@,1 + [@z]. 
D (-q) 

We expand F= into F= and F2= IF2[ = [~a], 

and  d e f i n i t e  s e t s  o f  f u n c t i o n s  F2 = ( F i ,  f i ,  ~a ,  ~ a ) ,  r e i a t e d  t o  t h e  f u n c t i o n s  Fx by  t h e  n o n -  
s i n g u l a r  m a t r i c e s  ~, 

,00 i ! o I o A=5 , ,  B=~.d- -  t , 

E~ = ~!,2F~_, ~,.l,2 = 0 0 I ' C = ,~.,, 

0 A B C l l  - 

11!o o o 1 0 0 
F.., = ~ ' I F , ,  x ~'l = 0 1 0 

O~ - -  C-1A, - -  C-IB, C -I 

It is significant here that both the direct • and the inverse • ~ matrices are local opera- 
tors of time differentiation. The following identities for F2 follow from relations (57) 

,#.z :=-i~._F._,, F.2 ==/~,, _ F~ = ( /~,  O1, {I)9)., 

or 
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0 il 
R,,F, 2 --~ 0, R~ =- 1 - -  ~'2 - 

0 1 

T h u s ,  o f  t h e  e q u a t i o n s  Fa = 0 o n l y  t h e  e q u a t i o n s  Fa = 0 a r e  i m p o r t a n t .  They  a r e  com- 
p l e t e l y  equivalent to the original equations (54). 

Let now the functions fi, ~, ~2 depend on the variable ~. Then, similarly to the pre- 
ceding situation, new connections ~3 = ~3(N) are generated, which are independent of ~ and 
r  etc. Finally, at the k-th step the following equationsaregenerated: F~ = O, F~-~(&, 
r  r  . . . ,  r  c o m p l e t e l y  e q u i v a l e n t  t o  t h e  o r i g i n a l  e q u a t i o n s  ( 5 4 ) ,  and  s u c h  t h a t  

rank D ( f ,  * )  = I f ]  + [ e l ,  f = f , ~ ,  ~) = ( ~ , ,  0., .... ~ ) ,  (58)  
D(~)  

while by construction 

rank D ((D) _ [(D]. 
D (~) 

It is useful to illustrate the procedure described schematically: 

F = z~ 

{ F, ~ ~1"F1, RI .Ft - -  0, 

F._, = IF., =: z-.'~F3, 

. . . .  , . . . . .  

= ( f ,  a) ) .  

(59) 

(6o) 

Thus, the original equations (54) are reduced to the equivalent equations 

fOi, 11)=0 ,  r 01) ----- 0, (61)  

which, by (58), (59), are indeed independent. For this reason they can be reduced to the 

form 

X ----'c9(X, x, x), Y-~-  tF(X, x), n ---~ (X, Y, x),  (62)  

being the analog of the normal form, i.e., the form in which the equations are solved for 
the highest derivatives. (For second-order equations the similar result is 

f x ;, i:), Y = , v ( x ,  2, Y, x, 

Z--- -z(X,  Y, x), n---- (X, Y, Z, x).) 

It is seen from Eqs. (62) that if the variables are x, they are not determined by these 
equations, and in fact there is a functional arbitrariness in their solutions. On the other 

hand, the following relation holds 

[.q = [ ~ ] - - [ X ]  = [ F ] - - [  r , d ,  

so that the number of variables x equals exactly the number of identities 

R ~ F  l -::_ 0 

occurring in the procedure (61). 

Due to the existence of local matrices • z-i=(• I)-I these identities can be reduced to 
identities between the original functions F. They are 

R~F. ' ~ 0, [a] = Ixl ,  (63)  
a 

and it is seen from the construction that Ri, which we conceptually call generators, are 
local operators of time differentiation of finite order, depending on the variables N, ~, 
�9 .. only locally. In a detailed description, similar to that carried out following Eqs. (52), 
the generators must be represented in "matrix" form Ri = R~(t, t'), where in the given case, 

as was proved, they are 
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1' d" 
(t, c)  o;i t'). 

Using the structure of the matrices R l and the existence of the matrices z l,z-1, z~t+~, it can 
be proved that all generators I~ are independent in the sense mentioned earlier. 

The results obtained can be applied to the Lagrange equations (4) if the latter are 
written in the equivalent form of first-order equations 

~qi = Adi(q, v, v ) = 0 ,  q ~ - v  i = 0 .  (64)  

In particular, if the Lagrange equations are degenerate, so are Eqs. (64). If the 
Hamiltonian formulation contains ~ primary first-type connections, then, as was shown, the 
solutions of both the Hamilton and Lagrange equations contain exactly ~ identities of the form 

R" V ,i+' 'tl [q, v, v) Jr- [q~'i ( #+-  %) -- O, [at] = % (65)  
cZ 

while the generators R~i (k = i, 2) are independent. In identities (65) we put v i = qi, so 
that we obtain p identities between the original Lagrange equations 

a ~S h a Ri U'-----= 0, w ezeRi  R[ilv=;l. (66)  
oqz 

It only remains to show that the generators R i are independent. For this we consider iden- 
tity (65) on the hypers.urface of variables q, v, v, considered as independent, determined by 
the equations Mi(q, v, v) = 0. (Under the assumptions made by us on the Lagrangian struc- 
ture, 'vanishing values of all variables are located on this hypersurface.) They are 

Rz a (#i ~- %) lu =:o -~ O. (6 7) 

It follows from (67) that on the hypersurface mentioned R~ i can only have a structure of the 
form (qj -- vj)T~i , where ~i are matrices antisymmetric in i, j. Following these comments 
we provzde the proof of independence of the generators R~. More precisely, we assume that 
there exist nonvanis~ing ha, such that 

h a " / ~  = 0, (68)  

for exa_mple, at the vanishing point of the variables q, q, ... We then form the combina- 
tions taRSi, ~ |,2, and consider them at the vanishing point of all variables (at this 
point, in particular, v i = qi)" Since the vanishing point belongs to the hypersurface M = 0, 

- Ra 5~ account of (68) and the established structure of the generators Rq we obtain n a ui = 0o 
which contradicts independence of the generators R~i at any point. Thus, the generators R~ 
are independent at the vanishing point, and, consequently, by continuity, in some neighbor- 
hood of it. 

The presence of identities (66) with ~ independent generators implies invariance of the 
action with respect to infinitely small gauge transformations (52) with ~ arbitrary functions 
of time, which also required proof. 

It now becomes clear why the possibility of describing a physical system by different 
nondegenerate theories was called gauge invariance, and the choice of a specific nondegener- 
ate theory was termed gauge application. As was shown, the action corresponding to Hamil- 
tonian theories with first-type connections is invariant with respect to gauge transforma- 
tions (gauge invariant), and, finally, for precisely this reason, relates uniquely the de- 
generacy of Lagrangian and Hamiltonian equations of motion. 
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NEW EXACT ASYMPTOTIC CORRELATIONS BETWEEN THE PHASE AND MODULUS OF THE 

HADRON SCATTERING AMPLITUDE 

Yu. M. Lomsadze, A. N. Golosnoi, NDC 530.145:530.12:537.8:530.145 
and V. V. Koveshnikova 

i. PREVIOUS RESULTS: SHORT REVIEW 

In 1966, Marten [i], using only the results of axiomatic quantum field theory, obtained 
a sufficiently strict proof that the upper bound of the forward scattering amplitude F(') has 

the form 

F(E) ~O(EIn'2E), E-~oo ( 1 . 1 )  

and even estimated the multiplicative constants involved in this asymptotic upper bound, for 
various reactions. In accordance with the accepted terminology, the physical assertions 
based only on the results of axiomatic quantum field theory, will be called "strict'~'.* 

Approximately at the same time Hu~i and Konoshita showed that the Froissard-Marten bound 
(i.i) for a cross-symmetric amplitude F('), (ioe., for the scattering amplitude of a truly 
neutral particle) can be lowered to some extent if one assumes that in some sense this ampli- 
tude is free from strong oscillations, and if the function 

p(E) = ReF(E)/ImF(E) = ctgq~(E) ( 1 . 2 )  

satisfies respective limitations. A little later, Vernov [3, 4] strengthened these results 
by means of a certain iterative procedure. In 1969, Lomsadze, Kontrosh and Tokar' [5] showed 
that all these results can be obtained under much milder limitations on the oscillations of 
the amplitude. It was also shown in [5] that these results are valid both for the cross- 
symmetric part F+(') = FI(') + FII('), and cross-antisymmetric part F_(.) = FI(') -- FII(') 
of the amplitude FI(.) of the scattering of an arbitrary particle I on a target, and the 
amplitude FII(.) of the scattering of its antiparticle II on the same target. In 1977, 
Lomsadze and Kelemen [6, 7] extended these considerations to the cross-symmetric function 

F I ( ' ) F I x ( ' ) .  

Interesting results in this direction have been obtained by Logunov, Mestvirishvili, and 
Khrustalev [8], by Fisher, Kolar, and Vrkoc [9], by Fisher and Shishanin [i0], and in reviews 
by Lomsadze [ii, 12]. Recently Lomsadze and Lomsadze (Jr.) [13, 14] obtained a number of new 
conditional (in the above-mentioned sense) upper bounds on the scattering amplitudes with 
specific multiplicative constants. These conditional upper bounds are obtained with the 
assumption that the corresponding amplitudes are free from q-power oscillations. 

*It has to be stressed, though, that the bound (i.i) cannot yet be considered as "strict", 
strictly speaking, because it is substantially based on the inequality As(s , t = R) < s N 
(see [i], Sec. 7), not proven yet within axiomati= quantum field theory. 
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