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REGULARITIES OF SUBSTRUCTURAL HARDENING 

N. A. Koneva and E. V. Kozlov UDC 539.3:669.7.017 

INTRODUCTION 

There exist four basic mechanisms of resistance of plastic deformation of metallic 
materials: i) lattice (Peierls-Nabarro forces, the restructuring of the dislocation core, 
electron and phonon retardation etc.); 2) solid-solution; 3) substructural; 4) polyphasic 
(dispersed, composite). As analyses of recent years have shown, hardening caused by radia- 
tive and tempering defects, reduces to the action of the enumerated mechanisms. Substruc- 
tural hardening is an extremely important mechanism of hardening of metals and alloys. It 
controls deformation hardening and contributes significantly to the strength of materials 
of the martensitic class. Hardening caused by different forms of thermomechanical treatment 
also basically is incumbent upon substructural hardening. Finally, both the origin and 
development of microfissures is tightly connected with substructure evolution. 

The nature of substructural hardening has been experimentally and theoretically analyzed 
over the course of several decades [i-4]. Undoubtedly, retardation of slippage caused by 
dislocated structures depends on the location of dislocations, that is, on the type of sub- 
structure [5]. However, in far from all the papers, in analyzing substructural hardening, 
has the nature of the location of dislocations been brought to attention [3, 4, 6]. 

The authors of this paper have in the last ten years been developing a concept of sub- 
structural hardening, at the basis of which lies the distinguishing of characteristic types 
of substructure, differing in the physical nature of formation of shearing strength. This 
article contains a description of the present state of the problem. It develops concepts 
laid out in the preceding survey of Koneva and Kozlou [7], however it does not repeat the 
material of that publication. Hardening caused by the effect of polycrystallization, un- 
doubtedly pertains to the substructure, but on a higher structural level (see the classifi- 
cation of structural levels in [8]). The contemporary state of polycrystalline hardening 
has been illuminated in a series of papers by Koneva, Sharkeev, et al. [i0], and here, due 
to insufficient space, is not considered. 

i. BRIEF CLASSIFICATION OF SUBSTRUCTURES 

A classification of dislocated substructures observed in deformed materials, was pre- 
sented in detail in a recent survey of Koneva and Kozlov [8]. In considering substructural 
hardening, it is necessary to distinguish [12, 13] homogeneous nondisoriented substructures 
(dislocation chaos, accumulation, recticular substructure), inhomogeneous nondisoriented 
(dislocated concentrations, balls, cells, cellular-recticular substructure), disoriented 
dislocation-disclination (disoriented cells, disoriented cellular-reticular, band and sub- 
structure with continuous and discrete disorientations or oriented chaos), disoriented dis- 
location-free (subgranular or fragmented), disoriented twin and martensitic (multilayered 
packing defects, twins of deformation, deformed martensite). 

In subsequent consideration, it is necessary to emphasize the following three features 
of inhomogeneous and disoriented substructures of a deformed origin. Firstly, there are 
encountered in them different local dislocated configurations, namely: chaotic concentra- 
tions of dislocations, ordered dislocated balls, boundaries of cells with a dipolar config- 
uration not introduced by disorientation, and boundaries of cells with a surplus of dislo- 
cations of one sign, introduced by disorientation (Fig. la-c). Secondly, subboundaries of 
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Fig. I. Basic types of dislocated configurations lying at the basis 
of the classification of inhomogeneous and disoriented substructures; 
a) concentrations; b and c) walls of cells without disorientation and 
with disorientation, respectively; d) subboundaries; e) boundaries of 
fragments. Besides the boundaries of the fragments, all the remain- 
ing configurations are depicted by imperfect ones. 

a different degree of perfection and boundaries of fragments (Fig. id, e). Formations of 
the first and second types can be both closed and ragged. Each of the features enumerated 
above determines by its presence a corresponding type of substructure. Finally, the third 
feature, distributed dislocated charges, occupying the entire volume of the material or 
a part of it, is characteristic for disoriented substructures. They introduce a continuous 
curvature-torsion (• the crystal lattice and its gradient (8• 

2. CONNECTION OF THE FLOW STRESS o WITH THE 
MEAN SCALAR DENSITY OF DISLOCATIONS p 

We have the well-known relation 

~176247 (1) 

where ~ is a parameter characterizing the shearing strength; G is the shear modulus; b is 
Burgers vector; of is the total contribution of lattice and solid-solution hardening. Exper- 
imental data of the last decade show that the parameter ~ determining the shearing strength 
depends on the type of the substructure [14, 15]. Since, in the process of evolution of 
the defect structure, there ususally are present in the volume of the frame two different 
substructures [8] and the ratio of the volumetric shares is nonconstant, the dependence 
o = f(pl/2), as a rule, has a nonlinear nature [7, 12, 16]. In the general case, taking 
into account sequentially changing substructures in the course of plastic deformation in 
a wide interval of dislocation density, the dependence o= f(pZ/2) caw be represented in 
the form of a scheme (Fig. 2), which is composed by taking into account all the results 
obtained by the authors with collaborators on different materials. In the stage of nondis- 
oriented substructures (part i) the dependence of o = f(pZ/2) is close to linear. The appear- 
ance of disoriented substructures and especially band substructure (part 2) leads to the 
growth of the coefficient ~, in the stage of oriented chaos (part 3) the parameter ~ again 
decreases somewhat (it is necessary to keep in mind that in the case of experiments with 
polycrystalline frames, as a rule, the joint parameter ms is determined). When the perfected 
fragmented substructure is sufficiently developed, the density of dislocations diminishes 
[17], and the increase of flow stress is caused here by the increase of density of the bound- 
aries of the fragments (Fig. 2a, branch 4). An additional contribution Ao to the flow stress 
caused by the appearance of disorientations, both discrete and smooth, can be evaluated 

i -~ z l , i l  
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F i g .  2. Form o f  t h e  d e p e n d e n c e  o f  o - p  a/~ f o r  d i f f e r e n t  c l a s s e s  
o f  s u b s t r u c t u r e s .  Shown a r e  ways t o  d e t e r m i n e  t h e  c o n t r i b u t i o n  
Ao, c a u s e d  by t h e  i n t r o d u c t i o n  o f  c o n t i n u o u s  and d i s c r e t e  d i s -  
orientations of different type. 
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�9 Cu--A1, t [001] [001] 
Cu--Mn Ni - Fe--Mn 

'~ Ni--Fe, Ni- -Fe--Cr  

o= 

O 

Chaos 0,4 1,5--2,0 
Meshes 2,5--5,0 1,0 1,5 
Balls 1,4 2,2 
Ce I is 2,5--3,0 0,05 2,5 3,0 
Cellular- 
mesh 7,5--8,0 2,5 1,8--2~ 

Band 6,5--13,0 1,0 5,0--5,5 8,5--6,5 

Oriented 
chaos  1,5--3,2 1,5--2,8 

from --]-3,0 
Fragmented to --1,5 

across ~q-oo 

Twin 17--25 8 

Martensitic 10--14 

1,5 

2,5 

as the difference of the extrapolated linear part and the corresponding branches of the 
dependence o = f(pl/2). In the case of the formation of deformation twins (branch 5) and 
martensite (branch 6) the boundaries of the division and disorientations introduced by them 
also lead to the growth of ~ (Fig. 2b). 

The characteristic magnitudes of the parameter m~ for different substructures of fcc- 
metals and solid solutions are represented in Table i. In analyzing the values of m~ it 
is most important to bring to attention their relative change during the change of the sub- 
structure, and not really the absolute values. The situation is that the latter still 
depend on the type of crystal lattice, the presence of admixtures in the metal or concentra- 
tion of the solid solution, the texture of the polycrystals or the orientation of the mono- 
crystals, the number of active slippage systems, the state of order in the solid solution, 
the temperature of the experiment, etc. 

SO, for example, in monocrystals of the alloy Ni3Fe, the parameter ~ is maximal along 

the line [001] - [iIi] of the basic stereographic triangle, decreasing in this same direction. 
A subsequent decrease of the parameter ~ is observed in displacing the deformation axis 
through the center of the stereographic triangle to the vertex [011]. In the ordered alloys, 
the parameter ~ decreases with a lowering of the degree of the distant atomic order [18]. 
In pure metals, this parameter, as a rule, is less than in solid solutions; moreover, for 
metals with a bcc lattice, it is usually somewhat less than for metals with a fcc lattice. 
The influence of changing the type of substructure is similar in different materials. So, 
in any materials under any conditions of deformation, the transition from nondisoriented 
substructures to disoriented ones leads to an increase of ~ (or me, where m is the orienta- 
tion factor). 

The nature of the dependence of o = f(pl/2) for nondisoriented substructures was dis- 
cussed in our earlier papers [7, 12, 14, 16, 19]. It was established that for reticular 
and cellular-reticular substructures, there is a linear relation, and for a ball-cellular 
substructure, a noticeable departure from linear dependence is observed. Experimental data 
on the behavior of the dependence of o = f(pl/2) in the formation of disorientations are 
presented below in considering specific substructures. 
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3. INFLUENCE OF SUBSTRUCTURE ON THE ACCUMULATION OF DEFECTS, 
SLIPPAGE CHARACTERISTICS, AND ANNIHILATION OF DISLOCATIONS 

The type of substructure determines the majority of characteristics of a deformable 
meterial. It is known that the phasic nature of deformed hardening is caused by the sequen- 
tial change of substructures [8]. The deformation hardening coefficient @ = do/dg is maximal 
in the stage of nondisoriented substructures, and the dependence of the flow stress on the 
deformation a = f(g) here has a character close to linear (Fig. 3a). Parabolic hardening 
is observed in the formation of disoriented substructures [12, 15, 20-26]. 

The slippage picture depends on the type of substructure [27]. Highly homogeneous narrow 
slippage is observed in the base of ball-cellular nondisoriented substructures. The transi- 
tion to reticular substructures increases slippage localization. Subsequent growth of slip- 
page localization occurs during the formation of disoriented substructures, which is accom- 
panied simultaneously by the appearance of kink bands, reorientation, and distortion of the 
slippage planes. 

The velocity of accumulation of the scalar density of dislocations dp/ds is maximal 
in the phase of nondisoriented substructures and sharply decreases in the transition to 
disoriented (Fig. 3a) [12, 23-30]. On the contrary, the velocity of accumulation of the 
excess dislocation density dp• in moderately and strongly deformed materials is propor- 
tional to the curvature-torsion of the crystal lattice ~ = bp• attains a maximum during the 
formation of the band substructure and then decreases in the transition to oriented chaos 
(Fig. 3a). During the formation of the fragmented substructure, the velocity of accumula- 
tion of dislocations does not simply decrease, and can pass through zero and change its 
sign if highly perfect fragments are formed. The origin of disoriented substructures is 
connected with the sharp growth of the process of annihilation of dislocations (Fig. 3b) 
[12, 24, 27]. 

The inhomogeneity of the local characteristics of the dislocated structure also depends 
on its type. For example, the gradient of the continuous curvature-torsion of the crystal 
lattice 8• ~ is not great in nondisoriented substructures and sharply increases in passing 
to a band substructure and especially to a substructure with continuous and discrete disorien- 
tations (Fig. 3b) [20]. In passing to a fragmented substructure and its perfection, the 
values of • and 8~/8s decrease. 
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Fig. 3. Influence of the type of substructure on the parameters of 
defect-formation and the phasic nature of the curve of flow [8, 20]. 
Dependences are shown on the degree of deformation of the flow stress 
a, the hardening coefficient @, the density of dislocations p in the 
material and the annihilated dislocations Pan, all the dislocations 
participating in the deformation, Pgen, the velocities of accumula- 
tion of the scalar dp/de and excess dp+/dE density of dislocations, 
the curvature-torsion of the crystal lattice ~ and its gradient 
8• A and B are the regions of nondisorienned and disoriented 
substructures, respectively; ~, II, III, IV are the names of the 
transitional and II etc. of the deformation phases. 
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4. HARDENING FEATURES IN DIFFERENT SUBSTRUCTURES 

In the previous survey of Kareva and Kozlov [7] there was considered, basically, hard- 
ening in nondisoriented substructures - reticular and cellular. In recent years, consider- 
able information has been accumulated on the influence of discrete and continuous disorien- 
tations on hardening; furthermore, regularities of the hardening of disoriented substructures 
have been studied in detail. Below is sequentially considered the connection of the flow 
stress with the parameters of different substructures. 

Reticular Substructure. Here the basic mechanism of slippage retardation, as was estab- 
lished earlier [7, 14, 32, 33], is the retardation of individual dislocations on thresholds, 
reactions and dislocation barriers. Displacement retardation is carried out along the entire 
slippage plane, practically for each dislocation. This also is a contact retardation. Shear- 
ing strength is proportional to the density of these obstacles (Fig. 4). It is evident that 
the effectiveness of the retardation depends on the orientation of the monocrystals. The 
contribution of the long-range stress fields in this substructure behaves quite peculiarly 
[14, 34]. The residual stresses, measured along the radius of the bend of the dislocations 
(see the method in [35, 36]), immediately after the limit of fluidity, comprise not less 
than half of the active stresses ~, and to the end of existence of the reticular substructure, 
this contribution decreases to 1/3 from ~. 

Cellular-reticular Substructure. Retardation of displacement in this substructure 
has an intermediate character between that of contact, as in reticular, and barrier, as 
in cellular. On one hand, the flow stress is inversely proportional to the distance between 
the dislocated concentrations (Fig. 5a), and on the other, the shearing strength grows pro- 
portionally to Pcr z/2, where Pcr is the density of dislocations in the concentrations (Fig. 
5b). 

i 

2 

A/i3 F~e ~I,] ~2 

~4 ~/.L ~ pro" z o 

b 
i t i i 

0,5 t' ' 1,5 ~/~ pro- l 

Fig. 4. Dependence of shearing strength on the density of 
obstacles (I/X) along the lines of dislocations (a) and flow 
stress (o) on the density (i/r) of dislocation barriers (b); 
a are monocrystals of Ni3Fe of different orientations; b are 
polycrystals of the alloys Cu-AI. 
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Fig. 5. Role of barrier (a) and contact (b) retardation in 
the formation of flow stress (o) in a cellular-reticular sub- 
structure: polycrystals of disordered alloy NiaFe (a) with 
different dimension of grains, monocrystals [001] of this same 
alloy and polycrystals of the alloys Cu-AI and Cu-Mn (b). 
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Dependence of the flow stress on the parameters of the cellu- 
lar substructure. The ordered alloy Ni3Fe (the monocrystals [001] and 
the poLycrystals with different dimension of grains) and polycrystals 
of the alloys Cu-AI and Cu~n. 

Cellular Substructure. In a cellular substructure, the role of barrier retardation 
of displacement grows [7, 14, 27]. In distinction from contact retardation, barrier re- 
tardation is carried out not along the entire slippage plane, but is localized on dislo- 
cated concentrations of a different type (see Fig. i). The flow stress here is inversely 
proportional to the dimension (D) of the cells (Fig. 6a). A similar dependence has been 
described in papers of various authors [37, 38]. With the appearance of disorientations, 
the slope of o = f(D -z) changes. With the growth of perfection of the cellular structure - 
with respect to the share of the closed boundaries of the cells g - the flow stress grows. 
Experimental data show that the dislocations inside the cells do not control the flow 
stress. However, the presence of contact retardation of displacement on dislocations in 
the walls of the cells is obvious (Fig. 6c): the flow stress is proportional to the square 
root of the density of dislocations in the walls of the cells (Pwa). A similar dependence 
was described in [39]. A sufficiently sharp break is observed in the dependences of the 
flow stresses on D -z and @wa I/~ for copper alloys, caused by the change to a disoriented 
cellular substructure. In Fig. 6 it is shown how by extrapolation one can determine the 
contributions &o' and Ao" caused by the disorientation. The first of them determines an 
additional contribution to the flow stress in passing from a nondisoriented cellular struc- 
ture to a disoriented one, and the second - the increase of the effectiveness of retardation 
in the walls of cells during the appearance in them of excess dislocated charge (in Fig. 
1 this is the transition from case b to case c). 

An important factor also controlling the flow stress in a cellular substructure is 
(Fig. 6b) the degree of closure of the boundaries of the cells (g is the ratio of the number 
of closed cells to their overall number). According to the measure of perfection of the 
cellular substructure, the shearing strength grows. 

As has alrady been noted, the transition to disoriented substructures increases the 
effectiveness of the obstacles, retarding the slippage. For a cellular substructure, the 
role of this factor has been studied in detail in our papers. With the increase of the 
density of disoriented boundaries of the cells Pd.bo (these are the boundaries on which 
the discrete disorientation ~ exceeds 0.5 ~ ) the flow stresses grow linearly (Fig. 7a). 
The sharp bend in the dependences o = f(Pd.bo)is connected with the appearance of boundaries 
of the band substructure. The flow stresses grow also with the increase of the disorienta- 
tion angle ~. Especially well-apparent is the increase of the effectiveness of the boundar- 
ies of the cells as barriers to slippage with the growth of the disorientation angle, if 
the additional contribution Ao' is represented as the function ~ (Fig. 7b). In correspon- 
dence with the prediction of the theory (see, for example, [5]), for small angles there 
is a linear dependence &o' = f(~), that is, in fact, observed experimentally (Fig. 7c). 
If one represents the contributions Ao' and &o" depending on the density of disoriented 
boundaries of the cells, then increasing dependences, close to linear, are uncovered. In 
such a manner, one has succeeded in precisely distinguishing the influence of disorienta- 
tion on the shearing strength in cellular substructure. 
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OS is the 

Band Substructure and Substructure with Continuous and Discrete Disorientations. In 
these substructures, discrete disorientations on subboundaries can be evaluated by the over- 
all density of the subboundaries M and the angle w of disorientation on them. Further- 
more, in these substructures, there are present distributed dislocated charges, characteriz- 
ing the mean value of the local excess dislocation density pi, and there is properly a curv- 
ature-torsion of the crystal lattice K. It is clear that here, to the contact retardation 
of dislocations inside the bands and to the barrier on the boundaries of the band substruc- 
ture is added yet a contribution of the long-range stress fields. Let us consider in detail 
the factors here determining the flow stress. 

In Fig. 8 are represented the dependences o = f(pl/2) for alloys in which the formation 
is observed of band substructure after the disoriented cellular one (for alloys on the basis 
of copper, Fig. 8a [16]), and for alloys in which not only a band substructure is observed, 
but also a substructure following after it was continuous and discrete disorientations (for 
alloys based on nickel, Fig. 8b, c [12, 19, 30]). The formation of the band substructure 
entails the increase of the parameter me (in the case of monocrystals - a). The appearance 
and development of the substructure of organized chaos (b, c) leads to a certain lowering 
of the value of ma. 

With the growth of disorientation in the substructure, resistance to deformation also 
grows (Fig. 9) [12, 30, 40]. In nickel alloys with a band substructure, the dependence 
of the flow stress on the density of the boundaries (M) of the band substructure, the excess 
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Fig. 9. Connection of the flow stress with the parameters of 
the band substructure; a, b are alloys based on nickel; c, d 
are copper. The designations of the alloys are in Figs. 5 
and 6. 

dislocation density (p• and the curvature-torsion (• of the crystal lattice has a nonlinear 
character, and for alloys with substructural oriented chaos, a linear one (Figs. 9a, b). 
The dependence on the angle of disorientation is linear for both substructures. In the 
part of the copper alloys with a band substructure, there is also a departure of o = f(M) 
from linearity (Fig. 9c). In Fig. 9d o = f(p• represented for copper alloys. The 
basis for such a representation is the sufficiently homogeneous distribution of excess dis- 
location density according to the volume of the band substructure. The linear character 
of a = f(p• I/2) testifies to the fact that the dislocated structure is according to its 
configuration close to a Strunin ensemble [41]. Oppositely, the linear connection of o 
and p+ testifies to a location of the dislocations similar to that which is considered [42] 
in the Ryaboshapka-Masyukevich ensemble (localized dislocated charges). 

Discussing the role of the excess dislocation density and the long-range stress fields, 
it is necessary to note that, first, to separate the effects of barrier retardation and 
retardation caused by long-range stress fields (these are proportional either to K and p• 
or p• I/2 depending on the type of dislocation ensemble) is presently not possible, and second, 
that the sources of the long-range stress fields are not only distributed excess disloca- 
tions, but also imperfect ones with variable disorientation and ragged subboundaries [43, 
44], and also junctures of grains and ledges on their boundaries in polycrystals [20, 29,36]. 

The additional contribution Ao (see Fig. 2) caused by the transition to disoriented 
substructures, in the majority of cases linearly depends both on the density of band bound- 
aries and on p• or p• (Fig. I0). Such dependence emphasizes that the change of the effec- 
tiveness of the displacement retardation in passing to a band substructure and a substructure 
with continuous and discrete orientations (growth of me) is incumbent upon retardation on 
the subboundaries and the contribution of the long-range stress fields. 

Attempts to evaluate it have been undertaken by several methods [14, 30, 36]. Apparent- 
ly, the most adequate is the direct measurement of the curvature-torsion of the crystal 
lattice by the electron microscopy method on thin foils using kinked extinct contours [20, 
29, 36] and a subsequent computation according to these data of the contributions of long- 
range stress fields by a model of a suitable dislocation ensemble. Such estimates show 
that this contribution attains 1/4-1/3 from the acting stresses. 
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Fig. ii. Dependence of the flow stress on the scalar disloca- 
tion density in monocrystals of nickel with orientation [011] (a) 
and in two (i, 2) chrome-nickel steels of different concentra- 
tion (b). 

Fragmented Substructure. By the measure of development of this substructure, dislo- 
cations uniformly distributed inside the fragments annihilate or leave on the boundaries, 
and the dislocation density at first starts to grow, and then diminishes [13, 44]. Simul- 
taneously, the perfection of the boundaries of the fragments grows and the long-range 
stress fields lessen. Therefore, with the development of substructure, only the barrier 
retardation caused by the subboundaries is maintained and grows. 

In Fig. ii are represented the dependences o = f(pl/2) for monocrystal Ni and alloyed 
chrome-nickel steel, in which at a high dislocation density a fragmented substructure is 
formed, while in monocrystals of Ni it attains less perfection. In the figure a sharp depar- 
ture from the linearly increasing dependence o = f(pl/=), which appears in the origin of 
the band substructure is clearly apparent. The characteristic downturn and subsequent re- 
verse course of this dependence is connected with the appearance of fragmented substructure. 
In its ideal development it was related by us in the survey [8] to a dislocation-free one. 
For a fragmented substructure, an inversely proportional dependence of the flow stress on 
the mean dimension of the fragments D F is observed (Fig. 12 a, b). (The dimension of the 
fragments D F and the density of their boundaries Pbo.F are inversely proportional to each 
other DF -I ~ Pbo F.) In the literature [13, 38] either the dependence o ~ DF -l or o ~ 
DF -I/2 is observed. In our papers the additional contribution Ao, caused by the fragmenta- 
tion, proves to be approximately proportional to the density of boundaries of the frag- 
ments Pbo. F (Fig. 12c). In this manner, on hand is a proof that the basic contribution 
to the field stress in this substructure is the barrier retardation. 

Twin Substructure. The inclusion of twinning in deformation on the basis of a devel- 
oped dislocation substructure naturally alters the dependence o = f(p~/2). Moreover, the 
value of the parameter ms grows [45], and the parameter itself partially loses physical 
sense and can be considered as effective. In Fig. 13a is represented the dependence o = 
f(pl/2) for a number of alloys, in which twinning begins not with the very start of deforma- 
tion, but only for the attainment of some critical hardening. The contribution Ao, caused 
by twinning (the method of determining it is indicated in Fig. 2b) is linearly connected 
with the density of twins PTW (Fig. 13b) which also cause barrier retardation. 

232 



. . . . .  l , - I / / ,  . . . .  S / 
0,7 ~ ~,5 2f~-/0Scm -I 2 4 6 Pbo.F.lO-4:~ ~ 6 Pbo.F.lO-4 cm-I 

" ~' cm- i 
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tribution &a of the density of the boundaries of the fragments: a) 
monocrystals of nickel; b, c) chrome-nickel steel. 
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Fig. 13. Resistance to deformation in twinned substructure: 
a) the dependence Ao = f(pz/2); b) &o = f(PTw); 1 are poly- 
crystals of steel Fe-Mn; 2) Cu + 10at. % AI; 3) Cu + 14 at. % 
AI. 

Substructure with Deformed Martensite. In our papers have been conducted special inves- 
tigations on iron alloys with an unstable crystal lattice selected in such a manner that 
~- or g-martensite form after a specified degree of deformation, which is implemented by 
slippage. The observable dependence o = f(pl/2) is, in this case, similar to that which 
occurs in twinning following after slippage. In the formation of martensite, the effective 
value of the parameter m~ also increases. The additional contribution ~o, caused by deformed 
martensite proves in the majority of cases to be proportional to the density of bands of 
s-martensite or the volume fraction of ~-martensite. The contribution has a barrier nature. 

CONCLUSIONS 

In one-phase metallic materials, the stress flow is determined by the contributions 
of the substructural hardening Osu, the solid-solution Oss , the lattice alat, and a contribu- 
tion connected with the presence of boundaries of grains Op (a contribution of Hall-Petch 
type in polycrystals): 

~=~SU+OSS+ ~lat~-Op �9 (2) 

Substructural hardening, in its turn, can be represented (in an additive approximation) 
in the following manner: 

Here &o c is a contribution caused by retardation on dislocations distributed in the volume 
of the material (contact retardation). For this contribution, the connection with the dislo- 
cation density is expressed by formula (i). The next contribution Ao is the barrier retar- 
dation. Depending on the type of substructure, displacement retardation occurs on the dis- 
location concentrations, the boundaries of the cells, the subboundaries, and the boundaries 
of the fragments (see Fig. I). This contribution is expressed by the relations 

A~Bar~i -l, ~ba r~D -l, 
Agbar~M-l' ~~ (4) 
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TABLE 2. Hardening Caused by Different Classes of Substructures 

Classes of 
substructures 

Basic contributions 
to resistance to 

deformation 
Defining 

relations 

Parameters of the 
substructure, 

controlling shearing 
strength 

Homogeneous 
nondisoriented 

Inhomogeneous 
nondisoriented 

Inhomogeneous 
disoriented 

Disoriented 
dislocation- 
disclination 

Disoriented 
dislocation- 
free 

Non• 
fragmented 

Twinning 

Martens• 

Contact 
retardation ho c 

Contact and (or) 
barrier retarda- 

tion ho c + hOba r 

Contact and (or) 
barrier retarda- 
tion and long-range 
stress fields 

Ao c + A~ba r + hos 

Contact and barrier 
retardation and 
long-range stress 
fields 

ho c + AOba r + hos 

For non• 
fragmented hOba r 

For non• 
fragmented 

hOba r + ho~ 

Barrier retardation 
and long-range 
stress fields 

hOba r + hos 

Barrier and contact 
retardation and 
long-range stress 
fields 
hOba r + ho c + hos 

ho e = m~Gbpl/z 

ho c ~ Pcoi~ 2 
ho c Pwa if2 , 

hOba r = K'/L, 

hOba r = K"/D 

ho c ~ Pcoi/=; 

ho c ~ Pwai/2, 

hOba r = K'/L; 
hOba r = K"/D 

h~ ~ Pd.bo 
hOba r ~ % 
hoe ~ p• or p• 1/2 

hOba r ~ M, 
hOba r ~ ~, 

ho~ ~ p• or p• I/2 

ho~ ~ x 

hOba r ~ DF -i 

hap - T, 

hObar ~ PTW 

Aos ~ 

A~ ~ Pe, 

AOba r ~ hV~, 

Scalar dislocation density 

P 

Dislocation density in con- 
centrations Pco and in walls 
of cells Pwa 

Distance between concentra- 
tions L and dimension of 
cells D 

Pwa, 

Pco 

L, D 
Density of disoriented 
boundaries of cells Pd.bo" 
The angle of disorienta- 
tion on the boundaries of 
the cells % Excess dis- 
location density. 

Density of subboundaries 
M and disorientation m on 
them 

Excess dislocation density 

P• 

Curvature-torsion of crys- 
tal lattice 

Dimension of fragments D F 

Density of ragged subbound- 
aries T. 

Curvature-torsion of crystal 
lattice 

Density of twins PTW 
Curvature-torsion of crystal 
lattice x 

Density of plates of s- 
martensite Pg. 

Volume share of m-marten- 
site hV~. 

Curvature-torsion of crystal 
lattice 

respectively, describing the cellular-reticular, cellular, band, and fragmented substruc- 
tures. The third contribution is the long-range stress fields. Depending on the type of 
dislocation ensemble, it has the form 

(s) 
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The fluctuation correction AOFL is caused by the inhomogeneous distribution of disloca- 
tions in the volume of the material. It is discussed in detail in [7]~ The corresponding 
expression has the form 

m~ GbP-a2 M2 (P), (6) 
~FL- 8 

where M2(p) is the second moment of the distribution function of dislocation density~ In 
distinction from the others, this contribution has a negative sign, since the slippage de- 
velops in the least-hardened regions of the material~ Similar contributions caused by the 
inhomogeneous distribution of boundaries of cells or subboundaries and dislocation charges~ 
also occur. Apparently, in complicated substructures it is necessary to find a fluctuation 
correction caused by the spatial fluctuation of the contributions from all the simultaneously 
active hardening mechanisms. 

The nature of substructural hardening is presented in generalized form in Table 2 in 
correspondence with the basic types of substructures. 

In conclusion the authors consider it a pleasant duty to express gratitude to their 
students and collaborators. A number of original results, presented in the article, were 
obtained through the efforts of senior scientific collaborators, L. I. Trishkina, N~ Ao 
?opov, A. V. Paul', G. L. Fedoseev, L. N. Ignatenko, T. S. Kunitsyna, O. B. Perevalova, 
i~. V. Girsov, and assistant S. P. Zhukovskii. In the formulation of a number of concepts 
{)resented in the article, the docents L. A. Teplyakova, D. V. Lychagin, Yu. P. Sharkeev, 
~. A. Starenchenko, I. A. Lapsker, and Yu. A. Abzaev took part. 
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