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Cumulative Semivariogram Models of Regionalized 
Variables 1 

Zekfii ~en 2'3 

The cumulative semivariogram approach is proposed for modeling regionalized variables in the 
geological sciences. This semivariogram is defined as the successive summation of half-squared 
differences which are ranked according to the ascending order of distances extracted from all 
possible pairs of sample locations within a region. This procedure is useful especially when sam- 
pling points are irregularly distributed within the study area. Cumulative semivariograms possess 
all of the objective properties of classical semivariograms. Classical semivariogram models are 
evaluated on the basis of the cumulative semivariogram methodology. Model parameter estimation 
procedures are simplified with the use of arithmetic, semilogarithmic, or double-logarithmic pa- 
pers. Plots of cumulative semivariogram values vs. corresponding distances may scatter along a 
straight line on one of these papers, which facilitates model identification as well as parameter 
estimation. Straight lines are fitted to the cumulative semivariogram scatter diagram by classical 
linear regression analysis. Finally, applications of the methodology are presented for some ground- 
water data recorded in the sedimentary basins of the Kingdom of Saudi Arabia. 

KEY WORDS: cumulative semivariogram, classical semivariogram, regionalized variable. 

I N T R O D U C T I O N  

Field measurements of  geological variables, such as ore grades, chemical con- 
stitutions in groundwater, fracture spacings, porosity, permeability, aquifer 
thickness, and dip and strike o f  a structure, are dependent on the relative po- 
sitions o f  measurement points within the study area. Measurements of  a given 
variable at a set of  points provide some insight into the regional variability. 
This variability determines the regional behavior as well as the predictability of  
the variable concerned. In general, the larger the variability, the more hetero- 
geneous is the geological environment. As a result, the number of  measure- 
ments required to model, simulate, estimate, and predict the regional behavior 
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is expected to be large. Large variability implies also that the degree of depen- 
dence might be rather small even for data whose locations are close to each 
other. A geological interpretation of such a situation may be that either the 
region was subjected to active geological phenomena (such as tectonics, vol- 
canism, deposition, erosion, recharge, etc.) or to some human activities such 
as pollution, groundwater abstraction, mining, etc. 

However, many types of geological variables are known to be related spa- 
tially in that the closer their positions, the greater is their dependence. Spatial 
dependence especially is pronounced in hydrogeological data due to ground- 
water flow as a result of the hydrological cycle, which homogenizes the distri- 
bution of chemical constituents within the heterogeneous mineral distribution 
in geological formations. 

In order to quantify the degree of variability within spatial data, variance 
techniques can be used in addition to classical autocorrelation methods (Box 
and Jenkins, 1970). However, these methods are not helpful to account directly 
for the regional dependence or for the variability in terms of sample positions. 
The drawbacks are due to either nonnormal (asymmetric) distribution of data 
and/or irregularity of sampling positions. However, the semivariogram (SV) 
technique, developed by Matheron (1963, 1971, 1973) and used by many re- 
searchers (Clark, 1977; Cooley, 1979; David, 1977; Myers et al., 1982; Jour- 
nel, 1985; Aboufirassi and Marino, 1984; Hoeksema and Kitanidis, 1984; Carr 
et al., 1985) in diverse fields, such as geology, mining, hydrology, earthquake 
prediction, and groundwater, can be used to characterize spatial variability. The 
SV is a prerequisite for best linear unbiased prediction of regionalized variables 
through the use of kriging techniques (Krige, 1982; Journel and Huijbregts, 
1978; Davis, 1977). 

The purposes of this paper are to point out some practical difficulties as 
well as subjectivities of classical SV in the case of irregular sampling points, 
and to present fundamentals of cumulative SV models. The cumulative semi- 
variogram (CSV) technique of modeling regional variability provides a simple 
procedure for identifying the underlying model and for estimating its parame- 
ters. In this work, linear regression is employed for parameter estimation. 

PRACTICAL DIFFICULTIES OF CLASSICAL SEMIVARIOGRAMS 

The classical SV, r (h) ,  for any distance, h, is defined as the half-squared 
difference of two measurements separated by this distance. As h varies from 
zero to the maximum possible distance within the study area, the relationship 
of the half-square difference to the separation distance emerges as a theoretical 
function which is called the "semivariogram." The sample SV is an estimate 
of this theoretical function calculated from a finite number, n, of samples. The 
sample SV can be estimated reliably for small distances when the distribution 
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of sampling points within the region is regular. As the distance increases, the 
number of data pairs for calculation of SV decreases, which implies less reliable 
estimation at large distances. 

Iri various disciplines of the geological sciences, the sampling positions 
are irregulady distributed in the region and, therefore, an unbiased estimate of 
SV is not possible. Some distances occur more frequently than others and, ac- 
cordingly, their SV estimates are more reliable than others. Hence, a hetero- 
geneous reliability dominates the sample SV. Consequently, the sample SV may 
have ups and downs even at small distances. Such a situation gives rise to 
inconsistencies and/or experimental fluctuations with the classical SV models 
which are, by definition, nondecreasing functions (i. e., a continuous increase 
with distance is their main property). In order to give a consistent form to the 
sample SV, different researchers have used different subjective procedures. 
These are: 

1.~ Journel and Huijbregts (1978) advised grouping of data into distance 
classes of equal length in order to construct a sample SV. However, the group- 
ing of data pairs into classes causes a smoothing of the sample SV relative to 
the underlying theoretical SV. If a number of distances fall within a certain 
class, the average of half-squared differences within this class is taken as the 
representative half-squared difference for the midclass point. The effect of out- 
liers is partially damped, but not completely smoothed by the averaging oper- 
ation. 

2. To reduce the variability in the sample SV, Myers et al. (1982) grouped 
the observed distances between samples into variable length classes. The class 
size is determined such that a constant number of sample pairs falls in each 
class. The mean values of distances and half-squared differences were used for 
the classes as a representative point of sample SV. Even this procedure resulted 
in an inconsistent pattern of sample SV (Myers et al., 1982) for some choices 
of the number, m, of pairs falling within each class. However, Myers et al. 
(1982) observed that choosing m = 1000 gave a discernible shape. The choice 
of constant number of pairs is subjective and, in addition, averaging procedures 
smooth out the variability within the experimental semivariogram. As a result, 
the sample SV provides a distorted view of the variable in that it does not 
provide, for instance, greater frequency (shortwave length) variations. How- 
ever, such short wavelength variations, if they exist, are so small that they can 
be safely ignored. 

The above procedures have two basic common properties; namely, pre- 
determination of a constant number of pairs or distinctive class lengths, and the 
arithmetic averaging procedure for half-squared differences as well as distances. 
The former needs a decision which in most cases is subjective, whereas the 
latter can lead to unrepresentative SV values. In classical statistics, only in the 
case of symmetrically distributed data, the mean value is the best estimate, 
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otherwise, the median becomes superior. Moreover, the mean value is sensitive 
to outliers. 

THE CUMULATIVE SEMIVARIOGRAM 

The CSV is a graph which shows the relationship of successive half-squared 
difference summations to the ranked (ascending order) distances which are ex- 
tractable from the sample positions within the study area. Ordering distances 
eliminates the subjectivity in selection of distance classes, whereas the succes- 
sive summation eliminates the averaging procedure. Additionally, the summa- 
tion of half-squared differences leads to nondecreasing sample functions. Thus, 
the CSV does not have the shortcomings of the classical SV. The sample CSV 
can be obtained by carrying out the following steps: 

1. Calculate distances between every possible pair of sample positions. If 
the number of data positions is n, then m = n ( n  - 1 ) / 2  half-squared differ- 
ences and distances, hi, ( i  = 1, 2, • • • ,  m )  exist. For instance, n = 7 data 
positions give rise to 21 different half-squared difference and distance values. 

2. For each pair of sample positions, find the half-squared differences, 
d(hi ) ,  between data values. Hence, for each distance, hi, a corresponding half- 
squared difference may be calculated. 

3. Rank the distances in ascending order with their attached half-squared 
differences, d[h<i)], where superscript (i) indicates the rank. For instance, 
d[h(1)], is the half-squared difference corresponding to the smallest distance. 

4. Successive summation of the ordered half-squared differences yields the 
sample CSV as 

k 

7"c(hk) = E d[h (i)] (k  : 1, 2, " ' ' ,  m)  (1) 
i = 1  

where rc(hk) is the value of the k th ordered distance CSV value. 
The following attributes of the CSV must be kept in mind in any applica- 

tion: 
1. The CSV is a nondecreasing function; however, local flat portions, im- 

plying constancy of the regionalized variable at certain distances, i.e., the same 
value has been observed at two locations h apart, may occur. 

2. The slope of the theoretical cumulative SV at any distance is an indi- 
cator of dependence between pairs of regionalized variables separated by that 
distance. 

3. The sample CSV reflects even small dependencies between data pairs 
which are not possible to detect with the classical SV due to averaging. 

4. The sample CSV is free of subjectivity because no a priori  selection of 
distance classes is involved. In fact, real distances are employed in construction 
of the sample CSV rather than class midpoint distances. 
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SAMPLE CLASSICAL AND CUMULATIVE SEMIVARIOGRAMS 

The CSV proposed in the previous section is applied to transmissivity, total 
dissolved solids, and piezometric level data for the Wasia Sandstone aquifer in 
the eastern part of Saudi Arabia. A complete hydrogeological study of this area 
has been performed recently (Subyani, 1987). 

GAMA3 software, developed for computing the classical SV (Journel and 
Huijbregts, 1978, p. 224), has been applied to groundwater variables such as 
transmissivity, piezometric level, and total dissolved solids from the Wasia 
Sandstone. The resulting sample SV and sample CSV plots (Fig. l-3) indicate 
that the half-squared difference points are scattered in such a way that a clear 
pattern in the sample SV's, which suffer from fluctuations even at small dis- 
tances is not possible. Comparisons of the sample SVs (Fig. 1-3) with the 
sample CSVs indicate that the latter are more orderly and have distinctive non- 
decreasing patterns. A sample CSV often yields more or less a straight line for 
large distances, which corresponds to the sill concept in the classical SV. Fur- 
thermore, the sample CSV starts as a curve before it becomes almost a straight 
line. The length of the distance domain over which the sample CSV occurs as 
a curve is a counterpart of the range in the classical SV. Hence, the range is 
determined straightforward from the sample cumulative SV. The piezometric 
level sample cumulative SV (Fig. 3) shows an initial range which has zero half- 
squared differences for about 10 kin. Such a portion implies physically that the 
piezometric level does not change significantly within distances less than 60 
km. In fact, the Wasia aquifer has remained free of any tectonic movements, it 

2.~ 

2.4 

2.0 

1.6 

'P 1.2 c ,  c .  

z 

I I t 1 l I I [ I 

Cumulative--Se mivariogram 

" '  i ~ ~ t i , i , 

- Semivariogram 3.0 

2.c 

o*  
044  °= 0 ~ I ! - . J  ~ I i -I. I i 

0 120 )~  180 • 40 BO h[km) 

, , , , , i , , ± _ _  
20 40 60 80 100 120 140 160 180 200 

h ( k m )  

Fig. 1. Sample cumulative semivariogram for Wasia Sandstone transmissivity. 
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is extensive, and the recharge is negligible, but it is discharged by local well 
groups which are at large distances from each other (Powers et al., 1966). 

THEORETICAL CUMULATIVE SEMIVARIOGRAM MODELS 

In order to be able to apply kriging estimation techniques to a regionalized 
variable, a functional relationship must be established between the distance and 
the measure of regional dependence which, herein, is the CSV. These models 
must be nondecreasing functions. Although numerous functions have this prop- 
erty, in practice restricting them to a few simple ones is desirable. 

By considering basic definitions of both the classical and cumulative SVs, 
they may be related through an integration as 

S Tc(h) = -4u) (2) 
o 

or through differentiation as 

~(h) - d~c(U)clu , =h (3) 

Therefore, a CSV counterpart may be found for any given classical SV using 
Eq. (2). Furthermore, Eq. (3) indicates that the theoretical classical SV value 
at any distance is equal to the slope of the theoretical CSV at the same distance. 
In the following, models which have been used previously for SVs by many 
researchers will be assessed from the CSV point of view. 

Linear Model 

This model postulates a linear relationship between the cumulative half- 
squared difference and the distance as 

re(h)  = a + flh (4) 

in which a and/3 are the model parameters (Fig. 4a). The sample CSV of the 
regionalized variable that abides by this model will appear as a straight line on 
arithmetic paper. In fact, c~ is the intercept on the CSV axis and/3 is the slope 
of this straight line. This slope corresponds to the sill value in the classical SV 
which represents a pure nugget effect (Sen, 1979). Furthermore,/3 represents 
exactly the variance of the underlying random field. Hence, the smaller the 
slope of the straight line, the smaller the random fluctuation in the regionalized 
variable. If the slope is equal to zero, theoretically, this indicates a complete 
deterministic uniform variation in the regionalized variable. The sample CSV 
scatter diagram and the fitted regression line to pH values measured at 71 sam- 
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pie locations within the Umm Er Radhuma Limestone aquifer in the Eastern 
Provinces, Saudi Arabia (Fig. 5) has the form 

re(h) = - 0 . 2 1 3  + 1.144h 

from which the parameter estimates are cz = - 0 . 2 1 3  and ~ = 1.144. The 
hydrochemical data were presented by Sen and A1-Dakheel (1985) for major 
anions and cations. 
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Fig. 5. Sample cumulative semivariogram for pH values in Umm 
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Power Model 

This is a two-parameter model which yields a set of different shapes for 
the theoretical CSV (Fig. 4b). The mathematical expression for this model is 

zc(h) = ~,h ~ (5) 
in which o~ is the scale parameter and/3 is the shape parameter. Because 0 < 
/3 < 2 for a theoretical SV from a power family (Journel and Huijbregts, 1978, 
p. 165), parameter/3 for the theoretical CSV in Eq. (5) is restricted to the range 
1 < /3 < 3. The derivative of Eq. (5) yields also a power form for the classical 
SV. Obviously, use of a double logarithmic paper facilitates parameter esti- 
mation. Sulfate concentrations in the Umm Er Radhuma aquifer groundwater 
show on double logarithmic paper a more or less straight line pattern (Fig. 6). 
The mathematical expression of this straight line by the regression technique 
can be found as 

log "rc(h ) = 0.46 + 0.841 log h 

hence, parameter estimates are log o~ = 0.46 or c¢ -- 2.88 and/3 = 0.84. The 
original form of this model prior to transformation can be written as Tc(h) = 
2.88h °s4. 

Exponential Model 

The general form of this model is 

 c(h) = (6) 
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Fig. 6. Sample cumulative sernivariogram for sulfate in Umm Er 
Radhuma. 
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where o~ and/3 are scale and shape parameters, respectively. The main differ- 
ence of this model from the others is that it has a nonzero value for zero dis- 
tance, i.e., it has a nugget effect. Forms of different CSVs resulting from Eq. 
(6) are shown (Fig. 4c). The sample CSV can be checked for concordance with 
this model by plotting log re(h) vs. h on semilogarithmic paper. If the sample 
points appear as a straight line, the exponential model is the generating mech- 
anism of the regional variability within the regionalized variable. The slope of 
this line directly yields an estimate of/3, whereas the intercept on the rc(h) axis 
leads to an estimate of e~. This model does not have a unique classical SV which 
has appeared in the geostatistical literature. The sample CSV for bicarbonate 
concentrations in the Umm Er Radhuma aquifer appears as a straight line on 
semilogarithmic paper (Fig. 7). The appearance of this straight line implies that 
the convenient model for bicarbonate concentrations for this aquifer is of ex- 
ponential type. The regression line of this scatter diagram is 

log r~(h) = - 0 . 8 6  + 0.079 h 

and, correspondingly, the model parameter estimates are logc~ = - 0 . 8 6  or c~ 
= 0.14 and/3 = 0.079. Hence the original form of the model can be written 
a s  

re(h) = 0.14e 0"079h 
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Logarithmic Model  

The mathematical expression of this model can be written as 

~-c(h) = (7) 
f o r h <  1 

in which ot and/3 are two model parameters. This model differs from the ex- 
ponential one in that it has an intercept on the distance axis similar to the sample 
CSV for piezometric level (Fig. 3). Different forms of the logarithmic models 
are presented (Fig. 4d). The model can be depicted from a sample CSV plotted 
on semilogarithmic paper as To(h) vs. log h. If the sample points appear as a 
straight line, the validity of the logarithmic model is confirmed. The slope of 
this straight line is equal to/3, and the cumulative half-squared difference cor- 
responding to h = 1 yields the estimate of a. Such a model is similar to what 
is referred to in the classical SV terminology as the De Wijsian model (DeWijs, 
1972). 

Other models for the cumulative SV can be constructed from classical cu- 
mulative SV models through Eq. (2). For instance, the exponential model of 
the classical SV, which is 

r(h)  = c~[1 - exp( - /3h) ]  (8) 

corresponds to a CSV model, which is 

1 
~-c(h) = c~[h + ~ exp( - /3h) ]  (9) 

in which a and/3 are model parameters. A close inspection of Eq. (9) indicates 
that for large distances, ( 1//3) exp ( -/3h ) = 0; consequently, at large distances 
this model appears as a straight line (on arithmetic paper) whose slope is an 
estimate of o~. In addkion, this model has an intercept value, ~'c(0), which is 
equal to a/ /3.  Provided that o~ is known from the slope at large distances, this 
ratio yields the estimate of/3. These c~ and/3 values are the parameters of the 
classical exponential SV model. This last example shows that the CSV method 
may help to estimate the parameters of the classical SV by simple graphical 
procedures. 

Similarly, the Gaussian classical SV corresponds to the CSV model 

~-c(h) = ~[h - "¢r2-TrTr//3 ~b (h, /3)] ( t0 )  

where ~b (. ,. ) is the area under the normal probability density function (with 
zero mean and variance 1//3) from 0 to h. Obviously, a can be estimated as 
the slope of this straight line. 
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Last but not least, a combination of the aforementioned models can appear 
in practical situations as mixture models. 

CONCLUSIONS 

Principles of cumulative semivariograms have been explained and some 
CSV models have been presented. The relationship between cumulative and 
classical SVs are depicted. Sample CSV calculations do not involve any sub- 
jectivity, nor do they require any averaging procedure which may lead to in- 
consistent SVs. The CSV is a nondecreasing function of distance. 

The following advantages make the CSV attractive in practical applica- 
tions. 

1. The CSV model may be used for irregularly distributed sample positions 
within the study region. 

2. The CSV method is straightforward in applications without any subjec- 
tive manipulations. 

3. The underlying model for any regionalized variable can be detected by 
plotting the cumulative half-squared differences vs. distances on arith- 
metic, semilogarithmic, or double-logarithmic paper. Appearance of 
sample CSV points on any of these papers as a straight line confirms 
the type of model. Such an opportunity is missing in the sample classical 
SV calculations. 

4. Model parameter estimates are obtained from the slope and intercept 
values of the fitted straight line. 

5. Any classical SV model has a theoretical CSV counterpart which can 
be obtained through an integration operation. 

Various theoretical CSV models are fitted to the sample CSV by simple 
least squares. A weighted or generalized least-squares approach would probably 
be preferable because the sample CSV values are correlated and do not have 
equal variance. Future researches should be directed toward how to implement 
a weighted or generalized least-squares approach; in particular, what should the 
weights be, and how strong are the correlations between neighboring CSV val- 
ues? 
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