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The Effects of Sampling Design Parameters on 
Block Selection 1'2 

E. Englund,  3 D. Weber,  4 and N. Leviant s 

Cost-effective spatial sampling strategy requires balancing sampling costs with the expected benefits 
from improved information. A contaminated site numerical model was used to test various single- 
phase sampling schemes, which were evaluated based on the quality of  block selections from 
interpolated values. Different sample set sizes, different sampling patterns, and two levels of  sam- 
piing precision were used. The sample set size was the only one of  these factors observed to be 
significant. Bias was also examined. Modest levels (<20%) had minimal impact; the effects of  
higher levels of  bias varied with the selection level concentration. 
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INTRODUCTION 

The problem of designing a single-phase spatial soil sampling plan at a contam- 
inated site is of considerable economic interest. The specific question addressed 
in this paper is that of block selection, that is, the identification of sub-areas of 
a site which require remedial action. Although the economic factors differ, the 
problem is similar to that of grade control in mining operations. 

The problem of spatial sampling network design has been addressed by 
workers in many different fields. A brief overview of the topic is provided by 
Barnes (1989). The most common geostatistical approach, exemplified by Bur- 
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gess et al. (1981), is to look for the lowest cost design which satisfies a specified 
upper limit on the maximum (or mean) kriging variance. 

In this paper, a strictly empirical approach was taken. The effects of three 
sampling design parameters were examined by using kriged estimates of sample 
sets obtained by repeatedly resampling a numerical site model: variogram models 
were inferred from the sample sets. The parameters were sample set size, sample 
pattern, and sample error. Here, sample set size simply refers to the number of 
individual samples to be collected in a given sample set. The model exhibits 
realistic characteristics such as high positive skewness, discontinuity, and a 
spatial correlation structure. The objective was to obtain information on the 
relative importance of the design parameters under realistic conditions, in order 
to prepare practical guidelines for cost-effective sampling programs. 

THE SITE MODEL 

To test the effects of different sampling parameters, a surrogate"site model" 
data set was used which is a subset of the larger Walker Lake data set (Isaaks 
and Srivastava, 1989). It was derived from a digital elevation data, with ele- 
vation variance used to simulate soil contamination. The subset of the Walker 
Lake data set used in this study contains 19,800 data in a 110 × 180 array (Fig. 
1), and has been described in detail elsewhere (Englund, 1990). 

Fig. 1. Shaded map of the site model showing 19,800 points. Shading is based approximately on 
the quartiles of the data values. Darker shading represents higher values. 
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The site model was subdivided into 198 square blocks, each containing 

100 data values (Fig. 2). The blocks represent units of a size assumed to be 
practical for remediation. A "true value" for each block was calculated by 
taking the average of the 100 data values within the respective block. 

S A M P L I N G  DESIGNS 

The experimental approach taken to evaluate the different sampling design 

parameters is a 3 x 3 x 2 factorial design, with three sample set sizes, three 
sample patterns, and two levels of sample error. Combinations of these lead to 

Fig. 2. Shaded map of site model, showing 198 tree block means. Shading is based approximately 
on the quartiles of the block means. 

Table I. 3 x 2 x 2 Factorial Sample Design Showing Number of 
Measurements per Sample Set a 

Error No error 

Random 104, 198, 308 104, 198, 308 
Cellular stratified 104, 198, 308 104, 198, 308 
Regular 104, 198, 308 104, 198, 308 

aEaeh entry represents three samplings to obtain a total of 54 sample 
sets. 
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18 different sample set designs as shown in Table I, each of which was repeated 
three times for a total of 54 sample sets. 

Previous work (Englund, 1990) with the site model suggested that sample 
set sizes of 100, 200, and 300 would be reasonable for this study; the actual 
sizes of 104, 198, and 308 reflect adjustments required to accommodate the 
regular grid pattern. 

The three sample patterns used were random, cellular stratified, and regular 
grid (Fig. 3). Cellular stratified sampling involves selecting a randomly located 
sample within each grid cell. 

The sample value assigned to any selected sample location was the value 
of the nearest of the 19,800 values plus a randomly generated error term when 
required. Sample error represents the cumulative total of all possible error com- 
ponents included in the collection, handling, preparation, and analysis of a 
sample. Two levels of sample error were considered--a base level at zero error, 
and a high level normally distributed error with a relative standard deviation of 
32 % of the true value. 

Bias was not included as a factor in the experimental design. The effects 
of bias were evaluated later by multiplying the kriged estimates by a bias factor 
and recalculating the decision quality measures. The details are discussed later 
in this paper. 

BLOCK ESTIMATES 

Mean concentration values were estimated for each of the 198 blocks by 
the method of ordinary kriging with Geo-EAS software (Englund and Sparks, 
1988). The kriging neighborhood was defined as the 20 closest samples. Var- 
iogram model functions required for kriging were estimated subjectively from 
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Fig. 3. Example of random (left), cellular stratilied 
(center), and regular grid (right) sample pattems. 
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the sample set data; to minimize this as a source of variability in the study, all 
54 models were estimated by one person according to a given set of instructions. 

MEASURES OF QUALITY 

Each interpolation of any one sample set produced 198 kriged block esti- 
mates which were compared to the corresponding tree block values. To un- 
ambiguously compare one set of estimates with another, it was necessary to 
reduce the set of 198 block estimation errors to a single quality statistic. A 
variety of such measures were described by Englund (1990). They include sta- 
tistical measures such as mean and standard deviation of the errors, decision 
quality measures such as the numbers of false positives and negatives, and loss 
functions which quantify the economic consequences of selection decisions. The 
most appropriate quality measure depends on the nature of the decision to be 
made. In this paper, two measures of quality, a linear loss score and the mean 
square error were used. 

Linear Loss Score 

In this study, the primary evaluation statistic is the linear loss score which 
is calculated from a linear loss function (Joumel, 1984). A linear loss function 
was used because it is simple and economically based. The underlying assump- 
tion is that society pays a cost for all contaminated areas, either as a remediation 
cost for each block cleaned, or as a less easily defined group of costs (health 
effects, ecological damage, etc.) for each block which remains contaminated. 
In the absence of good models for the latter costs, their sum was assumed to be 
directly proportional to concentration, while the remediation cost was assumed 
to be constant. 

To balance these costs, an action level (a decision variable) for remediation 
was defined as society's best estimate of the breakeven point, i.e., where, on 
the average, the cost of cleaning a block was equal to the cost of not cleaning 
it. Loss was defined in units of "block remediation cost" and the linear loss 
function was normalized to the value "one"  at the action level. 

The linear loss function can be divided into four categories as shown in 
Table II. When a block's estimated concentration was greater than the action 
level, the evaluation scheme used in this paper assigned the loss the value 1.0; 
when it was less than the action level, the loss was assigned the value "(tree 
block value)/(action level)" or TV/AC as shown in Table II. The latter repre- 
sents the proportional part of the loss function curve. Note that the decision was 
made based on the estimated concentration, but the loss in the latter case was 
determined by the true concentration of the block. One can see from Table II 
that any incorrect decision will result in a greater cost to society than will the 
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Table II. Linear Loss Function a 

Estimated True Assigned True 
Line decision value value linear loss ~ linear loss 

1 Correct > AL > AL 1 1 
2 Correct < AL < AL T V / A L  (<1 )  T V / A L  (<  1)1 
3 Incorrect > AL < AL 1 T V / A L  (<1)1 
4 Incorrect < AL > AL T V / A L  ( >  1) 1 

aAL and TV represent action level and true value, respectively. 
bAssigned loss is based on the estimated block value and the action level. 

correct decision. For a block of any concentration, the loss associated with a 
correct remediation decision is found from lines 1 and 2: the cost of an incorrect 
decision is found from lines 3 and 4. For a given action level and data set, the 
sum of the 198 block costs, excluding sampling costs, would be the total cost 
for the site. The optimal sampling design would be the one which minimizes 
total cost, including the sampling costs. 

It should be noted that if the block estimate were considered to be the 
expected value of a conditional probability distribution, then the expected loss 
from non-remediation could be computed by integrating the loss function over 
the distribution. The optimal decision then, would be to remediate when this 
expected loss exceeded the cost of  remediation. With the linear loss model, 
expected loss is a function only of the expected value of the conditional prob- 
ability distribution, and not its shape; thus, the simple decision role used here 
is optimal. This would not necessarily be the case for other loss models. 

In order to minimize the effect of the choice of action level on the total 
loss score, we have computed the total cost (excluding sampling costs) for each 
set of estimates at nine action levels. The action levels correspond to the decile 
class bounds on the true block values. In effect, the lowest action level treats 
the site model as if it were relatively highly contaminated; that is, 90% of the 
blocks are actually above the action level. Conversely, with the highest action 
level, only 10% of the blocks should be selected for remediation. The final 
Linear Loss Score was obtained by averaging the total loss over the nine action 
levels, then further averaging over the 54 data sets as follows. 

Linear Loss Score = ~ i= 1 j = 1 \k = l Lossijk 

This Linear Loss Score was compared with the ideal case where the score was 
calculated by using the true block values. 

To illustrate this evaluation, Fig. 4 presents a scatterplot of one set of 
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Fig. 4. Scatterplot of true v. estimated concentration values for 
data subset number 1. 

estimates for data subset 1 in which the 198 tree and estimated block values are 
plotted on the x and y axes, respectively, and the action level is 300 units. 

Correct Decisions 

The blocks falling in the upper right (Table II, line 1) and lower left (Table 
II, line 2) quadrants represent correct decisions, i.e., the decision (and hence, 
the cost) would be the same based on either the estimate or the true values. All 
blocks in the upper fight quadrant receive scores o f "  1" and those in the lower 
left quadrant receive scores equal to their true values divided by 300 ( < 1). 

Incorrect Decisions 

The upper left quadrant represents the false positives (Table II, line 3) 
where the estimates are greater than the action level, but the true values are less 
than the action level. These blocks receive scores of " 1 , "  which are greater 
than those obtained in the ideal case ( <  1). The lower fight quadrant represents 
the false negatives (Table II, line 4) where the estimates are less than the action 
level, but the true values are greater. These blocks receive scores equal to their 
true values divided by 300, but since they are greater than 300, their scores are 
greater than " 1 . "  Since the loss based on the true values is never greater than 
" 1 , "  these linear loss scores also will be greater than in the ideal case. 

Therefore, for both false negatives and false positives, the losses are greater 
than those based on the true values. The desired objective for an estimator is to 
achieve a score equal to that obtained in the ideal case. 
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Mean Square Er ro r  

A second quality measure is the mean square error (MSE), averaged over 
all 198 blocks and all 54 sample sets, which is 

MSE = ~-~ j~ l  ~ i =  (z~s t imate  - -  z~rue)2 

where Z estimate and Z t~ue are the estimates and true values for the blocks, and i 
and j represent the blocks and data sets, respectively. MSE does not depend on 
the action level. 

RESULTS 

Effects of Sample Set Size, Pattern, and Error  

Figure 5 and Table III show the results of the factorial design study ac- 
cording to the linear loss score. Each of the three groups, i.e., sample set size, 
pattern, and error, contains all 54 results. Both presentations give the means 
and standard error of the means for each group. Figure 5 shows the means and 
the range identifying plus and minus two standard errors. The following obser- 
vations were made. 

The mean values of the Linear Loss Score and Mean Squared Error show 
that the sample set size is the most important of the sampling design factors. 
The decreases in Linear Loss Score as sample set size increases are significant 
compared to the standard error in all cases. 
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Fig. 5. Effects of sample set size, pattern, and error as measured 
by the linear loss score. The vertical and horizontal bars represent 
the means and ranges including plus and minus two standard er- 
rors, respectively. 
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Design factors 

Table I lL  Average Values of Variable Groups ~ 

Linear loss score Mean squared error 

Mean SD (mean) Mean SD (mean) 

Sample set size 
104 159.6 1.26 I2~839 636 
198 149.5 0.97 9,389 623 
308 143.9 0.77 7,264 334 

Pattern 
Random 151.9 1.63 10,661 799 
Cell. strat. 150.8 1.81 9,718 748 
Regular 150.3 2.02 9,113 719 

Error 
No error 150.8 1.31 9,654 607 
32% RSD 151.2 1.66 10,007 649 

"SD (mean) is the standard error (standard deviation of the mean); RSD is relative standard devia- 
tion. 

Sample pattern did not have a significant effect on the quality of selection 
decisions. Geostatistical theory (Olea, 1984; Yfantis et al., 1987) predicts that 
regular grids should provide lower variance estimates than random samples, and 
that the "randomized grid" used in the cellular stratified sampling should be 
intermediate. The results are not inconsistent with this theory, but support the 
view of Switzer (1979) that in the absence of clustering, estimation errors are 
insensitive to the data configuration. 

Somewhat surprisingly, the results show no statistically significant differ- 
ence between sample sets with no error and those with the error added. A 
possible explanation lies in the fact that even with the high relative errors, the 
variance of the distribution of absolute errors is less than 10% of the total 
population variance. This is consistent with common rules-of-thumb for good 
sampling. In addition, the variogram of the exhaustive site model (by using all 
19,800 samples) indicates that approximately one-half the total population 
variance is already present at the scale of adjacent data points. This "spatial 
noise" is only increased about 20 % by the additional sampling error. Further- 
more, the error added here is strictly random and independent of the true values, 
which may be unrealistic. 

It is also interesting, and perhaps somewhat sobering, to note that there is 
overlap in the results obtained with 104 and 308 samples. This results from 
variance unexplained by the sampling design parameters. The probable source 
is simply luck-of-the-draw in the sampling process. This illustrates the point 
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that using an optimal sampling design will not guarantee the best (or even a 
good) result in any specific case. 

Figure 6 illustrates that observations similar to those made from Fig. 5 can 
also be made when quality is measured by the more traditional mean square 
errors. 

Figures 7-9 provide an alternate view of the results. Here the mean loss 
for each factor was plotted against the decile action levels. For reference, the 
losses obtained by selecting none of the blocks (no action) and by perfect se- 
lection were also plotted. Note that for action levels near 300, block selection 
does not appear to have an advantage over the all-or-nothing approach, and in 
some cases, may be worse. These results are summarized in Table IV. They 
show that most of  the variation occurs in the mid-range action levels, and that 
the statistically significant differences reflected in the LL Score are also shown 
to be consistent for the individual levels. 
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Fig. 6. Effects of sample set size, pattern, and error as measured 
by the mean squared error. The vertical and horizontal bars rep- 
resent the means and ranges including plus and minus two stan- 
dard errors, respectively. 
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Fig. 8. Mean loss for three sample patterns, plot- 
ted vs. action level. 
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Fig. 9. Linear loss for two error levels plotted 
vs. action level. 
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Table IV. Linear Loss vs. Action Level for the Different Categories 

Action level 

Category 2 8.2 19.7 41 68.8 108 151 210 297 

104 202 200 195 187 175 156 134 107 79 
198 203 198 182 167 156 139 122 101 77 
308 198 189 174 159 147 133 119 99 76 

Random 204 197 184 172 160 144 126 i 04 78 
Cel. strat. 202 196 184 170 159 143 125 101 77 
Regular grid 197 194 184 172 160 142 123 102 77 

No error 202 197 184 170 158 142 124 102 77 
Added error 200 195 184 173 161 143 125 103 78 

In F igure  7, the  sample  set  s ize curves  show that the incrementa l  loss 

reduct ion  due  to increased  sampl ing  was  s ignif icant ly grea ter  for  act ion levels  

near  the  med ian  value o f  69. This  indicates  that  the quali ty o f  the es t imate  is 

less  impor tan t  at the two  ex t r emes  o f  act ion level .  The  main  reason is that  the 



340 E n g l u n d ,  W e b e r ,  a n d  Lev i an t  

fraction of blocks impacted by poor estimates was small at the extremes. There- 
fore, assuming no bias, the effects of poorer estimates would be smaller. For 
very low action levels, most blocks were selected for remediation; therefore, 
the loss approached the value 198. However, false negatives could be costly 
because the assigned loss was "(tree value)/(action level)" where action level 
was a small number. For high action levels, the loss assigned to false negatives 
is usually small because the action level is a large number. Therefore, assuming 
no bias, the effect of poorer estimates will again be minimized. 

Effects of Sampling Bias 

If  one were to multiply a variable in a data set by a constant k, and then 
compute variograms and kriged estimates from the modified variable, all of the 
kriged estimates would be multiplied by k. One can, therefore, evaluate the 
effect of a constant multiplicative bias by multiplying the kriged estimates by 
the constant and recomputing the quality measures. Here a computationally 
simpler equivalent was used: biasing the selection level relative to the nominal 
action level. For example, given an action level of 100, selecting all blocks 
greater than 90.91 gives the same loss function score as multiplying all of the 
kriged estimates by 1.1 (+  10% bias). 

Figure 10 shows linear loss as a function of bias expressed in percent. Each 
point is the mean loss for all 54 cases averaged over the nine decile selection 
levels, where each selection level was multiplied by the bias factor. Note that 
the minimum of this curve occurs at zero bias, and that it is relatively flat near 
the minimum. 

The bias relationship is much more complex when one examines the curves 
for individual action levels, as illustrated in Fig. 11. The average curve is only 
representative of the mid-range action level curves. Action levels near the tails 
become highly asymmetrical; at the extremes, the minimum loss may occur at 
significant levels of bias. The reasons for this effect can be seen by examining 
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Fig. 11. Effects of sample bias on block selection quality; linear 
loss score for each action level. Vertical scale is the linear loss 
score. 

Fig. 4. For the relatively high action level shown, there are 17 positives, nine 
of which are false. The total remediation cost for these blocks equals 17. One 
can see by inspection, however, that the mean true concentration of these blocks 
is less than the action level. Thus, if the estimates were sufficiently negatively 
biased such that they were not remediated, their mean loss would be less than 
one and their total loss would be less than 17. A negative bias, therefore, would 
reduce total loss. At low action levels, a comparable effect occurs for positive 
bias. 

DISCUSSION 

These results should be interpreted with caution, as they can be generalized 
to only one class of sampling problem, namely highly skewed (approximately 
log-normal) populations with well-defined spatial correlation and a high degree 
of random variability over short distances. The model represents only sites which 
have been almost entirely contaminated to some degree, as opposed to sites 
which have discrete, localized "hot spots" surrounded by clean areas. Such 
sites could not be modeled with Gaussian-related distributions, but would call 
for mixtures of  distributions. Nevertheless, there are practical implications for 
sampling and decision-making in this type of situation. 

The relative insensitivity to moderate amounts of linear multiplicative bias 
and sampling error supports the use of field screening and portable analytical 
methods, if they are significantly less expensive than conventional sample col- 
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lection and laboratory analysis. In addition, the relatively broad zone of  ac- 
ceptable data quality provides considerable flexibility in combining data from 
different sources of  varying quality. 

It is current practice at some sites to compute confidence limits around 
block concentration estimates, and to select for remediation all blocks whose 
upper 95 % bound exceeds the action level. This is equivalent to positively biased 
sampling, and is not optimal except when the action level is near the low tail 
of  the distribution. Near the high tail, however, this bias would increase the 
losses and, thus, would be counterproductive. 

The potential benefit from sampling and block selection, as opposed to 
making an all-or-nothing decision about the entire site, is greatest when the 
action level is near the median of  the distribution. As the action level approaches 
either end of  the distribution, the benefit approaches zero. 

The relatively small effect of  sample pattern on the results suggests that for 
practical purposes, in the absence of  additional information, the particular sam- 
ple pattern selected should be a matter of  convenience. Usually, it is easier to 
sample on a regular grid; fortunately, this provides results at least as good as 
the other patterns. It should be emphasized that the sampling schemes evaluated 
here are all single-phase designs. The results are not applicable to multi-phase, 
adaptive designs. 

In a previous study (Englund, 1990), a single data set o f  126 samples drawn 
from the site model was interpolated by 12 different investigators, ten of  whom 
used some form of  kriging. Linear loss scores for the ten, computed as in the 
current study, showed a 12-point range, from 144 to 156. This is the same order 
o f  magnitude as the difference between the means of  the 104-sample and 308- 
sample cases, suggesting that optimization of  sampling and optimization of  
interpolation are economic problems of  comparable importance. 
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