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The Fourier Integral Method: An Efficient Spectral 
Method For Simulation of Random Fields 1 

E .  P a r d o - I g d z q u i z a  2 a n d  M .  C h i c a - O l m o  2 

The Fourier Integral Method (FIM) of  spectral simulation, adapted to generate realizations of  a 
random function 3 in one, two, or three dimensions, is shown to be an efficient technique of  non- 
conditional geostatistical simulation. The main contribution is the use of  the fast Fourier transform 
for both numerical calculus of  the density spectral function and as generator o f  random finite 
multidimensional sequences with imposed covariance. Results obtained with the FIM are compared 
with those obtained by other classic methods: Shinozuka and Jan Method in 1D and Turning Bands 
Method in 2D and 3D, the points for and against different methodologies are discussed. Moreover, 
with the F1M the simulation of  nested structures, one of  which can be a nugget effect and the 
simulation of  both zonal and geometric anisotropy is straightforward. All steps taken to implement 
the FIM methodology are discussed. 

KEY WORDS: spectral generator, geostatistical simulation, spectral density, amplitude specwum, 
phase spectrum, discrete Fourier transform, fast Fourier transform, anisotropic covariance. 

INTRODUCTION 

The most widespread method in the area of geostatistics for the generation of 
realizations of a multidimensional stationary random function has been the Turn- 
ing Bands Method (Matheron, 1973; Journel, 1974). The most interesting prac- 
tical aspect of this method is that only one-dimensional generators are necessary, 
which are mathematically more simple than the multidimensional models. 

As is well known, the Turning Bands Method (TBM) simplifies multidi- 
mensional simulations from one-dimensional simulations along lines that are 
homogeneously distributed over the space to be simulated. The most important 
relations are those that link the function of one-dimensional covariance on the 
lines and the objective covariance (Matheron, 1973). In 2D 
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in 3D 

f r C 1 (s) 71" 
0 ( r  2 - -  $2) 1/2 ds = ~ Cz(r ) 

d 
C 1 (r) = ~ [rC3(r)] 

C1(.): one-dimension al covariance on the lines, C2(.): two-dimensional iso- 
tropic covariance in 2D, and C3(.): three-dimensional isotropic covariance in 
3D. 

In the frequency domain the equivalent relations between the respective 
functions of spectral density are obtained (Mantoglou, 1987; Christakos, 1987). 
In 2D 

In 3D 

S(o:) = ~rwS(~) 

S(o:) = 27rJS(o:) 

$1 (.): one-dimensional spectral density function, $2 (.): spectral density function 
with radial symmetry, $3(.): spectral density function with spherical symmetry, 
and o:: angular frequency. 

Depending on the dimensionality of the problem (2D or 3D) and the type 
of one-dimensional generator that we wish to use (spatial or spectral), it is 
necessary to solve one of the four previous equations, which is more or less 
simple depending on the covariance model to be simulated. 

Mantoglou and Wilson (1982) have shown how the TBM is particularly 
efficient if used as a one-dimensional generator with the Shinozuka and Jan 
(1972) spectral method. The generator is expressed as a series of cosine func- 
tions the amplitude of which is modulated by the spectral density function: 

M 

z(x) = 2 ~ [S(~)Ao~] 1/z cos ( ~ x  + '~k) 
k= l  

z(x): simulated value at the location x, S(.): spectral density function, ~o k = (k 
- 0.5) Aw: frequency of the kth harmonic, Aw = ~/M: discretization interval 
of the frequency, M: number of harmonics, fl: maximum spectral frequency, 
o:~, = ~0 k + 3w, and 6o:: small random frequency added to avoid periodicities. 
The main disadvantage of this method is that the simulated covariance is periodic 
(Mantoglou and Wilson, 1982): 

C(h) = 2 M k= 1 S(~%) cos (~okh) 

with period T = 4~rM/fL With a fixed maximum spectral frequency (~) the 
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period can be longer if we increase the number of  harmonics M, but this implies 
a greater time of  calculus which may not be admissible. Moreover,  the spectral 
density function must be known over  a finite set of  angular frequencies, which 
must be evaluated analytically or by numerical methods: 

{cok = ( k -  0.5)Aco k = 1, " - "  , M }  

Faced with the difficulties of  the previous methods makes it necessary to 
opt for a more general method. The method proposed, although used before by 
other authors (Bormang et al., 1984), has had important particularities intro- 
duced with an important gain in efficiency as will be shown. 

F O U R I E R  I N T E G R A L  M E T H O D  

First at all, it is remarkable that although a theory can be established for 
infinite and continuous random fields, in practice our aim is to generate real- 
izations of  a finite and discrete random function, i.e., a finite set of  values 
located on a grid, so only finite discrete processes are considered in the discus- 
sion. Moreover,  let the stochastic process to be a real-valued process, which 
cover the vast majority of  processes in Earth Sciences. Additionally, the process 
is second-order stationary with zero-mean and normalized unity variance, then 
correlation function and covariance function coincide. Finally, for simplicity in 
notation, discussion is made on a one-dimensional case; particularities to im- 
plement the method in 2D and 3D will be noted. 

Any discrete stochastic process Z(k)  which is second order stationary can 
be expressed by its spectral representation as follows (Cox and Miller, 1968): 

Z(k )  = e i~°k dql  (co) 
- -  T r  

this is, as integrals of  stochastic processes of  a continuous parameter co. 
For a discrete process measured at unit intervals (Ax = 1) there is no loss 

of  generality in restricting co to the range ( -~r ,  ~r). Variation at frequencies 
higher than 7r (Nyquist frequency = 7r/Ax) cannot be distinguished from 
variation at a corresponding frequency in ( -~r ,  ~r) (Chatfield, 1991). 

For a real-valued process the spectral representation can be written: 

S t Z(k)  = cos (kco) dql I (co) + sin (kco) dql.2(co ) 
0 0 

These processes {d°al (co), dql2(w)} are essentially the limits of  the inte- 
grals of  the cosine and sine transforms (Anderson, 1971): 

Z z(k) cos (kco) 

z (k) sin (kco) 
k 
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Second-order properties of the processes are specified by the spectral den- 
sity function S(o~) (Anderson, 1971): 

E[d~l (w)]  = E[d'R2(o~)] = 0 

E[dqll (~o2) - dql I (~ol)] 2 = E[dql.2(~oa) - dql2(~0] z = S(co) d~o 
C01 

Coy [dqtl(~o), dql2(~o)] = E[dqll(~o ) dql2(~o)l = 0 

S Var [Z(k)] = S(~o) d~o 

0 _< ~ol -< ~o2 -< ~r, E[.I: mathematical expectation, Coy[.]: covariance, Var[.]: 
variance, and S(.): spectral density function. On the other hand, the so-called 
Wiener-Khintchine theorem states that any stationary process has a covariance 
function C(h) of the form (Anderson, 1971): 

S C(h) = S ( r d ) e  i°~h dw 
- T r  

i = ( - 1 )  1/2 and S(.): spectral density function. And conversely, given a func- 
tion representable by the last equation, there exists a stationary process with 
C(h) as covariance (Cox and Miller, 1968). Both functions, covariance and 
spectral density, contain the same information but express this in different ways. 

The two possible interpretations of the spectral density function S(o~) are 
given as follows. First, it gives the proportion of the variance of Z(k) contributed 
by the components in the range (w, w + Aw), i.e., gives the probabilistic 
properties of the components in a Fourier analysis of the process itself (Cox and 
Miller, 1968). Second, it gives directly the components in a Fourier analysis of 
the correlation function. 

In practice, we can obviate stochastic integrals and simply regard Z(k) as 
a linear combination of orthogonal sinusoidal terms (Chatfield, 1991). 

We construct a model of the discrete random field which is a linear com- 
bination of sines and cosines that have, in general, random phases and random 
amplitudes. But in our case the amplitudes are important and the phases are of 
no interest. The sum of the mean squared amplitudes of the frequencies in a 
given interval is equal to the sum of values of the spectral density function in 
this interval, as is known from spectral analysis. 

As is well known by Fourier analysis, a sequence z(k) of N points can be 
transformed into a finite set of Fourier coefficients (Chatfield, 1991): 

N - - I  

z(k) = ~] [aj cos (27rjk/N) + bj sin (2~rjk/N)] 
j = 0  
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{k = 0 . . . .  , N - 1 }, N: number of  points of  the sequence. 
N - - I  

1 ~ z(k) cos (27rjk/N) 
aj =U =o 

N - - I  

1 Z z(k) sin (27rjk/U) b1 

{j  = 0 . . . . .  N - 1}. 
Another way of  representing the finite discrete sequence is as a complex 

exponential Fourier series (Hsu and Mehra, 1973): 

N - - I  

z(k) = ~] A ( j ) e  i2~rkj/N 
j = 0  

i = (--1)  1/2, and {k = 0 . . . . .  N - 1}. Where: 

A ( j )  = IA(j)l e-i~°<°') 

Coefficients A ( j  ) are related to aj,  bj coefficient by the equations: 

IA(j)I = ~/a} + b} 

~o(w) = tan - l  ( -b j /a j )  

Discrete amplitude spectrum is the representation of amplitude IA(j )1 vs. 
frequency 27rj/N and phase spectrum is the graph of  phase ~o ( j )  vs. frequency 
27rj/U. 

The Parseval-Rayleigh theorem stated that the sum of  squared amplitudes 
is equal to the total power  of  {z (k), k = 0 . . . . .  N - 1 } that can be identified 
with the variance (Bracewell, 1986): 

N--I N - I  

Z I A ( j ) [ 2 = _ I  Z ]z(k)l 2 = a 2 
j=o N k = 0  

a2: variance of  the sequence {z (k), k = 0 . . . . .  N - 1 }. The discrete amplitude 
spectrum can be related directly to the discrete spectral amplitude (Chatfield, 
1991): 

IA(j)] 2 = S ( j )  

{j = 0 . . . . .  N -  1 }, IA ( j ) l :  amplitude spectrum, and S( j  ): spectral density. 
This result is also obtained directly from the theorem of  the Fourier transform 
of  the correlation function (Bracewell, 1986): 

C(h) o [A(j) I  2 

: Fourier transform pair. 
And, by definition, the spectral density function is the Fourier transforrn 

of  the covariance function: 
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then 

C(h) ~, S(w) 

The spectral density function is an even function: 

S ( j  ) = S ( - j  ) 

IA ( j ) I  = I A ( - j ) I  

Figure 1 shows, in diagram form, the information given in the previous 
paragraphs. 

Then, the amplitude spectrum cannot be random but it can be related to 
the spectral density which depends on the covariance model that we wish to 
impose on the realization. 

The phase spectrum does not affect the covariance structures, then it can 
be taken at random from a uniform distribution between 0 and 27r: 

~p(j) - U(O, 270 

U(0, 2v): uniform distribution between 0 and 2rr. In this way we construct the 
complex Fourier coefficients: 

A ( j )  = ]A ( j ) l e  -i'p(j) 

a ( j )  = IA(j)[ cos ~p(j) - i [A(j)I sin ~p(j) 

Real part: R ( j )  = IA( j ) I  cos ~p(j) 

Imaginary part: I ( j )  = IA( j ) I  sin ,p( j )  

A ( j )  = R ( j )  - i I ( j )  

stochastic process 

Z(x) ~ "  
w 

amplitude _ _  , 
s p ~ A  (w) 

w 

covarJance spectrat 

h w 

Fig. 1. Basic relations among stochastic process, covariance function, 
spectral density function and amplitude spectrum. 8: estimation, 5:: 
Fourier transform. 



Fourier Integral Method 183 

The Fourier transform of a real function is an hermitian function (Brace- 
well, 1986); then coefficients A ( j )  must be hermitian, this is even real part: 

R ( j )  = R ( - j )  

and odd imaginary part: 

I ( j  ) = - I ( - j )  

By calculating the inverse Fourier transform of the complex coefficients A ( j ) ,  
the discrete finite realization {z(k), k = 0 . . . . .  N - 1} is obtained with the 
specified covariance model: 

N-1 
z(k) = ~ A( j )e  i27qk/N 

j = o  

k = 0 . . . . .  N - 1. If  the number of points N is to the power of two, the 
inverse discrete Fourier transform can be rapidly and efficiently computed with 
the fast Fourier transform (FFT). 

METHODOLOGY 

The aim is to generate different realizations of a random field with an 
imposed model of covariance function. First of all, we must define the char- 
acteristics of the field to simulate: 

Dimensiouality 1 D 2D 3D 
Number of points Ni Nt, N2 N~, N2, N3 
Point interdistance Ax Ax, Ay Ax, Ay, AZ 

N1, N2, and N3 have to be a multiple of two in order to apply FFT algorithms. 
Second, we must define the correlation structure defined by the covariance 

function: 

Nugget effect? 

Number of nested structures? 

For each structure: Type of covariance model? 

Sill? 

Range? 

Zonal anisotropy? (not applicable in 1D) 

Geometric anisotropy? (not applicable in 1D) 

The steps for the simulation are proposed as follows and are shown in 
diagram form in Fig. 2. 
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covariance m a d ~  

-(N-i)ax/2 a "--"o 

Fig. 

(N-1)~,x/2 

~ shifting ~ nce C(h-a) 

o (N-1)~x 
cavoriance C(k) - l sampling discrete 

.,,11 I,,.. 
N-I 

spectral 
density S ( j ) j [  Jl 

. . . . . . .  i I  , .  - . 

o N-I 
discrete 1 V- 
spectrum IA(j)I I 
. , , , . , , , , I l l  I l l , , , , . , , ,  
o N-I 
discrete randam phase ~'(j) + 

,IL,li,ll,1, ,, Ii,l I,II,II,LI 
o I lcalculu s N-1 real part 

,I I, I J I il I, 
~ ' '  g ' l  lJ ' ' I I ' I  'N - I  

imaginary part + 

. . . .  ' . . . . .  'ill LIII . . . . . . . . . .  I N-1 

simuloted sequence z(k} ~"~" 

6 "'II 'II" ' I I N-I 

2. Steps in simulation process. ~:  Fourier transform, 
5: - t : inverse Fourier transform. 

Step 1: Sampl ing  the Covariance  

Sampling the covariance model in one- two- or three dimensions, in the 
directions of  the axes of  the cartesian coordinates, to obtain the sequence of  the 
sampled covariance. For example, in 2D we obtain the sequence: 

{C(kl ,  k2); k, = 0 . . . .  , Nt - 1; K2 = 0 . . . . .  N 2 - 1} 

The covariance model can be any permissible model of  covariance in the cor- 
respondent dimension. Moreover, it can have nested structures, one of  which 
may be a nugget effect or the covariance may be anisotropic. 
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The length of sampling is equal to the length of the field to simulate as can 
be seen in Fig. 2a for 1D. For this purpose the covariance is shifted as indicated 
in Fig. 2b. This is done because in the equations of the discrete Fourier transform 
we work with the assumption that the function to be Fourier transformed has 
bounded support over [0, NiAx]  (in 1D), that is, zero for x < 0 (Weaver, 
1989). This is the case of the covariance function which, in particular, is an 
even function C(h) = C ( - h ) ,  then the covariance is shifted before sampling a 
value which, at least, is equal to the length of correlation of the covariance 
model. We can deduce that the length of the field to simulate must be at least 
twice the length of correlation. Then: 

length of the field/length of correlation _> 2 

Better results are obtained if this ratio is increased. If  this ratio, in practice, is 
smaller than 2 the length of the field must be increased. 

The sampling rate is equal to the point interdistance Ax of the simulation. 
In practice, the sampling rate must be smaller than the Nyquist rate (Z~X)N: 

1 
( A X ) N  ~ -  - -  

2[2 

~: maximum spectral density. 
The spectral density function outside the band [ - f l ,  f~] is zero or near zero. 

Usually, [2 is not known as prior information and then we take as sampling rate 
the point interdistance of the simulation Ax; we could examine the discrete 
spectral density function calculated in the next step and check that for the highest 
frequencies the spectral density is near zero, then there is no aliasing (overes- 
timation of a Fourier transform in the highest frequencies) in the discrete Fourier 
transform. If  aliasing is suspected, the sampling rate must be increased (take a 
smaller Ax), computer the Fourier transform in step 2 and apply the scale 
theorem of the Fourier transform. 

Scale change theorem of the Fourier transform (Weaver, 1989): 

C(x) "-" S(o~) 

,-, s ( o , / a ) / l a t  

a = A x / A x ' ,  Ax: interdistance between points in the simulation, Ax' :  sampling 
ratio smaller than Ax (i.e., a > 1), ~ Fourier transform pair, and lal: absolute 
value of a. In practice, the most usual case is that it is sufficient to take as 
sampling ratio the point interdistance of the simulation z~x. 

To simulate a nugget effect it is very important to sample the point {C(0), 
x = 0} where all the nugget variance is concentrated. 
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Step 2: Discrete Spectral Density 

Calculation of the spectral density function by the discrete Fourier trans- 
form (DFT) of the sampled covariance sequence: 

N - - I  

1 Z c(k) exp (-2~kj/N) S ( j )  = ~ k=o 

{ j = 0 . . . .  , N - 1 }. The calculation of the DFT of a sequence made up of 
N points requires N 2 complex multiplications, which implies an important amount 
of  calculation time. As is well known, the FFT is a numerical algorithm which 
allows the calculation of the DFT with only (N log 2 N) operations (Brigham, 
1988) which represents an important reduction in calculation time. 

As the covariance function has been shifted one must use the shift space 
theorem (Weaver, 1989) to obtain the correct spectral density function: 

g(x) = C(x - a) 

C(x) ~ S ( f )  

g(x) "~ G ( f )  

C(x - a) ~ exp ( - 2 7 r i a f ) S ( f )  

S ( f )  = G ( f )  exp (27riaf) 

x: space coordinate, f :  frequency in cycles by interval of data, a: shifted dis- 
tance, i = (-1)1/2: imaginary unity, and ~ :  Fourier transform pair. Steps 1 
and 2 are essentially computer calculations of a discrete Fourier transform which 
define the relation between covariance function and spectral density function. 
Here is the main strength of the method because any permissible covariance can 
be sampled including nugget effect, nested structures and anisotropy, and hence 
can be imposed on the realization that will be obtained in the last step. 

In Figs. 3a-c we can see the two-dimensional spectral density functions 
for the spherical, exponential, and gaussian models of covariance, respectively, 
calculated in numerical form by means of the fast Fourier transform in two 
dimensions. 

Step 3: Amplitude Spectrum 

The discrete amplitude spectrum can be obtained from the discrete spectral 
density function by the relation seen before: 

A ( j )  = x / -~ j )  

{j  = 0 . . . . .  N - 1}, A ( j ) :  discrete amplitude, and S ( j ) :  discrete spectral 
density. 
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Fig.  3.  Two-dimensional  spectral density (surface and contour display): (a) spherical model ,  (b) 

exponential  model ,  (c) Gaussian model .  X axis: frequency,  Y axis: frequency. 
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Step 4: Phase Spectrum 

Generation of  a discrete random phase spectrum {~p ( j ) ;  j = 0 . . . . .  N - 
1}. ~o(j ) is taken at random from a uniform distribution between 0 and 27r. 

~o(j) = Uj * 2~r 

{ j = 0, . . . , N - 1 }, and Uj: random variable uniformly distributed between 
0 and 1, generated by any classical subroutine such as that of  Schrage (1979). 

Step 5: Complex Fourier Coefficients 

The Fourier transform of  a real function (most usually regionalized vari- 
ables are real functions) is a hermitian function, i.e., even real part and odd 
imaginary part (Bracewell, 1986). 

As we have seen before the complex coefficients are: 

A ( j )  = I A ( j ) ] e  - i ~ ( j )  = IA(j)I cos ~p(j) - ilA(j)[ sin ~ ( j )  

= R ( j )  - i I ( j )  

R ( j )  must be even: 

I ( j )  must be odd: 

R ( j )  = R ( - j )  

I ( j )  = - I ( - j )  

This can be expressed as symmetries of  the coefficients that are specific for 1D, 
2D, and 3D. Here index has been expressed with range from 1 to N1 rather than 
from 0 to N1 - 1. 

In 1D 

In following representation, Greek letters represent regions of  coefficients: 

1 N N 
- - + 1  
2 

(~, X: real coefficients, [3: complex coefficients, and *: complex conjugate. An- 
alytically: 

a ( j )  = A*(Nl - j  + 2) j ~ [ 2 ,  N1/2] 

For example: 

A(1) = IA(1) I cos ~p(1) 

A(2) = IA(2)[ cos ~o(2) - iIA(2)[ sin ~p(2) 

A(NI) = [A(2)I cos ~o(2) + i[A(2)] sin ~o(2) 

In this way, we show that the coefficients are hermitian. 
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In 2D 
The symmetries of the complex Fourier coefficients is shown in Fig. 4, it 

has been verified by direct computation and is similar to those presented by 
Borgman et al. (1984). 

In this figure, the different sectors of Fourier coefficients are represented 
by different greek letters. The coefficients of sectors of different letters are 
independent, as are the coefficients of a single sector in themselves. Sectors o~, 
0, ¢, and ~ are real (the imaginary part is equal to zero) and the rest are complex 
sectors. 

This symmetries can be expressed: 

First column 

A(1, k) = A*(1, N2 - k + 2) 

First row 

A(j, 1) = A*(N, - j  + 2, 1) 

(Nl/2) + 1 column 

A ( ~ ! +  1, k ) = A *  ( ~  + 1, N a - k + 2 )  

(N2/2) + 1 row 

A , ~ - +  1 = N , - j + 2 , - ~ - +  1 

~o 2 N N 
1 ~ + I  1 

1 __~  ~ r[ x IV 

8 e ~ y 

N 
Z + l  "q 0 ~ O* 

2 

6" ~/* ¢" e* 

N 2 

Fig. 4. Complex Fourier coefficients symmetries in 2D. co: frequency, *: 
complex conjugate. 
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Rest of  rows and columns 

A ( j , k )  = A*(N~ - j  + 2, N 2 -  k + 2) 

j ~ [2, N1/2], and k ~ [2, Nz/2]. 

In 3D 
The arrangement of  the discrete complex  Fourier coefficients in 3D is 

shown in Fig. 5. It has been verified by direct computation. 
It will  be considered that the Fourier coefficients for which the frequency 

in the third frequency dimension,  603 , is constant belong to the same level.  

c%l 

f9 2 

/ ~ L e v e l  1 

f f L e v e l  , 

J J Level N 3 

cO leve l  e ~ [2,NJ2] 

co 2 ~ N 
~Z2- +1 N 1 

Z 

N2 +l 0 x~ 1( 
2 

N 2 

1 

v n 

v 

l eve l  N 3 - ~+2 b 

~1.* 0* TC* 

N2 +1 0* ~.* 1(* ~/* 
2 

N 2 

Fig. 5. Arrangement of the complex Fourier coefficients in 3D. (a) Definition 
of level; (b) Symmetries between the level l and the level N3 - l + 2; l ~ [2, 
N3/2]. *: complex conjugate. 
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Levels 1 = 1 and 1 = (N3/2) + i 

At these levels there is an arrangement that is the same as the arrangement of  
coefficients in 2D shown in Fig. 4: 

A(1, k, l) = A*(1, N 2 - k + 2, [) 

A(j,  1, l) = A*(N, - j  + 2, 1, l) 

A = N , - j + 2 ,  T+ ,I 

A(j,  k, 1) = A*(N~ - j  + 2, N2 - k + 2, 1) 

j ~ [2, N, /21 ,  and k e [2, N2/21. 

Rest of  the levels 

l ~ [2, N3/2] and l ~ I ~  + 2, N31 

The coefficients in level l e [2, N3/2] are the complex conjugates of coefficients 
in level (N3 - l + 2), according to what is shown in Fig. 5 and that can be 
expressed analytically: 

A(1, 1, l) = A*(1, 1, N 3 - l + 2) 

A 1 , ~ -  + 1 , /  = A *  1 , - ~ - +  1, N3 - l + 2 

A + 1,-~- + 1 , /  = A *  + 1 ,  N2 T + l ,  N 3 - l + 2  

A(1, k , l )  = A * ( 1 ,  N 2 - k + 2, N3 - I + 2 )  

A(1, N 2 - k + 2 , 1 )  = A * ( 1 ,  k, N 3 - l + 2 )  

A(j,  1, l) = A*(N 1 - j  + 2, 1, N 3 - l + 2) 
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A ( ~ +  1, k , l ) :  A* ( ~  + 1, N z - k + 2 ,  N 3 - 1 + 2 )  

A j , - - 2 + l , l  = N , - j + 2 , - 2 + 1 ,  N -I+2 

A N, - j  + 2 , - ~  + 1,1 = A *  j , - - ~ +  1, N 3 - I + 2  

A( j ,  k, l) = A*(N~ - j + 2, N 2 -  k + 2, N3 - l + 2) 

A(N~ - j + 2, N2 - k + 2,1) = A*(j ,  k, N3 - I + 2) 

j ~ [2, N~/2], k ~ [2, N2/2], and l e [2, N3/2]. 

Step 6: Inverse Fourier Transform 

Application of the inverse discrete Fourier transform to the complex coef- 
ficients A ( j )  in order to obtain the spatial realization with the covariance func- 
tion sampled in step 1: 

N--I 

z(k) = ~ A ( j )  exp (27rkj/N) 
j=o 

{k = 0 . . . . .  N - 1}, and i = ( - 1 )  1/2. This is done rapidly and efficiently 
by the fast Fourier transform. 

Although in reality there are an infinite number of Fourier coefficients 
A ( j  ), the method only uses the first N of them. However, as regionalized 
functions are in general band limited, a sufficiently large value of N gives a 
reasonable representation of the function. This is the finite discrete approxi- 
mation to the continuous infinite theory. 

CRITERIA OF COMPARISON BETWEEN GENERATORS 

1. Ensemble Statistics. These statistics are those which are calculated by 
taking the average statistics of a high number of realizations. As the number of 
realizations increases the ensemble statistics tend to become more like their 
corresponding theoretical values. From a practical point of view we have limited 
the number of realizations to 100 with the purpose o f  comparing the results. 

2. The calculated ensemble statistics are: ~m: mean of 100 realizations, am. 
average variance of 100 realizations, and "ym(h): average variogram of 100 
realizations. Likewise, the variance of statistics of each realization with regard 
to the ensemble statistics is calculated: a 2 (Y): variance of the mean of individual 
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realizations, 0"2(0"2): variance of the variance of individual realizations, and 
a z (~ (h)): variance of the variogram of individual realizations. With the purpose 
of  normalizing the variance of the ensemble variogram for the different lags, 
instead of the last statistic, the coefficient of variation (C. V. (h)) will be calcu- 
lated: 

a('y(h)) 
c. v. (h) - 

"/m ( h )  

A good generator should show good behavior of the ensemble statistics (values 
close to the theoretical ones) and the dispersion of the statistics corresponding 
to each realization should be slight with regard to the ensemble value. Really, 
the results are directly related to the ergodic conditions which depend on the 
dimensions of the random field and its ratio with the length of correlation. 

Conditions of ergodicity are more favorable as 

length of the field 
O0 

length of correlation 

that can be obtained, for a fixed length of correlation, by increasing the length 
of the field. But for fixed length of correlation and fixed length of the field, later 
ensemble statistics can be used for comparison of results of different generators. 

2. Statistics o f  a Single Realization. The following statistics are consid- 
ered for a single realization taken at random: 2: mean, a2: variance, and ~,(h): 
variogram. For fixed conditions of ergodicity, it is expected that the fit between 
experimental statistics of a realization taken at random and theoretical statistics 
are close as the ensemble statistics show a good behavior (in the sense indicated 
before). 

3. Behavior o f  the Variogram over Great Distances. It is necessary to 
ensure that the variogram function of the simulation does not show periodicities, 
which is checked by calculating that function over long distances. (This feature 
has its main interest in ID long series.) 

RESULTS 

In 1D, the one-dimensional variogram models for which the methodology 
has been checked are as follows: 

Spherical model 

3'(h) = - ~  h e [ O , a ]  

a 2 h >_a 
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Exponential model 

y(h) = cr2[1 - exp (-h/a)] 

Gaussian model 

3,(h) = 0211 - exp (-hZ/aa)] 

Triangular model 

o2(h/a) h e [0, a] 
3'(h) = a 2 h -> a 

Hole I model 

3,(h) = a2 ( 1 - [ ( 1 - ~ ) e x p ( - h / a ) l  ) 

Hole II model 

y(h) = a2(1 - exp (-h/a) cos (hb)) 

where y(h): variogram function, h: lag of variogram, a: range or length of 
correlation, o2: sill or variance, and b: cosine function constant. In this paper, 
only the complete results for the spherical variogram (or covariance) model will 
be presented, comparing the results of the spectral method herein developed 
with the classical method of Shinozuka and Jan (1972); the conclusions are valid 
for the rest of the models. A more detailed discussion of the results can be 
found in Pardo-Igtizquiza (1991). The theoretical mean and variance are valued 
zero and one respectively. 

Shinozuka and Jan (1972) Method in 1D 

To compare this method and FIM each realization is a sequence of 1000 
points equally spaced, with interpoint distance Ax equal to one. The spectral 
density function that corresponds to a one-dimensional spherical covariance 
function is (Pardo-Igtizquiza, 1991): 

3~2 ( 1 ) 
S(~o) - sin (wa) + - -  (cos (~0a) - 1) 27r~03a 2 coa 

o2: variance, and a: range. This function is near zero outside the maximum 
spectral frequency f~ = 32/a. The number of harmonics M has been stated to 
100, because good results are reported by Shinozuka and Jan (1972), Mantoglou 
and Wilson (1982) and ourselves for this number of harmonics. 

The model of covariance to impose is a spherical model with range 10 
units and a unity sill: 

C(h) = Sph(1.)lo 
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Sph(a)b: Spherical model with range b and sill a. The results are shown in Table 
I and in Fig. 6a-d. Good behavior of  the ensemble statistics can be seen along 
with a very small dispersion of  the statistics of  each realization with regard to 
the ensemble value. The ensemble variance is always slightly lower than the 
theoretical value since the generator integrates the spectral density function for 
a limited frequency band. The main inconvenience of  the method is that the 
variogram of  the simulation is periodic as indicated before, with period T = 
47rM/9, and as indicated by Black and Freyberg (1990), only a part of  the 
realization would be usable. However, the period can be increased if the number 
of  harmonics is increased with the corresponding increase in calculus time. 

FIM in 1D 

Each realization has 1000 points (on a simulate 2 m = 1024 points and on 
taking the first 1000 points) with interdistance unity; the model of  covariance 
is the same as imposed in the previous method. 

The results for this method can be found in Table II and Fig. 7a-d. The 
good behavior o f  the ensemble statistics is noticeable, the dispersion of  the 
statistics for each realization with regard to the ensemble value is slight and, in 
addition, the variogram of  the simulation shows no kind of  periodic behavior. 
Theoretically the variogram is periodic with period equal to the length of  the 
field N (theorem of  the periodicity of  the discrete Fourier transform; Weaver, 
1989): 

3,(k) = 3,(k + N) 

k = 1, 2, 3 . . . .  N. Then the periodicity cannot be detected in the realization 
and all the length of  the series is usable. 

Table I, Average Statistics of 100 Realizations ~ 

Variogram 
Model Z~ a2(~) a2 o2(a2) 

Spherical -.0031 .0012 .9674 .0001 
Triangular .0038 .0012 .9701 .0010 
Exponential - .0014 .0006 .9708 .0001 
Gaussian .0016 .0084 .9869 .0010 
Hole I .0001 .0000 .9679 .0000 
Hole II -.0003 .0000 .9844 .0000 

ashinozuka and Jan (1972) method, x: mean, a2(x): variance of the mean, 02: variance, 0-2(0-2): 
variance of the variance. 
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Table II. Average Statistics of  100 Simulations a 

Variogram 
Model ~ 0"2(;.) 02 0"2(0"2) 

Spherical +0102 .0034 .9931 .0001 
Triangular .0059 .0047 .9914 .0002 
Exponential - . 0014  .0040 .9901 .0002 
Gaussian - .0049 .0054 .9873 .0003 
Hole I - . 0027  .0001 .9987 .0000 
Hole II - . 0034  .0008 .9985 .0001 

"Fourier integral method, x: mean, o2(~): variance of the mean, 0 " 2 :  variance, 0"Z(o2): variance of 
the variance. 
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D I S C U S S I O N  

The main inconvenience of  the Shinozuka and Jan (1972) method is the 
periodicity of  the simulated variogram (as was indicated by Black and Freyberg, 
1990), the period of  which is smaller than the period of  the variogram simulated 
by the FIM. 

The basis of  the Fourier integral method is the same as used by Fox (1987) 
to generate realizations in 1D imposing the fractal dimension of  the process, 
The particularities that are presented in this paper have been the adaptation in 
order to simulate any covariance model ,  since the spectral density function is 
calculated by FFT from an adequate sampling o f  the covariance function. This 
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allows the integration in a single process of the simulation of nested structures, 
one of which could be a nugget effect (examples in 2D will be shown). 

The simulation variogram does not show periodicity (in the sense indicated 
before, the period is really too long to be detected). The coefficient of variation 
of the different realizations is kept within acceptable limits. This, together with 
the good behavior of the ensemble statistics means that, on taking a single 
realization at random, its variogram is expected to be acceptable (a good fit 
between experimental and theoretical values). The time of calculus consumed 
for generating a series of 1000 points long is shown in Table VII. The Shinozuka 
and Jand method requires, for this example, three times more time. 

T B M  in 2D 

The TBM has been used with 16 lines (Mantoglou and Wilson, 1982) and 
the width of the bands is equal to one half of the spacing between the points of 
the simulation network. Similar results have been obtained using different one- 
dimensional generators on the lines. Here one presents results with the FIM as 
a one-dimensional generator. Each realization consists of 4096 values arranged 
in a regular network of 64 × 64 points with separation of one on X and Y axes 
(Ax and Ay). The imposed covariance is: 

C ( h )  = Sph(1.)lo 

The one-dimensional covariance function to be simulated on the lines can be 
found in Brooker (1985). Figures 8a-d show the average variogram of 100 
realizations for directions N-S, E-W, NE-SW, and NW-SE. The experimental 
values and the corresponding theoretical ones are quite similar. Figure 8e shows 
the coefficient of  variation C. V. (h) of the average variogram, as can be seen in 
the above figure, the statistics show similar behavior in all directions and the 
same value of around 0.14 (14%). Last, Fig. 8f represents the experimental 
variogram of a single realization. In Table III, the statistics of the different 
realizations are registered. 

T B M  in 3D 

The TBM is used with 15 lines which join the middle points of the edges 
of an icosahedron (Joumel, 1974). A one-dimensional process is generated on 
each line by means of the FIM as spectral generator. In each realization, a total 
of 4096 points has been simulated in a regular network of 16 × 16 x 16 on 
X, Y, and Z axes. The distance between the points is one (Ax = Ay = Az = 
1) and the simulated model is: 

C ( h )  = Sph(1) 5 

The average variogram of 100 realizations for the directions X, Y, and Z re- 
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Table III. Statistics of the Simulation a 

~2(~) ~2 ~2(o~ ) 

Theoretical .0 .0 1.0 .0 
100 Realizations .0114 .0152 .9780 .0097 
One realization .1059 -- 1.1662 -- 

~TBM in 2D. ~': mean, o2(x): variance of the mean, 0-2(02): variance of the variance. 

spectively is presented in Fig. 9a-c. We can see that the results are close to the 
corresponding theoretical values. Figure 8d shows the coefficient of variation 
of the average variogram for 100 realizations, given an order of magnitude 
around 0.15 (15 %) which is similar to that obtained with the TBM in 2D. 

Figure 9e shows the simulated variogram of a realization chosen at random, 
where divergences can be observed between experimental and theoretical values 
of the simulation. Table IV gives the statistics of the different simulations. 

FIM in 2D 

Figures 10a-d shows the average variogram of 100 realizations in accor- 
dance with the directions N=S, E-W, NE-SW, and NW-SE, respectively. Ex- 
perimental and theoretical values fit well. Each realization consists of 4096 
points arranged in a regular network of 64 x 64 points with point interdistance 
Ax = Ay = 1. The imposed covafiance function is: 

C(h )  = Sph(1.)10 

Figure 10e shows the estimated experimental variogram of a single real- 
ization. Slight fluctuations can be observed but the similarity with regard to the 
theoretical model can be considered acceptable. The cartography of this real- 
ization is shown in Fig. 11. Table V gives the statistics of the previous real- 
izations. As has been noticed before, the simulation of a nugget effect and nested 
structures does not require any additional calculus or computing time, because 
this feature is integrated in step 1 of the FIM where the covariance function 
model to be simulated is sampled. 

Figures 12a-b show the estimated experimental variograms of a single 
random realization (64 x 64 = 4096 points; Ax = Ay = 1) where the co- 
variance function has a nugget effect of 50% of the total variance: 

C(h )  = 0.5 + Sph(0.5)2o. 

The great similarity between experimental and theoretical values is noticeable. 
Figure 13 shows the cartography of this realization. In order to show the sim- 
ulation of nested structures a realization of 4096 points (64 x 64) and unit 



Fourier Integral Method 201 

1.2 

l * a  

C~  

0 .6  

0.<- 

CI 

0 I&  

0,16 

CLI4 

9 .12  

0 .10  

O,C~ 

0 .00  

CL04 

0 .0~  

8 g ~ g 

:~ 4 b B 7 8 

[ : I x  &y  o ; r  

b 

o.a 

c~ 

~.4. 

o.2 

0 .0  

/ 
c, o 

O 
A 

A 
~ O a 

C 

o x  ~v oz  

Fig. 9. Results of the TBM in 3D with isotropic covariance. (a) Average variograms of 100 
realizations for X, Y, and Z directions. (b) Coefficient of variation. (c) Experimental variogram of 
a single random realization. X axis: distance, Yaxis: variogram function (a, c), and coefficient of 
variation (b). - - :  model, [], A, o: simulation. 

Table IV. Statistics of  the Simulation a 

; f f 2 ( ~ )  0 2  0,2(0_2) 

Theoretical .0 .0 1.0 .0 
100 Realizations - .0043 .0124 .9716 - .0166 
One realization - .  1570 --  1.0365 --  

aTBM in 3D. x: mean, o2(x): variance of the mean, a2: variance, 0,2(0-2): variance of the variance. 
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Tab le  V. Statistics of the Simulation a 

; 0":(;) 0"2 0":(0:) 

Theoretical .0 .0 1.0 .0 
100 Realizations .0047 .0079 .9846 - . 0 0 0 0  

One realization - .  1030 - -  .9693 - -  

aFIM in 2D. x: mean, ff2(~: variance of the mean, 02: variance, 02(0"2): variance of the variance. 

interdistance (Ax = Ay = 1) is simulated, imposing a model of  covariance with 
three spherical nested structures: 

C(h) = Sph(0.3)lo + Sph(0.3)15 + Sph(0.4)2o 

Figures 14a-f  show the result; a good fit between experimental and theoretical 
values can be seen. 
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FIM in 3D 

A three-dimensional network is simulated consisting of 4096 points (16 x 
16 x 16) imposing a spherical covariance model with parameters: 

C ( h )  = Sph(1.) 5 

The theoretical and experimental statistics of one realization, along with the 
average values of 100 realizations are shown in Table VI. 

Figure 15a shows the average variogram of 100 realizations on the three 
axes of coordinates, and it can be seen how the connection between the vario- 
gram model and the average variogram of the simulation is perfect. The simu- 
lated variogram in a single random realization in the directions X, Y, and Z is 
shown in Fig. 15b, showing a strong similarity between experimental and the- 
oretical values. The coefficient of variation for the variogram function of the 
100 realizations is shown in Fig. 15c and is approximately 0.002 (0.2 %). Table 
VI gives the statistics of  the previous realizations. 
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Table VI. Statistics of the Simulation a 

0-2(2) 0-~ 02(0" 2 ) 

Theoretical .0 .0 1.0 .0 
100 Realizations .0028 .0084 .9830 - . 0000  
One realization - . 0744  - -  .9832 - -  

aFIM in 3D. x: mean, o2(x_): variance of the mean, 0-~: variance, 0 " 2 ( 0 - 2 ) :  variance of the variance. 
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DISCUSSION 

In practice, either of the two methods studied previously, TBM or FIM, 
can be chosen. Each of these methodologies has its advantages and disadvan- 
tages which are considered below. The complexity and programming of the two 
methods are quite similar. Both techniques are relatively simple from a concep- 
tual point of view and are easy to program. However, in practice, the spectral 
method described has the advantage of allowing us to consider any type of 
covariance function however complicated its analytical expression may be. On 
the contrary, to apply the TBM it is necessary to know the one-dimensional 
covariance function or the spectral density function, which are to be used in the 
generating process. The precision of both techniques, considering the ensemble 
statistics and variogram, shows a good fit between experimental and theoretical 
values. However, there is a serious divergence between both methods when 
considering the dispersion of the variogram of each realization with regard to 
the ensemble variogram. This dispersion is represented by the coefficient of 
variation of the average variogram. 

The FIM presents a coefficient of variation of 0.01 (1%) clearly lower than 
the coefficient of variation obtained by TBM, 0.15 (15%). This relatively no- 
ticeable difference in the coefficient of variation has importance when a single 
random realization is considered; the divergences between experimental and 
theoretical values are less for the FIM than for the TBM. The time required to 
generate one realization of the examples previously presented on a PC-386 
compatible is shown in Table VIII. The FIM method only requires, for the 
examples presented, 20% more time than the TBM, which in practice is a few 
seconds more. The disadvantages of the FIM is that it uses a regular network 
for simulation and the number of points on the X, Y, and Z axes has to be a 
multiple of two. With the TBM any number of points in any location can be 
simulated. 

In Pardo-Igtizquiza (1991), a practical method is presented for the simu- 

Table VII. Time Consumption by the Different Methods in the Different Examples 

CPU time (seconds and 
Dimensions Points Generator hundredth of a second) 

1 D 1000 Shinozuka 
and Jan 15.44 

FIM 4.40 
2 D 4096 TBM 7.68 

FIM 8.95 
3 D 4096 TBM 6.81 

FIM 9.01 
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lation of values in any location from the simulated values in a regular grid. On 
the other hand, to solve the second problem, it is enough to simulate a realization 
of  greater size and then take the area of interest. In the same way as occurs 
with the TBM, the realizations generated by the FIM has a multivariate gaussian 
distribution. Therefore each realization is gaussian and, moreover, on taking 
into account a large number of realizations, each random variable (different 
values at the same location) is likewise gaussian. One hundred realizations have 
been simulated on a grid of 64 × 64 values. One location has been selected at 
random from the 4096 possible locations. Figure 16 shows the histogram and 
the statistics for the 100 values of the random function in the same location 
previously chosen. It can be seen how the histogram comes close to representing 
a gaussion distribution with zero mean and unity variance. Therefore, there is 
variation from one realization to another of the same random function and the 
realizations generated by the FIM can be used in sensitivity studies. This feature 
(realizations simulated must not be restricted to an artificially narrow range of 
variation) must be checked for any simulation methodology (Dowd, 1991). 

25 Mean : 0 . 0 6 t  

Vari ance  : 1 .009  

23 S k e w n e s s  : 0 . 4 3 5  

K u r t o s i s  : 0 . 0 4 7  

21 M i n i m u m  : - 1 . 7 2 9  

lOth p e r c e n t i l  : - 1 . 3 6 9  

19 2 5 t h  p e t c e n t i l  : - 0 . 6 4 2  

Median  : - 0 . 0 2 5  

t7  7 5 t h  p e r c e n t i l  : 0 . 7 3 3  

9 0 t h  p e r c e n t i t  : 1 .313  

15 I M a x i m u m  : 3 . 0 9 2  

13 ~ _ _  
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- 3 . 3  - . 3  . 0  .3  3.3 

Fig. 16. Histogram and statistics of 100 values of a random variable generated in 100 different 
realizations by the FIM in the same grid point previously chosen at random. X axis: gaussian 
value, Y axis: absolute frequency. 
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Simulations of Realizations with Anisotropic Covariance by the FIM 

A random field which represents a regionalized variable is said to be an- 
isotropic when the variability is not the same in all directions. That is to say, 
the covariance function (or the variogram) depends on the direction. 

Geometric Anisotropy 

A variogram has a geometric anisotropy when the variogram has the same 
sill in all directions but the range depends on the direction (Isaaks and Srisvas- 
tava, 1991). For the generation of realizations of a random function with geo- 
metric anisotropic covariance there are different working alternatives, such as 
that proposed by Journel and Huijbregts (1978) based on a cartesian coordinates 
transform or that proposed by Mantoglou (1987) using the TBM with a one- 
dimensional spectral generator. 

It is also possible to simulate anisotropic random fields by the FIM. The 
basis is as simple as sampling the anisotropic covariance function and calculating 
the corresponding spectral density function (Fig. 17a). The remaining steps are 
the same as those described previously. To check this, 100 realizations of 4096 
(64 x 64) points each has been generated. The covariance function imposed is 
a spherical model that presents a geometric anisotropy with a range of 20 units 
in the N-S direction and 10 units in the E-W direction: 

 ,xy, Ix ,x j F a . . . .  + + 1 - - - - + - ~  
2 ax -2 2 ay 2 ay J 

ax = 10: range in the N-S direction (X axis), a = 20: range in the E-W direction 
(Y axis), and sill = 1. 

The point interdistance in the X and Y axes are equal to one (Ax = Ay = 
1). Figures 18a-d show the average variogram obtained from 100 independent 
realizations for the direction N-S, E-W, NW-SE, and NE-SW, respectively. The 
good correlation between the theoretical and the experimental values can be 
observed. Figures 18e-f show the experimental variogram for a single random 
realization and, last, Fig. 19 shows the cartography of isovalues for this real- 
ization. 

Zonal Anisotropy 

A covariance model has a zonal anisotropy when the range is the same in 
all directions but the sill varies with the direction (Isaaks and Srisvastava, 1989). 
To check the simulation of a zonal anisotropy in two dimensions, 100 realiza- 
tions of 4096 (64 x 64) points have been generated. The covariance function 
imposed is: 
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Fig. 17. Two-dimensional anisotropic spectral density function (surface and contour display): 

(a) geometric anisotropy, (b) zonal anisotropy. X axis: frequency, Y axis: frequency. 

C(x ,y )=C x 1 - ~ a  ~ -[-Cy 1-~a+~-3j 
a = 10: isotropic range, Cx = 0.3: sill in the X direction, and Cy = 0.7: sill 
in the Y direction. Figure 17b shows the spectral density function of  a covariance 
with zonal anisotropy. Figure 20 shows the results of  the simulation, and in 
Fig. 21 the cartography of  a single realization has been represented. In practice, 
zonal anisotropy and geometric anisotropy can occur together on the same ran- 
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Fig. 18. Results of the FIM in 2D when the covafiance has a geometric anisot~py. Average 
variogram of 100 realizations for directions (a) N-S, (b) E-W, (c) NE-SW, (d) NW-SE. Experi- 
mental variogram of a single random realization for directions: (e) X axis: distance, Y axis: 
variogram function. - - :  model, A, o, x: simulation. 
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Fig. 19. Cartography of a single realization with geometric anisotropy~ X axis: 
distance, Y axis: distance, 

dora field. Let a random field to be a two-dimensional random function with 
geometric and zonal anisotmpy in the X-Y plane. For example, we consider the 
model: 

C(x,y) Cxll 3 x  lx3~ I 3 y ly31 . . . .  + + -- - -+  --5 2ax 2 a 3 J  Cy 1 2 a, 2 ay 

ax -- 15: range in the N-S direction (Xaxis), ay = 10: range in the E-W direction 
(Yaxis), Cx = 0.7: sill in the X direction, and Cy = 0.3: sill in the Ydirection. 

Figure 22 shows the results of the simulation. A good fit between the 
theoretical and simulated variogram is observed when ensemble values are con- 
sidered. When only a single realization is considered discrepancies between the 
model and experimental variogram are greater (as was expected) mainly in the 
directions of anisotropy (N-S and E-W) because, as can be seen in Fig. 17b, 
when a zonal anisotropy is present in these directions, the spectral density decays 
to zero more slowly than in other directions and aliasing can be suspected. 
Better results can be obtained by increasing the size of the field to simulate. 
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Fig. 20. Results of the FIM in 2D when the covariance has a zonal anisotropy. Directional var- 
iograms (a) N-S, (b) E-W, (c) NE-SW, (d) NW-SE. A: Average vafiogram of 100 realizations, x: 
Variogram of a single realization - -  : model. X axis: distance, Y axis: variogram function. 

The great similarity between Figs. 20a and 22a is because the two real- 
izations are the same random phase spectrum and the only difference is the range 
in the X direction of  the second example.  

C O N C L U S I O N S  

In this paper, the Fourier integral method (FIM) is presented as an efficient 
methodology for the generation of  realizations of  random functions in 1D, 2D,  
and 3D. Its main advantages with regard to the Turning Bands Method (TBM) 
are its generality to simulate any permissible covariance model  and its good 
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Fig.  21. Cartography of  a single realization with zonal anisotropy. X axis: distance, 

Y axis: distance. 

precision, shown by the behavior of the ensemble statistics and a lower coeffi- 
cient of variation of the average variogram than that obtained by the TBM. 

Moreover, the generation of realizations with nugget effect, nested struc- 
tures and with anisotropic covariance (geometric, zonal or both) is immediate 
and no require any additional work. In 1D the method is also competitive with 
regard to the Shinozuka and Jand method mainly concerning the periodicity of 
the variogram simulated. 

Its principal limitations, generation of points in a regular network and 
number of points on the axes to the power of two, can be solved easily in 
practice. On the other hand the method is highly competitive in computing time. 
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