THE PHYSICAL INTERPRETATION OF THE
PARAMETERS IN THE GENERALIZED KERR—NTUT

SOLUTION., 1
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The interpretation of the parameters in the generalized Kerr—NUT solution is considered
by investigating the dynamical characteristics of the field corresponding to a given solution.
It is shown that the interpretation obtained of these parameters differs in some aspects from
the one generally accepted. It is assumed that the reason for this is the unfortunate choice
of the frame of reference utilized in obtaining the dynamical characteristics of the field.

In 1966, Demianski and Newman obtained a new solution of Einstein's gravitation equations [1].
This solution possesses a number of very interesting and, in a certain sense, even extraordinary pro-
perties which makes its investigation extremely urgent. The point is, it generalizes the two solutions
which have at the present time numerous physical and astrophysical applications., They exist in terms
of the Kerr [2, 3] and Newman—Unti—Tamburino (NUT) [4] metrics, The solution considered here was
obtained by means of a complex coordinate transformation, where the Schwarzchild metric was utilized
as the original metric. Incidentally, let us note that until recently this unusual technique was applied pure-
ly intuitively and its utilization was only justified by the correctness of the results obtained. The proce-
dure for obtaining the solutions of Einstein's equations by means of a complex coordinate transformation
has received a rigorous, mathematical basis only in one of Newman's recent papers [5].

The Demianski—Newman (DN) solution is obtained by using the Newman—Penrose formalism [6],
where a quasiorthogonal tetrad of isotropic vectors
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is utilized in the notation of the field equations. The contravariant components of the Newman—Penrose
tetrad, corresponding to the DM metric, have the form
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That is, the vectors (3) were obtained in [1] by a complex coordinate transformation of the initial vectors
corresponding to the Schwarzchild solution. If is now easy to obtain the metric of the solution in question,
utilizing the relationship (2}. One should stipulate that this procedure is not performed entirely correctly
in [17.

The expression for the Demianski—Newman metric with corrected errors, introduced in their pa-
per, has the form
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The determinant of the metric tensor (5) equals
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Let us also cite the covariant components gy, substituting them into the following expression for the
square of the 4-interval:
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The nonzero Ricci rotation coefficients corresponding to (5) have the form
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And, finally, the contracted components of the Weyl and Maxwell tensors equal
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As is seen from Eqs. (4) and (7), the DN metric depends on the parameters m, a, b, e, and g.
Whena =b =g =0, it becomes the Reisner—Nordstrom metric; when a= g = 0, a "charged™ NUT space
is obtained, and whenb =g =0, we have the Kerr solution for an electric charge. Thus, this solution
unifies diversified classes of greatest importance from the point of view of the physical applications of
the spaces (let.us mention that Demianski was also able to generalize this solution in a recent paper [7]).

The metric (7) is related to the D type according to the classification of Petrov, It permits the
existence of geodesic rays with nonzero divergence and curl (o ¢f) = 0). The fact that its components do
not depend on the time and the angle ¢ indicates that the corresponding physical space permits two kinds
of motjon described by the following solutions of Killing's equations:

B =8, B =B

m @ (11)
In {1], the five parameters (m, @, e, b, g) are interpreted as follows: m is identified with the source, «
with its angular momentum per unit mass, e with the electric charge of the source, b with the mass of a
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type of magnetic monopole, and g with its magnetic charge. The fact that when b = g = 0 the metric (7)
describes a Kerr space with a charge serves as the basis for the first three statements and this, it would
appear, eliminates any ambiguity in the physical interpretation of the parameters m, a, and e, The pur-
pose of our work, in particular, will be to show that even in this case definite confusion exists in the inter-
pretation of these parameters, When a =0, the DN solution describes a charged NUT space. In addition,
in this case, on the basis of the structure of Maxwell's tensor (10), one-can assume that e corresponds to
the electric charge of the source, while g corresponds to a magnetic charge which, as is known, is lack-
ing in the classical electrodynamics of Maxwell [8]. - The similarity in the structure of the Maxwell (10)
and Weyl (9) tensors allows one to say that b is a mass of the "magnetic” type [1]. A similar interpreta-
tion of these parameters in the NUT solution is correct in general and we shall give a rigorous proof of
this in a future paper. However, to begin with, let us elucidate the physical meaning of the quantities m
and ¢ occurring in Eq. (7).

If one calculates the total energy of the field created by the source of this metric, the following
expression is obtained:

(12)
(n is Einstein's constant).

This not exactly conventional result is nevertheless physically correct, In the fundamental paper
[9], for example, it is remarked that "in all global laws we deal with the fotal energy, ‘total' meaning
summation over the entire space and all forms of energy” Thus, the constant m in the metric (7) is cor-
rectly interpreted to be the total energy of DN space, and not the total energy of the material mass as is
assumed in [1].

Let us mention that in obtaining Eq. (12) we proceeded on the basis of the Denen—Dozmorov theory
of reference systems associated with graviinertial observers [10, 11], the course of the argument being
entirely analogous to that presented in [12]. The question concerning calculation of the value of the total
momentum of the field created by the source of the metric (7) is very interesting. As a generator of the
conserved quantities, we utilize the well-known expression of Komar [13]

Fb = _2.. (v —§gv "y (13)
k]
which satisfies a strong conservation law in the form
Ft,=0. (14)

In order to obtain an integral relationship, let us integrate Eq. (14) over a section of a world tube
bounded by two spacelike cross sections 7
=\ F® = : » Fedl,.
0=[Fhae §F*dsp+$F dsp+;§ ; 15
The last integral over the walls of the tube vanishes at a sufficiently great distance from a system of finite
sources. Furthermore, assuming that dSu =dV Sp Sﬂ =— S,}, i.e.,the normals transform into one another
during the motion of the three-dimensional volume from one cross section to the other, we finally obtain

Lj‘ FedS, = zf Feds,. (16)

Thus, the integral [FFdS, does not depend on the choice of the three-dimensional volume of integration
and as a result expresses an integral conservation law. Komar's expression (13) then becomes physically
meaningful when we associate the quantities characterizing the symmetry of the space, the Killing vector,
with the vector field £é#. Inthe case under consideration, we have, taking into consideration Eq. (13), the
following expression for the angular momentum ,
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where £M is given by Eq.(11), and an element of the two-dimensional surface bounding the three-dimen-

sional volume equals [11] S
dsp.v = R lv] V— gdxz dx3,

Here, as in Eq. (15), we applied the Gauss—Ostrogradskii theorem [14].

We shall omit here the simple, but rather lengthy, calculation accompanying the one using Eq. (17).
Let us write the final expression for the moment in a sphere of radius r
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We obtain the value of the total moment by letting r go to infinity in Eq. (18)
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Let us discuss this result in greater detail. When b = 0, an expression is obtained for the angular
momentum of the field described by the Kerr metric,' In this case, the result (19) seems to be clearly
extraordinary, In fact, the generally accepted interpretation of the Kerr metric is just such that it corre-
sponds to the field of a rotating source with mass m and a total moment M = —(8zma/w} [15, 16}, In gen-
eral, a significant number of papers are devoted to calculating the angular momentum of a Kerr space.
The expression of Komar (13) was utilized in [17] for this purpose. The usual, correct to a sign, expres-
sion M = (8mma /%) is obtained, However, this result is questionable, The point is that the calculation
shown in Eq. (19) actually coincides with the calculations in [17]. Therefore, one must consider as in-
correct either the result in [17] or the one obtained by us, (The expression M = — (4/3) 8mma /1 for the
Kerr metric was obtained for the first time in [18]). A thorough examination forces us to consider the
result (19) as preferable. Apparently, an error in the calculations was allowed in [17]. One can say the
same concerning the results in [19]. One should especially discuss [20], where a check of the calcula~
tions given there led us to detect an apparent error in them. Thus, we are faced with the following dilemma.
Either the result (19) obtained by us is correct, and one should acknowledge an unsatisfactory, generally
accepted, interpretation of the Kerr metric, or utilization of the integral expression (17) in the given case
is incorrect. As is pointed out in a recent paper by Dozmorov {21], the second assumption appears to be
correct. Nevertheless, the correct expression for the moment is M = —(87ma/u), obtained on the basis'
of the theory of graviinertial reference systems and the Bondi coordinates rigidly bound to them [11, 21].

In the same way, a possible and correct interpretation of the parameter b, whose meaning in (19)
is not entirely clear, as well as of the rest of the parameters occurring in the Demianski—Newman meiric
(7), is found. Our next paper will be devoted to this problem.

In conclusion, the author takes this opportunity to thank I, M, Dozmorov for his assistance in com-
pleting this paper, as well as all of the participants in the seminars given by V. I. Rodicheva and D, D,
Ivanenko who discussed its results.
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