GEODESIC CURVATURES IN KERR SPACE

I. M. Dozmorov and G. V. Lutsenko UDC 530.12:531.51

The structure of the sources of a gravitational field in Schwarzchild and Kerr spaces is
investigated using the method of geodesic curvature. The curvature is calculated in
Schwarzchild space for an isotropic and time-like congruence and in Kerr space for two
isotropic congruences. An analysis of the curvature is made,

‘Geodesic curvature is utilized in [1] to analyze the structure of the source of a gravitational field
in Schwarzchild space. In this paper, geodesic curvature is considered for determining the physical sin-
gularities in the Schwarzchild and Kerr solutions using the Newman—Penrose (NP) formalism [2] (see also

[3, 4]).

B The quasiorthogonal tetrad formed by the four linearly independent isotropic vectors ¥, , 1y, my,
and my, satisfying the orthogonality condition

lant=—mym, =1 1)

(the line denotes complex conjugation) is utilized in the NP formalism. The rest of the contractions of
these vectors vanish. It is convenient to write the tetrad in the form Z = (lps ny, my, E“), where the
tetradic indices are denoted by Latin letters (except i, j) and the covariant indices are denoted by Greek
letters. All of the indices vary from 1 to 4.

The Kerr solution [5] is written in the NP formalism in the following manner [6]:
g =10+t —mtm —mm,
P, nt=d U¥, mt=od
L =3+ asin?@8%, my=— B+ 8 —asin?®(U-+1)3,

mp = — 1/V2(r 4+ iacos 8) (32 +isin 83L), (i, x=1,3,4),
11 - - -

U= —‘?—E’m(p-i_PL (!)=(D0~p, Ei= ENE’
1 i —i
03:—-—-——: 04=_____;-____, m0=""Em='_=aSiﬂ8-
C=vE V3sin® 5 @)

The coordinates x* = (u, r, ®, ¢), where u is the retarded time, are utilized; r is the affine para-~
meter along the isotropic geodesic and characterizes the distance from the source; @ and ¢ are polar an-
gular coordinates. The superscript "0" denotes that the function is independent of r., The nonzero rota-
tion coefficients of Ricci and the components of the Weyl tensor are

P r-+iacos® ' T 9y %sin® 9 7
1 ~, =, i
= — (g + mpp -+ mp?), v= —=asinBmg,
b= (et mppt ¢°) Ve |
¥,=0, =0, ¥,=ms? ‘F3=—3l:iamp"sin9, ¥, = — 3p*a’msin® 8. . (3)
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The Schwarzchild solution is obtained from the Kerr solution

n . p Y "Null” surface
L by letting a equal zevo.

The equation of the geodesic curvature, according to [7],
has the form

RS o
m\
1
2 o
Sy

i % i ; . oxt . oxt .
S Y Rmuiveun=0, v=% vt
¢ du? ou dv
Fig.1 where 6/6u is the absolute derivative; u is the canonical para-

meter along the geodesic; v is a parameter which is constant
on each of the geodesics, The vectors Ul-t {the vector tangent to the geodesic) and V), are related in the
following manner:

U s V=V, U, (5)
We shall define the geodesic curvature as
2
b2V R U Ve, (6)
8u?

Let us consider an isotropic geodesic congruence in Schwarzchild space such that UH =ly. Asis
known, in order that the isotropic vector I, would be tangent to the geodesic, it is necessary to satisfy
the condition k = 0 {2} and

Lol = (e+ E‘) L. 0

One can transform the coefficient [, —~ ¢, to zero by a change in scale (¢ + €). The vector lu is a
geodesic for the Schwarzchild solution written in the form (2).

Let us define the vector vV, in the form

Vi = @l 4 1o+ cma - cimy, (8)
where e and c are functions of r and ®. Using Eq.(5), we obtain @ = — mr-! and ¢ = —c'r. Then‘the geo—-
desic curvature is written in the following form:

My = — Ryvee I’ VoIt = — R,y = (¥ -+ Ty) L. )]
Substituting ¥, = — mr~3 into Eq. (9), we obtain
N = — (2mr¥)l,. (10)

Let us now determine the geodesic curvature in Schwarzchild space for a time-like geodesic con-
gruence, Let us define the 4-vector velocity in the form

Up= ]/12— (Le 4+ n2). {11)

Let us satisfy the geodesic equation uu;,,u” = 0 with the aid of the Lorentz rotations I = eLy, ﬁ'ﬁ = -1 o,

Let us define the vector V), in the form
Ve =al,+ (1 + a) n, + cm, + cm,. (12)
Solving Eq. (5) and substituting the expression obtained for V,, and Eq. (11) into Eq. (6}, we obtain

1 e /
Mo = E(\Fz‘l"wz) (o — 1) = — \:%) (L — ). {13}

Comparing expressions (10) and (13), we conclude that a unique physical singularity oceurs in Schwarz-
child space as r — 0, in agreement with the results in [1].

It is especially interesting to analyze the behavior of the geodesic curvature in Kerr space. Let
us consider the isotropic geodesic congruence with the tangent vector Uy =1y Ithe vector I is the geo-
desic for the tetrad (2)].

Let us define a vector Vy similar to (8):
Ve = aly + 1, + cm, + cm,.
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Solving Eq. (5), we obtaina = 1/2 mfp + p) and ¢ =c®/p. Then the geodesic curvature assumes a form
similar to (9):

o = (Fy+ W2) L.
Substituting ¥, from (3) into this expression, we obtain the formula for the geodesic curvature in Kerr
space

2mr (r* — 3a® cos®? 8)
* [ (r* 4 a’cos? 0)? J * (1)
The coordinates r, ®, and ¢ are not the usual polar ones since even in the limit of plane space (m
= 0) the Kerr metric is not the Minkowski metric in polar coordinates. The following coordinate transfor-
mation reduces all of the coordinates to the polar ones T, 8, ¢, 0=t — T [8]:

o 2w ~ tgo —ajr
r2=r*4+a’sin?8, tgo=——1
" B T @ntey
c0s 8 = rcos 8/(r? 4 a?sin? 8)'2, £=u— (r*4a? sin? 8)1124-r. (15)

The situation is such that we have an initial curved space associated with a plane space, in which
polar coordinates are defined. We can now analyze the geodesic curvature as a function of the polar co-
ordinates established in the associated plane space.

Analyzing Eq.(14), we conclude: when r =a and ® = /2, there exists a singular annulus on which
ny — <. Hence, one can consider this annulus as a physical singularity which is unique in Kerr space.
Furthermore, it is necessary to mention the existence of a certain "null" surface on which the geodesic
curvature changes sign. »

Graphs of the equatorial and axial curvatures as a function of T are given in Figs,la and 1b, res-
pectively. A cross section of 4-dimensional Kerr space—time, u = const, is given in Fig.lc.

Let us counsider a second isotropic geodesic congruence with the tangent vector U, =n,. For the
vector n, to be a geodesic, it is necessary to satisfy the condition v = 0. In order to satisfy this condition,
a tetradic transformation is possible which leaves the orthogonality condition for the tetradic vectors in-
variant. This transformation is a zeroth-order rotation of the tetrad about I¥ [3]

=0 mt=m+al, n*=n*+am* 4 am* +aal?, (16)

and ¢ is a complex scalar. If the complex scalar g equals a = {ia sin®/V2) p, then the functions v, ¥, and
¥, are eliminated by this transformation. Then the geodesic equation for the isotropic vector ny, will be

Mgy 1 = (14 7) Mo an
Let us transform the coefficient {(y + ¥) to zero by means of the scale transformation ¥ — @It
We define a vector Vy in the form
Vo =l + bn, + cm, - cm,, (18)

where b and ¢ are functions of r and ®. One can show that this vector satisfies Eq.(5), the functions b
and c not occurring in the expression for the curvature, Thus, for an isotropic geodesic congruence with
the tangent vector n, we obtain

(19)

T I ¥/ 2
o= (Vo 4+ Ty) 1y = — [2”“’ (r* - 3a?cos? 6) ]np.

(r? + atcos? /)2
Comparing expressions (14) and (19), we conclude that the curvatures are identical for both congruences.

Thus, let us emphasize that the analysis conducted allowed one to uncover the more detailed pro-
perties of the structure of the source in Kerr space (the surface for the zeroth-order curvature) than was
possible with conventional methods [8]. Additional investigation is required to explain the physical mean-
ing of these properties.
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