EMPIRICAL ANALYSIS OF THE FORMULA FOR
THE BINDING ENERGY OF NUCLEI

N. N. Kolesnikov and V, M, Vymyatnin UDC 539.1.01

An accurate knowledge of the properties of the nuclear energy surface is important not only for
practical reasons (to calculate nuclear masses, and to predict the properties of superheavy elements and
nuclei far from the B-stability line), but also to check and refine nuclear models. The well-known semi-
empirical formula for the binding energy due to Bethe and Weizsacker [1] has been subjected to a number
of refinements and modifications in order to obtain better agreement with experiment [2-10]. The correc-
tion terms, introduced from theoretical considerations, take into account the specific features of the dis-
tribution of nucleons in the nucleus (the diffuseness of the boundary, the nonuniformity of the distribution
in the inner region, and the difference between the neutron and proton densities) [2-5], the effects of de-
formation and compressibility of the nuclei [6~10], Coulomb exchange interaction [3, 6], etc. However,
because there is no rigorous theory of the nucleus the role of the various correction terms remain un-
clear,  As far as their empirical basis is concerned, the introduction of correction terms into the equation
~ for the binding energy, despite the addition of new parameters, does not lead to any appreciable improve~
ment in the agreement with experiment., Nevertheless, the introduction of purely empirical corrections to
the parity and the effects of the shells considerably improves the agreement with experiment [1, 3, 6, 11].

All this stimulated us to try to clarify the features of the structure of the formula for the binding
energy, without previous resource to any model representations, and based exclusively on experimental
data.

It is well known that for any fixed mass number A the stability of the isobars falls, while the energy
increases the further the nuclei are from the region of stability both on the neutron-excess side and on the
proton-excess side. A detailed analysis of the experimental data given in [12-15}], shows that within the
limits of experimental error the isobar cross sections of the energy surface in the regions between the
magic numbers of neutrons and protons are (for nuclei of each of the four types of parity) quadratic para-
bolas, so that the total energy of a nucleus with mass number A and charge Z can be represented in the
form [12-14]

E(A,Z) = E"(A) +-&x(Z — Z°(A)), 1)
where k is a constant, and Z? increases linearly with A in the limits between the magic numbers N and Z.

When the magic numbers N (or Z) intersect, « and 79 change abruptly, but such that for the system of
nuclei as a whole k decreases while Z0 increases as A increases,

Taking this into account, the averaged equation for the binding energy of nuclei, neglecting the
effects of the shells, can be written in the form*

B(A, Z) =k (A) 22 + o (A) Z + X (A). 2)
In what follows it will be more convenient to write Eq.(2) in the form of a sum
. . s 2 .
BA, 2)=a,(A)A— ) 7oy 4y AZ2D | 2 (@A) 4 oz 3)

A A 2

* In this case E(A, Z) =A-E, — Z*Epp — B (A, Z), where Ejp is the total energy of a neutron, while Epp is
the difference between the neutron and proton energies,
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This form is more convenient because when a¢(A) = const, ag{A)= const, ay(A) =counst + const.A"1/3
and aw(A) = 0, Eq.(3) reduces to the usual Bethe—Weizsacker formula. When aw(A) # 0 an additional
so-called Wigner-term occurs in the formula. Interpreting [aC(A)/A1/3]- 72 as the Coulomb energy of
the nucleus, we can calculate the relation between o, and A using experimental data on the charge distri-
bution in the nuclei [16]. For the Hofstadter distribution this gives (see Appendix 1)

a,(A) = 0.673 +0,00029-4 MeV. (4)

To find the relations ag(A), aw(A) and ay(A) we will start from the requirement that the mean square
deviation of Eq. (3) from the experimental values should be a minimum for a minimum number of para-
meters introduced. We will take the approximating functions in the fairly general form

2(A) = X (@, + by A)'s, (5)

where ay, s bgs,and ¢ ¢ are adjusting parameters. These parameters can be chosen in various ways; the
best function from among those with a fixed number of parameters is taken to be that which gives the mini-
mum mean-square deviation. Termination occurs for such a number of parameters for which the addition
of one more parameter leads only to a small reduction in the mean-square deviation,

To find ag(A) and o w{(A) it is convenient to use f-decay data. If the isobar cross section of the
nuclear energy surface is a quadratic parabola, then, according to Eq. (2), 1/4 of the difference in the g~
decay energies ET(A,Z) = EA,Z) — EA,Z +1)and E7(A,Z +2) =E(A,Z + 2) — E{A,Z + 3) of the iscbars
(A,7Z) and (A, Z + 2) must be equal to the curvature of the parabola

1 _ R
x(A):Z{E (A, 2) —E (A, Z+2)}. (6)
In this case k (A), according to Egs.(2) and (3), is related to ag(A) by the equation

_ 4 (A) | % (4)
T A - A ]

Kk (A)

The position of the minimum of the isobar parabola Z%(AJ is found from the condition {0E(A, Z)/8%Z]
lz =z%A) =0, or from the equivalent condition (see [12, 14]) E™[A, Z*(A)] = E¥[A, Z%(A)] [where E+(A, Z) =
—E~(A,Z —1) is the energy of the g™-decay of the nucleus (A, Z) into the nucleus (A, Z —1)]. Taking into
account also the linear dependence on Z of the energies E* (A, Z), that follows from Eq. (2), we can express
ZY(A) in terms of the energy of the g decay of the isobars (A, Z) and (A, Z + 2)

EY (A, Z+2)—E (A, Z-+2) }~1

E™(A,Z)—E" (4, Z) ®

.Z°(A):Z+2{1+
On the other hand, it also follows from Eqgs. (2) and (3) that Z%(A) is related to aw(A) by the equation

1
%, (A) + 2, (4) + ~E,
204y = — A FEnp R (©)
2 (A) o, (A) 4o, (A) )
an g

Using the experimentally measured g-decay energies of the isobars and using Eqgs. (6) and {8) we
can determine the "experimental™ values of k (A) and Z¥A). If the isobar curves were accurate parabolas
the values of x (A) [and similarly Z°(A)], obtained using various isobars, would be the same for the same
A. As seen from Figs,1 and 2 this is in fact the case everywhere the magic numbers N and Z do
not intersect, This confirms the correctness of the choice of the dependence of B on % in the form of Eqgs.
{2) and (4).* ‘

Starting from the requirement that the mean-square deviation for « (A) calculated from Eq. (7) should
be a minimum for the minimum number of parameters in the expression for ag(A), we find that the depend-
ence of ag on A should be linear, and numerically

s (A) = 13,1635 4- 0,04450- A MeV. (10}

* Attempts to choose the dependence of B on Z in a form different from Eq. (2) does not improve the ag-
reement with the experimental values of x and Z9,

1737



AKX 94 . -
TS i Ty del L
43 |~ ' BRE 2 1
gz oL ‘} ¢ o '
MR ANERETED R oz
' e | L1 N T o > g |80 80 10 iz 190 160 /80 e 220 2ige A
) 'o- ._‘:p u'._ ‘u:.—..,'o_ os}_-.,‘ :a » ;e._ vs | . ot T e ..‘. ey
g % : LJ e -1 :;:, 7:‘}:-":-::_ '3" av 'z‘-‘ﬁ" - : -2 .o . ol L’q.r'."r-.;'{‘i‘
-0’/ . ol ...." X : 20 i b, Ly 1
.« 3 S o 04 L%
-02 b+ S ’ 1
-3 Ua 3 4. kd K
"0 40 100 120 140 167 189 200 220 240 A g0l i B { _
Fig.1. The difference between the ex- Fig.2. Difference between the calcul- |
perimental and calculated values of « . -ated and experimental values of Z,
bfeq/l.'.— " <% kY A1 In a similar way, from the requirement that the values of
ik i . : ‘ ." Z9(A) calculated from Eq.(9) should agree with the experi-
Y s .; : wﬁ: >‘ | mental values, we obtain that
La‘&g:i, P Ead B A . . tq (A) = 3500 — 0,00924- 4 MeV. 1)
Py o . o* H % . L.
-2 - ‘i U".-'.. e 3 ...} —+4 The data on the p~dacay energies were taken from
-4 L J LY I tables [18]. The difference between the values of « (A) cal-
5 @ onf 1% . ,'_' | culated from Eq. (7) taking Eq, (10) into account, and the
. MR experimental values is shown in Fig.1 as a function of A;
1 N in Fig.2 a similar graph is drawn for the difference be-
tween Z° calculated from Eq. (9) taking Eq. (11) into ac-
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Fig. 3. Difference between the calculated
and experimental values of B(A, Z).

count and the experimental values. As is seen from Figs.
1 and 2, the difference between the calculated and experi-
mental values is not systematic and is due to the effect

of the shells,

The relation between ay and A was found from the requirement of minimum mean-square deviation
of the binding energy [calculated from Eq. (3) taking Egs. (4), (10), and (11) into account] from the experi-
mental values of B(A, Z) [18] for the minimum number of parameters in the approximating equation (5). It
turned out that ay(A), unlike ao(A), @gl{A), and aw(A), depends on the parity of the nuclei, whereas for
even—even (Z-even, N-even) nuclei '

‘a,(A) = 6,9750- A%117 MeV, (12)

I, as assumed, we isolate the correction on the parity, then when changing from even—even to even—odd
nuclei we must add to the expression for B(A, Z) :

3€(A)=11.74. A-04 MeV, (13)
For odd—even and odd—odd nuclei the corrections will be
bog(A) = — 11502- A~0ed MeV. (14)
92(A) = — 32,01+ A~05% MeV. (15)
In this case B(A, Z) for even—even nuclei will be given by
Bee (A, Z) = 6,9750- A7 — (13,1635 - 0,04450- 4)
A—22)* Vi PP T IE
w A—22)° - Y (06734 0.00029- A)- 2+ (3500 - 0.00924- 4) | 4 — 22| MeY. (16)

From the point of view of writing the formula for the binding energy in'the form (3) the smoothed formula
obtained contains 6 independent parameters for nuclei of each of the types of parity (including the four com~
mon parameters), i.e., as many as the Bethe—Weizsacker formula (taking into account in the latter the
corrections on the parity and the index 2/3 in the term for the surface energy). However the agreement
between the Bethe—Weizsacker formula and experiment is much worse than Eq. (16), which is easily seen
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TABLE 1, Comparison of the Different Versions .
of the Formula for the Binding Energy

Sk Szo ‘s .

(for o-e. nuclei)
Green [2] 0,270 0,459 3,05
Mozer [9] 0,126 0,430 3,08
Cameron {3] 0,204 0,445 2,88
Kodama {10], 0,137 0,448 2,73
Swiatecki [8] 0,163 0,432 2,81
Formula [16] 0,115 0,401 2,89

from Table 1, where we have given: a) the mean-square deviations from the experimental values for the
curvature of the isobar parabolas oy, b) the mean-square deviations oz for Z%, and c) the mean-square
deviations og for the binding energy B(A, Z). The structure of the Bethe—Weizsacker formula is such
that it is impossible simultaneously to ensure the correct form of the g-stability line of Z%A), and the
-correct dependence on A of the curvature coefficient of the isobar cross sections « (A).

The introduction into the Bethe—Weizsacker formula of a surface symmetry term [7] [which cor-
responds in Eq. (3) to a g(A) of the form ag — bSA”1/3] agrees qualitatively with our conclusions [see Eq.
(10)] regarding the increased role of the symmetry energy in heavy nuclei, and gives better agreement
with the experimental values of ¥ (A). However, the assumption that the whole part of the energy which is
linear in Z is contained in the symmetry energy leads either to an increase in « (A) for light and medium
nuclei [3], or to a reduction for heavy nuclei [8, 9]. In addition the g~stability line also differs somewhat
from the experimental line in the region of heavy nuclei, Hence, the introduction of the Wigner term is
necessary in order to give a better description of nuclei far from the g-stability line, and also of super-
heavy nuclei. The positive role of the Wigner term is discussed in [8]. A characteristic feature of Eq. -
(16) is the absence of the surface term in explicit form. Qualitatively, the dependence of oy, on A, ac-
cording to Eq. (12), acts in the same way as the introduction of the surface-energyterm, but the quantita-~
tive agreement between Eq. (12) and experiment is better (o is less), than when the surface term is intro-
duced., Moreover, in the last case ay(A) an extraneous parameter is introduced, namely,

0, (A) =a,~— b, A%, 17

where x = —1/3, and ay and by are positive constants., Using a variational procedure we will attempt to
find the best value of x in Eq, (17). It turns out to be —0.45, and consequently, the quasisurface term has
the form const-A%% and not const-A2/3, as is assumed in the liquid-drop model. This result can be in-
terpreted in the language of the liquid-drop model as a f{all in the surface tension as A increases., The
need to re-examine the surface term was recently pointed out in [17].

Finally, the procedure of separating the terms which depend only on A is not completely unigue,
since instead of the Wigner term, one could isolate simply the term proportional to the first power of Z,
or disturb the symmetry in the symmetrical energy term by replacing A — 2Z by A —ag(A)-Z. However,
in neither of these versions is the "classical” form of the surface term a better approximation. The as-
sumed formula for the binding energy of nuclei gives better agreement with experiment for the least num-
ber of parameters (see the table) compared with other formulas, for nuclei far from the g-stability line,
and for heavy nuclei. A further improvement can be obtained by introducing local shell corrections.

APPENDIX 1

Calculation of the Coulomb Energy

The usual expression for the Coulomb energy of a charge distributed with density Zep (v}{Jp (x)d®r=1)

502(23)2 _5‘ p(rdp(ry)

a3y d3
5 ir—ra ry-d3ry 1.1)
in the case when the charge distribution is spherically symmetric, can be written as
. [e] o 0
4n Ze)2 '
ECZ"LTE‘Q‘Q“‘SP(H)Hdﬁ {5‘53("2) r} dfa—‘j P("n)f2("2~f1)d’2}-
1] 0

n
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This expression can be integrated by parts to give

o] i sl o oo o0 T
Z / '
E, =" ;’)2 : j dr (4njp(rl)»r1 dr;) (Zey? (4) j (r) r«drj pry) rydry = (Ze)? <4w>=’jp<r)rdrjp(n)r%dn- a.2)
¢ r 0 0 1}

T

The integrals in Fq. (1.2} can easily be evaluated numerically. Thus, for the Hofstadter density p(r}=py
-[1+exp(r—c/a)]”!, where c =1.08-A'/3F, anda =0.53 F [16], E; becomes

2

. Z
EE=EC(A)-W, (1.3)

where .
a, (A) = 0,673 + 0,00029- A. (1.4

To evalnate E¢ approximately it is convenient to express E¢ in terms of the formfactor of the charge dis-
tribution p(r). Representing |r;—r,! -1in Eq.(1.1) in the form of the integral 1/2n2- fd*n/n2. ein(ri—r,)
and expanding el”Try in series, and integrating, we obtain

(Zep (3« —iyrs (=) L
E= 4x2 j ,S' (r)e " diry {H'E @+ 1)l }

a3 _
Hence, assuming that Sl T an —7— when n = 0, and (—1)2*t.873. V20 —U)5(r,) when n >0, we obtain
2

Ze)? 1
E=" {<7> 24 Gn +>1)’ A= 7V 1) "=°}’ a3
where
Lrt> = j‘ p(r) retdar, (1.6)

Hence, in particular, for the Hofstadter distribution we have with a high degree of accuracy
E,= (Ze)? { SIN 4 0 r’>}-
\ r / 6
Numerical caleulation using Eq, (1.7) leads to results that are practically identical with those obtained
using the accurate formula (1.2).

(1.7)
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