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An accura te  knowledge of the p r o p e r t i e s  of the nuc lear  ene rgy  sur face  is impor tant  not only for  
p r ac t i ca l  r e a s o n s  (to ca lcula te  nuc lear  m a s s e s ,  and to p red ic t  the p r o p e r t i e s  of superheavy  e l emen t s  and 
nuclei f a r  f r o m  the /3 -s tab i l i ty  line), but a l so  to check and ref ine  nuclear  mode l s .  The well-known s e m i -  
e m p i r i c a l  f o r m u l a  for  the binding ene rgy  due to Bethe and Weizsacke r  [1] has  been subjected to a number  
of r e f inemen t s  and modif ica t ions  in o rde r  to obtain be t t e r  ag reemen t  with e x p e r i m e n t  [2-10]. The c o r r e c -  
tion t e r m s ,  introduced f r o m  theore t ica l  cons idera t ions ,  fake into account the specif ic  f ea tu re s  of the d i s -  
t r ibut ion of nucleons  in the nucleus  (the d i f fuseness  of the boundary,  the nonuniformity  of the dis t r ibut ion 
in the inner region,  and the d i f fe rence  between the neutron and proton densi t ies)  [2-5], the ef fec ts  of de-  
f o r m a t i o n  and c o m p r e s s i b i l i t y  of  the nuclei [6-10], Coulomb exchange in teract ion [3, 61, e tc .  However ,  
because  the re  is no r i go rous  theory  of the nucleus the role  of the va r ious  co r r ec t i on  t e r m s  r e m a i n  un- 
c l e a r .  As f a r  as the i r  e m p i r i c a l  b a s i s  is concerned,  the introduction of co r r ec t i on  t e r m s  into the equation 
for  the binding energy,  despi te  the addition of new p a r a m e t e r s ,  does  not lead  to any apprec iable  imp ro v e -  
ment  in the a g r e e m e n t  with e x p e r i m e n t .  Never the les s ,  the introduction of pure ly  e m p i r i c a l  c o r r e c t i o n s  to 
the pa r i t y  and the e f fec ts  of the shel ls  cons ide rab ly  improves  the ag reemen t  with exper iment  [1, 3, 6, 11]. 

All this  s t imula ted  us to t ry  to c la r i fy  the f ea tu re s  of the s t ruc tu re  of the fo rmula  for  the binding 
energy,  without p rev ious  r e s o u r c e  to any model  r ep re sen ta t i ons ,  and based  exc lus ive ly  on expe r imen ta l  
data .  

It is well lmown that fo r  any fixed m a s s  number  A the s tabi l i ty  of the i soba r s  fal ls ,  while the ene rgy  
i n c r e a s e s  the fu r the r  the nuclei  a re  f r o m  the reg ion  of s tabi l i ty  both on the n e u t r o n - e x c e s s  side and on the 
p r o t o n - e x c e s s  s ide.  A deta i led  ana lys i s  of the expe r imen ta l  data given in [12-15], shows that within the 
l im i t s  of expe r imen ta l  e r r o r  the i sobar  c r o s s  sec t ions  of the ene rgy  sur face  in the reg ions  between the 
magic  n u m b e r s  of neu t rons  and pro tons  a re  (for nuclei of each  of the four  types  of par i ty)  quadrat ic  p a r a -  
bolas ,  so that  the total  ene rgy  of a nucleus with m a s s  number  A and charge  Z can be r e p r e s e n t e d  in the 
f o r m  [12-14] 

E (A, Z) = E ~ (A) + n  (Z - - Z  ~ (A)) z, (1) 

where  K is a constant ,  and Z ~ i n c r e a s e s  l i nea r ly  with A in the l imi t s  between the magic  number s  N and Z. 
When the mag ic  num ber s  N (or Z) in te rsec t ,  ~ and Z ~ change abruptly,  but such that for  the s y s t e m  of 
nuclei  as a whole K d e c r e a s e s  while Z ~ i n c r e a s e s  as A i n c r e a s e s .  

Taking this  into account,  the ave raged  equation for  the binding energy  of nuclei,  neglect ing the 
e f fec t s  of the shel ls ,  can be wri t ten  in the fo rm*  

B ( A ,  Z) = t c ( A ) Z  2 + ? ( A ) Z  + X (A).  (2) 

In what follows it will be m o r e  convenient  to wri te  Eq. (2) in the f o r m  of a sum 

B(A,Z)=%(A).A % ( A )  .Z2 %(A)"  (A--2Z)~q_ ~(A) [ A - - 2 Z [ .  (3) 
A ~ta A 2 

* In this ease  E(A, Z) = A . E  n - -  Z .Enp  --  B (A, Z), where  En is  the total  energy  of a neutron,  while Enp is 
the d i f ference  between the neut ron and pro ton  ene rg i e s .  
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This fo rm is more  convenient because when ac(A ) = coast, as (A ) = coast, av(A) = coast + eonst .A -~/3 
and aw(A) = 0, Eq. (3) reduces  to the usual Bethe--Weizsaeker  formula .  When aw(A) r 0 an additional 
so-ca l led  Wigne r - t e rm  occur s  in the formula .  In terpret ing [ae(A)/Ai/3] .  Z 2 as the Coulomb energy of 
the nucleus, we can calculate the re la t ion between a c and A using experimental  data on the charge d is t r i -  
bution in the nuclei [16]. For  the Hofstadter  distribution this gives (see Appendix 1) 

% (A) = 0.673 -~ 0,00029.A MeV. (4) 

To find the relat ions as (A ), aw(A) and av(A) we will s tar t  f rom the requi rement  that the mean square 
deviation of Eq. (3) f rom the experimental  values should be a minimum for a minimum number of pa ra -  
me te r s  introduced. We well take the approximating functions in the fair ly general  form 

~(A) = ~,~(a,~-F b,~.A)%, (5) 

where a K, b K, and e K a re  adjusting p a r a m e t e r s .  These pa rame te r s  can be chosen in var ious  ways; the 
best  function f rom among those with a fixed number  of pa r ame te r s  is taken to be that which gives the mini~ 
mum mean- squa re  deviation. Terminat ion occurs  for  such a number of pa rame te r s  for which the addition 
of one more  pa rame te r  leads only to a small  reduction in the mean-square  deviation. 

To find as (A ) and aw(A) it is convenient to use ‚  data. If the isobar c ro s s  section of the 
nuclear  energy surface is a quadratic parabola,  then, according to Eq. (2), 1/4 of the difference in the ~- -  
decay energies  E-(A, Z) -=- E(A, Z) --  E(A, Z + 1) and E ' (A,  Z + 2) = E(A, Z + 2) --  E(A, Z + 3) of the isobars  
(A, Z) and (A, Z + 2) must  be equal to the curvature  of the parabola  

,c (A) ~- {E- (A, Z) E-(A, Z ~- 2)}. (6) 

In this case K(A), according to Eqs. (2) and (3), is related to as(A ) by the equation 

~:(A) 4%(A) ~ %(A) 
A A ';~ (7) 

The position of the minimum of the isobar parabola Z~ ' is found from the condition JOE(A, Z)/~Z] 
I Z = Z~ = 0, or from the equivalent condition (see [12, 14]) E-[A, Z~ = E+[A, Z~ [where E'+(A, Z) = 
--E-(A, Z --1) is the energy of the/~+-deeay of the nucleus (A, Z) into the nucleus (A, Z --1)]. Taking into 
account also the linear dependence on Z of the energies E • (A, Z), that follows from Eq. (2), we can express 
Z~ in terms of the energy of the fi decay of the isobars (A, Z) and (A, Z + 2) 

zo( ) = z + 2{1 + e+ (A, z + 2 7 -  e-(A, z + 2) }-,. (8) 
E-(A,  Z) -- E + (A, Z) 

On the other hand, it also follows f rom Eqs.  (2) and (3) that Z~ is related to aw(A) by the equation 

l E 
Z ~ (A) ~ (A) -F Enp 2% (A) -F % (A) H- 2 ~p 

. . . .  ' = - -  ( 9 )  

2~(A) %(A) ~L 4%(A) 
A '/~ A 

Using the experimentally measured fi-decay energies of the isobars and using Eqs. (6) and (8) we 
can determine the "experimental" values of K (A) and Z~ If the isobar curves were accurate parabolas 
the values of K (A) [and similarly Z~ obtained using various isobars, would be the same for the same 
A. As seen from Figs.1 and 2 this is in fact the ease everywhere the magic nm-nbers N and Z do 
not intersect. This confirms the correctness of the choice of the dependence of B on Z in the form of Eqs. 
(2) and (4).* 

Starting from the requirement that the mean-square deviation for K (A) calculated from Eq. (7) shou!d 
be a minimum for the minimum number of parameters in the expression for as(A t, we find that the depend- 
ence of a s on A should be linear, and numerically 

% (A) = 13A635 -}- 0.04450.A MeV. (10) 

* Attempts  to choose the dependence of B on Z in a fo rm different f r o m  Eq. (2) does not improve the ag- 
reement  with the experimental  values of K and Z ~ 
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Fig.  3. Dif ference  between the ca lcula ted  
and expe r imen ta l  va lues  of B(A, Z). 

In a s i m i l a r  way, f r o m  the r equ i r emen t  that the values  of 
Z~ ca lcu la ted  f r o m  Eq.  (9) should agree  with the ex p e r i -  
menta l  values ,  we obtain that 

aw (A) = 3,2500 --  0:00924. A MeV. (11) 

The data on the f l -dacay energ ies  were  taken f r o m  
tables  [18]. The di f ference  between the va lues  of a (A) ca l -  
culated f r o m  Eq.  (7) taking Eq.  (10) into account, and the 
exper imen ta l  va lues  is shown in Fig.  1 as  a function of A; 
in Fig.  2 a s im i l a r  graph is drawn for  the d i f ference  b e -  
tween Z ~ ca lcula ted  f r o m  Eq. (9) taking Eq. (11) into ac -  
count and the expe r imen ta l  va lues .  As is seen  f r o m  F igs .  
1 and 2, the d i f ference  between the ca lcula ted  and ex p e r i -  
menta l  va lues  is not s y s t e m a t i c  and is due to the effect  
of the she l l s .  

The re la t ion  between ~ v  and A was found f r o m  the r e q u i r e m e n t  of m in imum m e a n - s q u a r e  deviation 
of the binding energy  [calculated f r o m  Eq.  (3) taking Eqs .  (4), (10), and (11) into account] f r o m  the ex p e r i -  
menta l  va lues  of B(A, Z) [18] for  the m i n i m u m  number  of p a r a m e t e r s  in the approximat ing  equation (5). It 
tu rned  out that ~v(A), unlike C~c(A), as(A),  and aw(A), depends on the pa r i ty  of the nuclei,  whereas  for  
even- -even  (Z-even,  N-even)  nuclei  

. % ( A )  = 6:9750-A~ u~ MeV. (12) 

If, as  assumed,  we isolate the co r r ec t i on  on the par i ty ,  then when changing f r o m  even- -even  to even--odd 
nuclei  we mus t  add to the expres s ion  for  B(A, Z) 

~e~ 11.74-A -~ MeV, (13) 

F o r  odd--even  and odd--odd nuclei  the co r r ec t i ons  will be 

oe . . . . .  (14) 
gee(A) = - -  1 L~02. A -0,~~ MeV. 

~~ ---- -- 32:01, A -~ Mev.  (15) 

In this  case  B(A, Z) for  even - -even  nuclei will be given by 

Bee (A, -Z) = 6~9750. A 1,n~ - -  ( 13,1635 + 0,04450- A) 

CA --  2Z) 2 (0~673-k- Q.00029. A)- Z 2  4- i3~500 ~ 0100924'A)[A - -2Z[  MeV. (16) 
X A A 1/a ' - " " . . . .  

F r o m  the point of view of wri t ing the f o r m u l a  for  the binding ene rgy  i n the  f o r m  (3) the smoothed fo rmula  
obtained contains  6 independent p a r a m e t e r s  for  nuclei of each  of the types  of pa r i t y  (including the four c o m -  
mon p a r a m e t e r s ) ,  i . e . ,  as  many  as the B e t h e - - W e i z s a c k e r  f o rmu la  (taking into account in the l a t t e r  the 
c o r r e c t i o n s  on the pa r i t y  and the index 2/3 in the t e r m  for  the sur face  energy) .  However  the ag reemen t  
between the B e t h e - - W e i z s a c k e r  f o rm u l a  and expe r imen t  is much worse  than Eq. (16), which is eas i ly  seen 
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TABLE I. Comparison of the Different Vers ions  . 
of the Formula  for the Binding Energy 

~ ' Z  o 
z B 

(for o-e. nuclei) 

Green [2] 
Mozer [9] 
Cameron [3] 
Kodama [10], 
S w!.atecki. [8] 
Formula [16] 

0,270 
0,126 
0,204 
0,137 
0,163 
0,115 

0,459 
0,430 
0.445 
0,448 
0,432 
0,401 

3,05 
3,08 
2,88 
2,73 
2,81 
2,89 

f rom Table 1, where we have given: a) the mean-square  deviations f rom the experimental  values for the 
curva ture  of the isobar parabolas  aK, b) the mean-square  deviations ~z0 for Z ~ and c) the mean-square  
deviations cr B for the binding energy B(A, Z). The s t ruc ture  of the Bethe--Weizsacker  formula  is such 
that it is impossible simultaneously to ensure  the co r rec t  fo rm of the /3-stability line of Z~ and the 

�9 co r r ec t  dependence on A of the curvature  coefficient of the isobar c r o s s  sections K (A).  

The introduction into the Bethe- -Weizsacker  formula  of a surface symmet ry  t e rm [7] [which co r -  
responds in Eq. (3) to a s i A  ) of the fo rm a s -- bs  A-i/~] agrees  qualitatively with our conclusions [see Eq. 
(10)] regard ing  the increased role of the s y m m e t r y  energy in heavy nuclei, and gives bet ter  agreement  
with the experimental  values of K (A). However, the assumption that the whole part  of the energy which is 
l inear  in Z is contained in the symmet ry  energy leads ei ther  to an increase in tc (A) for light and medium 
nuclei [3], or to a reduction for heavy nuclei [8, 9]. In addition the /3-s tab i l i ty  line also differs somewhat 
f r o m  the experimental  line in the region of  heavy nuclei.  Hence, the introduction of the Wigner t e r m  is 
neces sa ry  in o rder  to give a bet ter  descr ipt ion of nuclei far  f rom the ~-stabil i ty line, and also of super -  
heavy nuclei.  The positive role of the Wigner t e r m  is d iscussed in [8]. A charac te r i s t i c  feature of E q .  
(16) i s t h e  absence of the sur face  t e r m  in explicit form.  Qualitatively, the dependence of c~ v on A, ac-  
cording to Eq. (12), acts  in the same way as the introduction of the s u r f a c e - e n e r g y t e r m ,  but the quantita- 
tive agreement  between Eq. (12) and exper iment  is be t ter  (o- B is less),  than when the surface t e r m  is i n t r o -  
duced. Moreover ,  in the last  case av(A) an extraneous pa rame te r  is introduced, namely, 

% (A) = a~ -- b. A s, (17) 

where x = - -1/3 ,  and a v and b v are  positive constants .  Using a variat ional  procedure  we will attempt to 
find the best  )ealue of x in Eq. (17). It turns  out to be - -0 .45,  and consequently, the quasisurface  t e r m  has 
the fo rm cons t .A ~ and not cons t .A 2/3, as is assumed in the l iquid-drop model.  This result  can be in- 
t e rp re ted  in the language of the l iquid-drop model as a fall in the surface tension as A increases .  The 
need to r e -examine  the surface  t e r m  was recent ly  pointed out in [17]. 

Finally, the procedure  of separat ing the t e r m s  which depend only on A is not completely unique, 
since instead of the Wigner term,  one could isolate simply the t e r m  proport ional  to the f i rs t  power of Z, 
or  disturb the symmet ry  in the : symmet r i ca l  energy t e r m  by replacing A -- 2Z by A - -a~(A) .Z .  However, 
in neither of these vers ions  is the "c lass ica l"  fo rm of the surface t e r m  a bet ter  approximation. The as-  
sumed formula  for the binding energy of nuclei gives bet ter  agreement  with experiment  for the least  num- 
ber  of p a r a m e t e r s  (see the table) compared  with other  formulas,  for nuclei far  f rom the lJ-stability line, 
and for  heavy nuclei. A fur ther  improvement  can be obtained by introducing local shell cor rec t ions .  

A PPE NDIX I 

C a l c u l a t i o n  of the Coulomb E n e r g y  

The usual expression for the Coulomb energy of a charge distributed with density Zep (r)(fp (r)d~r=l) 

(Ze)u ~ p (ra) p (r~) 
darl,dar: (1 

in the case when the charge  distribution is spher ical ly  symmetr ic ,  can be written as 
c o  Go o o  

2 P (rl) rt drt p (r;) r~ dru - -  - -  rl) dr; . 

O 0 r L 
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This  express ion  can be in tegrated by pa r t s  to give 

o o  ~, r  o o  o o  c o  ' r 

r e = ( Z e ) 2  . dr p(rl) r l d r l  =(Ze )  2(4=)~ p(r) r~dr ?(r~)r ldr l=(Ze)~(4~)2 p(r) r d r  P( 1) r~dr  1. 
2 

0 r 0 r 0 0 

The  in tegra l s  in Fq.  (1.2) can eas i ly  be evaluated numer ica l ly .  Thus,  for the Hofs tad te r  density p(r) =Po 

�9 [ l + e x p ( r - e / a ) ]  -1, where c = 1.08.A 1/~ F, a n d a  = 0.53 F [16], E c becomes  
z2 

~ = ~ / A ) .  A--~' (1.3) 

where 
a e (A) = 0,673 -[- 0,00029.A, (1,4) 

TO evaluate  Ec approx ima te ly  it is convenient  to e x p r e s s  Ec in t e r m s  of the f o r m f a c t o r  of the charge  d is -  
t r ibut ion p(r ) .  Represen t ing  I r i -- r~l-1 in Eq. (1.1) in the f o r m  of the in tegral  1/2~ ~. fd '~•  
and expanding e i n r l  in s e r i e s ,  and integrating, we obtain 

Ec=(Ze)' " fda '~  { 2 (--1)n'"n<r'n>} 
4 ~  J ~ J P (r2) e -i~v" d~r21 .-~ (2n + 1)1 " 

Hence,  a s suming  that ~ a ~ - ~ n  ~n =2=__.~ when n = 0, and (--1) n+l- 8~3.V2(n--t)5(r~) when n > 0, we obta:n 
~ 2  r 2  

where 

oo 

~c= --T t \  r / -  (2. + I): n=[ 

<r~n> = ~ f~ (r) r 2n dar. (1.6) 

Hence,  in pa r t i cu la r ,  for  the Hofs tad ter  dis t r ibut ion we have with a high degree  of a ccu racy  

2 ['~ r / :  - �9 (1.7) 

Numerical calculation using Eq. (1.7) leads to results that are practically identical with those obtained 
using the accurate formula (1.2). 
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