WEAK FOUR-FERMION INTERACTION IN TERMS
OF SU(3) INVARIANTS. I

D. ¥. Kurdgelaidze UDC 539.12:530.145

The four-fermion weak interaction is formulated in terms of invariants of the groups
Gy = IBSU (2) and G = L&ASU(3). The four-fermion Hamiltonian is constructed as a
four-fermion invariant of the group Gs on the basis of the spin tensors zpélg,)r}, where
o, B, ¥vy=1,2,3, 4 are the spinor indices and 7, m,n = 1, 2, 3 are the unitary indices of
the representation of G;. It is shown that in the case of one multiplet z/;é%‘{} one can
construct one nontrivial invariant and in the case of iwo multiplets zp%}gs and (pla ,?,,
nine nontrivial invariants. Of these, only in the case of two of the invariants, which
contain two multiplets, are the lepton and baryon numbers conserved independently.
One of these invariants is considered in detail. In the case of SU(2) there is no funda~
mental difficulty and a number of relations are obtained for the constants of the weak
interactions and the probabilities of processes, In the case of SU(3) it is shown that
the known breakings of SU(3) in weak interactions can be localized in the lepton octet
by choosing it in a special way.

INTRODUCTION

It is not difficult to formulate weak four-fermion interactions in terms of invariants in the case of
the symmetry G, = L. & SU(2), where L is the Lorentz group [1]. That is not the case for G; = L ® SU{(3).
Because neither the hypercharge Y nor the third component I; of the isospin are conserved in weak inter-
actions, to say nothing about the absence of a lepton octet, the very formulation of the question of des-
cribing a four-fermion interaction in terms of invariants of the group G; = L & SU(3) would appear to be
devoid of meaning. Nevertheless, if the question is posed "sensibly, " it can be given a positive answer,
as we shall show below,

The problem is solved as follows: 1) It is first assumed that there exists a lepton octet as a re~
presentation of SU(3) [i.e., it transforms in accordance with an octet representation of SU(3)] and in weak
four-fermion interactions there is no breaking of SU(3) symmetry. One constructs the formal mathemati-
cal apparatus of the four-fermion weak interactions in terms of the invariants of Gy and obtains final re-
sults in terms of the baryon and lepton octets. 2) The lepton octet is constructed as a general 3 X 3 ma-~
trix. Since the electric charge is conserved in weak interactions, in the lepton octet the positions of the
charged and the neutral particles are fixed. The lepton octet is constructed as an SU(3) representation
by analogy with the baryon octet, the following substitution being made for the charged particles {with ar-
bitrary coefficients): p* —et, =F—e*, =~ —p~, 27 —p~!, and the neutral particles are replaced by a
linear sum (with arbitrary coefficients) of the corresponding neutrinos: v =vg, w = v, V=g, w=vy',
Thus, the lepton matrix contains four new particles (e*!, u~', v', w') and 24 arbitrary parameters, If
these 24 parameters are determined suitably, the matrix is a representation of SU(3), and the formalism
is invariant under the group G; =L & SU(3). 3) The breaking of SU(3) symmetry is now expressed by the
fact that in the resulting lepton matrix one assumes e*' =e™, p~' =p-, v' =v, w' =w. In addition, the
remaining 14 constant parameters in the lepton matrix remain arbitrary, and these are to be determined
appropriately. The normalization condition and the requirement that the lepton matrix be an octet yield
seven equations, The remaining conditions arise from the requirement that in baryon decays there be no
crossed terms of electron and muon neutrinos (of the type (Wweﬂ, (;I‘VMV). ..}. As a result of these
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TABLE 1la. Parameters of Leptonic Decay of Baryons
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general requirements, the lepton octet is determined in terms of e*, p~, v, w to within one arbitrary con-
stant, 4) It remains to show that the lepton octet constructed in this way takes on, to the necessary extent,
all breakings of SU(3) in weak four-fermion interactions, The proof is by direct calculation of the prob-
abilities of leptonic decays of baryons of the octet in the formalism when the constructed lepton octet is

used.

1t is well known that to obtain experimental values of the probability of leptonic decays of baryons
of the octet it is also necessary to introduce form factors, However, to avoid the introduction of new free
parameters, which is necessary when form factors are taken into account, the probabilities of processes
are calculated in the present work at a small momentum transfer, > =0, The results are compared with
the results of Cabibbo theoyy (for which it is known that the theory can be made to agree with the experi-
ment if the form factors are suitably chosen) under the same conditions q> = 0. Comparison shows that
the results of these two formalisms in the case of leptonic decay of baryons of the octet are very similar.
At the same time, Cabibbo theory (for g = 0) depends on at least three parameters (®, the Cabibbo angle
and the parameters F and D). In the formalism developed below, there is only one parameter (the analog
of ® F and D are determined by the specification of the symmetry).

In our work we calculate the probabilities (for q2 = 0) of processes that correspond in the usual
terminology to "neutral currents, " these being entirely absent in Cabibbo theory.

We also consider lepton—lepton interaction in SU(3) using our lepton octet and we determine the
ratios of the weak coupling constants of different lepton—lepton interactions.

§1. General Forml of the Hamiltonian of the

Four-Fermion Interactions

) 1, Four-Fermion Invariants. In this section, we construct the formal mathematical apparatus of
four-fermion weak interactions in terms of four-fermion invariants of the group Gz = L. & 8U(3), assuming
at the same time that in weak four-fermion interactions there is no breaking of SU(3). We shall describe
the baryons by the octet zp{é Iél)],)f/l and decuplet (pgx %‘;1)), and leptons by the octet ¢ %irél]],;’ Here, o, B, v are
the spinor indices and I, m, n the unitary indices. The square brackets denote antisymmetry and the round
brackets symmetry. All these multiplets are symmetric with respect to the composite indices (ABC), and -
it is therefore sufficient to construct a four-fermion invariant from $ABc) and ¢ (ABC) and their conjugate
functions, which contain as irreducible representations the octet and decuplet in which we are interested.
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TABLE 1b, Parameters of Leptonic Decay of Baryons
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From one multiplet $(ABC) or ¢ (ABC) one can construct one nontrivial four-fermion invariant [1}:

G B a5 B (R __5BCD
H= % ma (N, Nyms (N, N), ma(N,N)=9""bacp, ‘ )
A=(s 1), B=@m), C=(,n), D=0, x),

w81 3=1,234 [Lmn=123. (@)

From the two multiplets P (ABC) and ¢ (ABC) one can construct ten nontrivial invariants [(1), ma (N, Lymé

(N, 1), mi3(N, Nymi(N, L), mi(N, Nymi(L, N), and a further four invariants obtained from these by the
substitution N — 1L, L — N, and the two invariants (3)]. If at the same time one restricts oneself to the re-
qguirement that the baryon and the lepton number be conserved separately, instead of (1) there remains only .
the two invariants

G,
1473

Here N are the baryons, L the leptons, and G, and 8 are two arbitrary constants,

H= fmi (N, Nymz (L, L)+ pms (N, LYym3 (L, N)}.

3)

If we restrict ourselves to only the baryon octet 4)% mn - formulate the corresponding conditions on

Bly

the spin and isospin, make %b&ABC) satisfy the Dirac equation in the form of the Bargmann—Wigner equation,
and use the actual form of zp%wlél]g‘ in terms of antisymmetric Dirac matrices (c, cvs, CY&Vps where ¢ is the

charge conjugation matrix) and the corresponding functions N[lm]n, Ngm]n, we find from (1)
1
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where (bb)} = Egbll{. At the same time
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TABLE 1c, Parameters of Leptonic Decay of Baryons
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In (4), the terms in the curly brackets coincide with the corresponding expressions in SU(2) (when
the octet bln is replaced by the doublet bl). The terms outside the curly brackets are peculiar to SU(3).
We can obtain mi(N, L) and m§ (L, N) from (3) by the simple substitution b~ N, b—~L andb—1IL, b—N,
respectively, '

In this paper we restrict ourselves to considering the following case: a) my, = 0 (my, is the lepton
mass) and b) 8 =0 in (8). Thus, from (3) we consider only the single invariant

GZ al (A7 Bm T .
= —2 i (N, N)ma, (L, L). 7
V2 3”1( ) y] ( ) ( )
2. The Case SU(2). If for a lepton we substitute into (1)
. et 1" et : 1 - 1 -
we obtain ‘
G 81 - - 17, + —
H=—L —— 1 ({T, )T — (T 1)? Tav)3) !,
e Teie | TR0 OTen + g0+ ) -

ME=n(l£n).
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TABLE 2. Values of the Parameters a]n? and b;rl’

m a;+0 by=0
a5 == Yoy + B %y + Zaey, by = — 5 {1y + &7} —aey,
) G5 = 265 B+ Dng & 1 Beyy by = — Beg— £y %y — Sy,
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as =z €5+ pry + 2a %, by == — 5 (e1 & + gy} — oy,
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mi ar = ey &y ony - 2y, by =—5{(ey &+ %) — Py,
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ay = 2% &y, @y = g Sy, by = — ey, by = —Seg %y
a;=(1+2) &+ (e + 271 &, by =+ (5 + 16— B1+ ) &
m} a,=(d+ 20 &4 (64 20) &, C b= (B )k — (B8 a6,
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a = (Y +20) 8t (o - 20) &y — b= (51+p) 5+ B+ B
ay = — 2, ay =2 (302 —2), b= —2, 2by=1—06a
m! =2 (3 —2), ay=6a}, 9b, = 1 — 682, by = — 31,
ayy = 6ad. byo = bg.
ay=2(f—1), ag=1¢3—9, 26, = 1 — e}, 203 =1 — 5z},
4y = %3 + £+ 32 —2, 96y = 1 — 672 — 582 — €3,
m3 ay =253 4 £3 + 32— 9, 9b, =1 — 682 — BE3 — £,
ag = 378 + §; & 26, &, wag:613+5E1&2+EBEu
@ =30 + 5 & + 258, by = by
ap =2} —1), ag=23 — 2, Oy = 1 — =3, 203 =1— 5%,
@y =2t 4- €3 + 32— 2, 2y = 1 — 523 — 6% — &%,
mi a, =28} + &} + 32— 2, 9y =1 — B§7 — 6 —£3,
ay = 3ps + 38 + 25, &, b = 6pc + B5 &+ E &,
o = ag. byo = be.
For the solution (1.28) sin® =0
mi a; =€y €, dg = ~— 5, Cs. ) by = — 5¢y €5, bg = €3 Cs
mi ay=—2 a;=a,=—4 b, =9, by=1b,=0,5.
mg a;=a;=—2, gg=— 1L by =b3=0,5, by = —2.
mg ay=a;=—1. by = by = — 2.
Similarly, if into (7) for the nucleons we substitute
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and for the leptons we use the forms (8), we obtain
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Here we have omitted the terms corresponding to the reactions e +p—e +pande +n—e +n, which can

be obtained from those above by the substitution n—p, » —e and p —n, v — e, respectively: 2F = 1 + quq,
ZPM =qy + (‘]‘U In the limit of a small momentum transfer, ¥ — 1, Py —dau.
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3. "Current on Current” Formalism. With respect to the spinor indices (x, 8) the tensor ms}
can be decomposed with respect to the vectors of the algebra of Dirac matrices. In the general case, the
expansion contains all five vectors (scalar, pseudoscalar, vector, pseudovector, and antisymmetric ten-
sor). However, in the case of leptons, when my, = 0, under the assumption that all the leptons of the mul-
tiplet (octet) have the same helicity, only the vector and the pseudovector remain in the expansion. Then
the Hamiltonian of the four-fermion interaction of the two multiplets (7) can be represented in the form

: G - —~ — -
H= =7 (¥, Nymdu (L, LY —Lps (N, NYa Jis (L, LT, (10)
where I, and I;; are the baryon and Jy; and J;5 the lepton currents and pseudocurrents. In particular,
I =¢ ¢; (”ij)l , 1"5‘,,, = ;i?j(nij)l ,

¢ /m po/m

ij

1 — 1 —
ey (9o + ) 21) + I (14 ¢.9)) 1504,

y_ 1 " 1 ,
n:s = 6 (14 099 Yo 1595 Lujm = B33, + r} (— ifix -+ 3dijc) M,

¢

0 = — 28, +4 (zf,»,-,; + —g'—dm) A,

b == Fihfny b=oiMNy k0 j=1,2,34,5,6,7,8 [,m=1,23. (1)

fijk» dijk are the known structure coefficients of the Gell—Mann matrices. It is not difficult {o show that
decays of baryons of the octet with |[AQ! =1, |AS|=0 and |AQI=1, |ASI=1 (Q is the electric charge and S
is the strangeness) are contained in the tensors mi: (N, N), miz (N, N), respectively. At the same time,
one can show that

Q1 ~ (hy — Ihg), Q1 ~ (o — i),
0 ~ (b — D), 03 ~ (ks — iks). (12)
Therefore, when

1AQ| =1, |AS|=0, H~m}~ I}~ (— ),
18Q[ =1, [AS|=1, H~mi~Iu}~(—0).

Thus, the main assumption of Cabibbo theory in this formalism arises as a consequence of the general
structure of the invariant, and moreover quite independently of the assumption about the structure of the
lepton octet.

(12"

4. General Structure of the Baryon Tensor miy (N, N). By analogy with the formalism of the fore-
going subsection, the Hamiltonian (7) can be regarded as the "tensor on tensor” formalism. The baryon
tensor mZ, (N, N), if the solution (6) is substituted into it and it is written out in full, can be represented
as a sum of terms of the following general form:

mih (AB) = @b Do (AB) + biom (1 + g+ 42) (A" By),

- 1 _
Dge = 8 + (1w)pa (9 -+ 4) + o [7s Yotz n g,

. (134
@b, bsm — 2T constant numbers.
For example,
— 10 .- S 3 4 1 So o
“ (N, N =D,u—{ C9EE) b S AI)— (3 }
maz ( ) g (pn) ( )+V6( 2) V3 (22
(13)

—%(1 07 P — B E HVEAS, +2VE S,

Thus, the baryon part of the Hamiltonian (10) of the reaction B —~ A+l + l—z, where A and B are baryons
and , and I, are leptons, can be characterized by a set of two constants (ag, bg) or (bg, Ag). The values
of these parameters are given in Table 1.

5, General Structure of the Lepton Tensor mbr (T, L). TIn this paper we operate with a lepton ma-
trix of the general structure
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av -+ fw g, et % et _
L= By b v A-tw by Bw , (14)
%y B Y hw oy fow

where a, 8, 1,9, p, 9, 2, €, %, %, &, 54, &3, & are arbitrary constants.

Substituting (14) into the lepton tensor mir (L, L), we obtain

- 0 171 ; "o
wie (L, L) = 2 Z{Zm)aﬁ (@)h L+ (b)F s }

_ . ’ _ (15)
R=r=@ne, W=K=0w) K=/"=¢Enw,
I =i"=@ne), IP=0ne), J=(Eno),
. KN=@rne), P=@Eny), K =00y A =@
J;ﬁ’a has a similar structure:
JE = (@ et eies) SO =0 4 viva) . ST = (@04 @) (16)

The values of the parameters (ai)lm, - (am)%n, (bl)lm. .. (bm)lln are given in Table 2.

6. General Form of the Hamiltonian of the Four-Fermion Process. If (13') and (15) are substi-
tuted into (7), then after multiplication we obtain the Hamiltonian of the four-fermion process A —B + I,
+ I in the form

o Gt) b ¥ 7 j a.
H(AB)—*——V“Q:G‘%C;(ADﬂB)J{L, C;=8a,+Tb;, k= F(:;,
9b; iy 1 - 1 - 1 (
“J‘=E"’ Du=‘0_2‘(qu+ ‘79)‘{“2“(1‘{‘4\'4\')79( —%;75). (1

All the quantities necessary for determining H (AB) from (17) are given in Table 1.
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