
G R A V I T O t N E R T I A L  W A V E S  IN V A C U U M .  

LINEAR APPROXIMATION 

L . B .  B o r i s o v a  a n d  V.  D.  Z a k h a r o v  UDC 530.12:531.51 

Ze l 'manov ' s  method of chronometr ic  invariants is used to develop an approach to the 
descript ion of gravitoinertLal waves of a chosen f rame of re fe rence .  It is shown that 
there  exist two bas ica l ly  different types of gravi toinert ia l  waves in vacuum. Both 
types a re  examined in general  relat ivi ty in the l inear approximation.  

INTRODUCTION 

Currently, there are various different methods for investigating gravitational wave fields in Ein- 
stein's theory. One of them is the method of approximations, different variants of which have been con- 
sidered by Havas and Goldberg (expansion of the potentials of the gravitational field in a series in the gra- 
vitational constant), Bonnor and Rothenberg (the method of two-parameter approximations, which simulates 
an expansion of the potentials in series in the multipole moments of the system of sources), Bondi and 
Sachs (separation of the wave zone in the total gravitational field of an isolated emitting source by means 
of an ~information function ~ defined by an expansion of the metric in inverse powers of the distance from 
the emitter), andothers. The shortcomings of this method are the absence of a proof of the convergence 
(at least in the wave zone) of the series and also that the fact that it is not covariant, which makes it 
necessary te use a special (arbitrarily chosen) class of allowed coordinates. 

A second method of describing gravitational waves, which is free of these shortcomings, is based 
on the introduction of a specially postulated (in addition to the gravitational equations) generally covariant 
criterion for distinguishing a class of gravitational wave fields. However, this approach not only entails 
an unavoidable ambiguity in the solution of the problem but also leads to difficulties associated with the 
lack of a direct physical interpretation of the employed generally covariant condition (algebraic or differ- 
ential) used to determine the wave field. The interpretational difficulties arise because the generally 
covariant conditions imposed on the curvature of spacetime in order that it should describe gravitational 
waves do not admit an interpretation in the language of physical observables in the framework of the 
generally covariant approach. In this approach, therefore, the problem of confronting the theory of gra- 

vitational waves with the data of a physical experiment remains unsolved. 

To solve the problem of the formulation of gravitational waves in terms of observables, it is ex- 
pedient to consider a more general field of gravitoinertial waves. We say that a gravitoinertial field is 
more general than a gravitational one in the sense that the results of its description apply to not only the 
gravitational but also to the inertial field of the frame of reference of the observer, and our method of 
description does not enable one to distinguish the one from the other. An invariant distinction between 
gravitational and gravitoinertial wave fields is possible on the basis of an additional verification that the 
adopted generally eovariant criterion is fulfilled. 

In contrast to gravitational waves, which are determined (in the framework of generally covariant 
methods) independently of the choice of either the coordinate system or the frame of reference, gravito- 
inertial waves are determined only for a fixed (in general, arbitrary) frame of reference of observers to 
within Ninternal~ coordinate transformations (which do not change this frame of reference) [I]: 
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Xo= XO(xO, X ~, X 2, X3), (a) 

X~=X'(X', X 2, X~), c3X'~/ = 0  (b) 
(iX 0 

(I) 

Thus,  whereas  in the method of approximations one f ixes  a rb i t r a r i l y  the c lass  of allowed coord i -  
nates, in the given (chronometr ica l ly  invariant) approach the f r eedom in the choice of the allowed coordi -  
nates is consis tent  with a unique determinat ion of the f r ame  of r e f e r ence  [1]. 

Bes ides  covar iance  under  the t r ans fo rmat ions  (1), we requi re  invarianee under the t rans format ions  
(la).  In other  words,  our definit ion of gravi to tner t ia l  waves [2] must be, f i r s t ,  invariant under the t r ans -  
format ions  (la) (chronometr ica l ly  invariant) and, second, covar iant  under the t rans format ions  (lb) (spa- 
t ia l ly covar iant) .  

T h i s  definition is based  on the introduction of the chronomet r ica l ly  invariant,  spatially covariant  
d 'Alember t  wave opera tor  

1 *0 2 
*[~ = h t ~ * V *  - - - - - -  (2) 

'i VK c~ Ot ~ , 

where h ik is the chronometrically invariant metric of the three-dimensional space of the given frame of 

reference (hik = -- gik + (g0ig0k/g00), *Vi is the symbol of chronometrically invariant, spatially covariant 
differentiation with respect to the coordinates of this space (see [1]), and the asterisk here and in what 
follows denotes chronometrically invariant operators, to distinguish them from ordinary ones. 

The employed wave functions must be chronometrically invariant three-dimensional scalars, vec- 
tors, or tensors. As chronometrically invariant representatives of the curvature tensor ([2], p. 140): 

X q  = - -  c a R~o{  Y*fi< = - -  c R'~ Zir4i -= c ~ R ' ~ t ,  (3) 
goo V G '  

which can be exp re s sed  in t e r m s  of the vec to r  F i of the gravi toiner t ia l  force ,  the tensor  Aik of the angular 
veloci ty  of rotat ion about the local ly comoving geodesic coordinate system, the tensor  Dik of the ra t es  of 
deformat ion of the th ree -d imens iona l  space of the f r am e  of r e fe rence ,  and the curva ture  tensor  Cik/j  of 

this  space.  

The chronomet r i ca l ly  invariant  c r i t e r i o n  of gravi to iner t ia l  waves [2] consis ts  of the r equ i r emen t  
that the chronomet r ica l ly  invariant components  of the world curva tu re  tensor  x i j ,  y i jk ,  and z i k / j  sat isfy 

equations of the fo rm  

* E l f - - - -  A,. (4) 

where A is an arbitrary function of the world coordinates that does not contain derivatives of f of order 
higher than the first, and the left-hand side of Eq. (4) is nontrivial, i .e . ,  the wave function must be non- 
stationary and spatially inhomogeneous. Depending on the choice of the wave function f, we shall distin- 
guish the gravitoinertial waves xij, yijk, and ziklj .  However, in vacuum, xiJ and Z iklj are not indepen- 

dent but are related by 

X q  + Z ~u" ..., = O, (5 )  

so that in what follows we shall speak of two types of gravi to iner t ia l  waves: X (or Z) waves and Y waves.  

w  T h e  T w o  T y p e s  o f  G r a v i t o i n e r t i a l  W a v e s .  

T h e  G e n e r a l  C a s e  

In a vacuum, the Riemann world tensor  Rc~/3y5 sa t i s f ies  the identit ies [3] 

l-q~ R ~ ,  + R;~ ~. R~v~. q- 2 (R;~a ~.~. q- R~; ~. R,~.) = 0. (6) 

Writ ing out this  sys tem in a chronomet r ica l ly  invariant,  spat ial ly  covar iant  form,  we a r r i v e  at the th ree  

sys tems  
*[3 Xu  = A ' ,  (7) 

(1) 
�9 , - .  

* [] y'i~= Aq~ (8) 
(2) 
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TABLE 1 

Chronometrically invariant char- 
acteristics of the reference space 

Fl=0, A/K=0, Di~=0, 

Aia=/=O, Fi=0, DiK=0, 

F i r  Al~i=O, Di~=O, 

F i 4= O, [ *OAi K 

f 
ot 

Aik@ O, 

Dl~; = 0 *OAfs< 

t ot 

Dl:l< ~ 0 

- - = 0  

- - ~ 0  

Chronometrically in- I Chronometrically in ~ 
variant criterion for thel variant criterion for the 
observable xiJ(z iklJ) observable yijk 

Not satisfied 

Not satisfied Satisfied 

Satisfied 

* K ]  Z t ~ u  = A ~K zj, �9 (9) 
(3) 

where A ij, Aij k, A tk/j  are ,  r e spec t ive ly ,  the ch ronomet r i ca l ly  invariant,  spat ia l ly  covar ian t  t enso r s  of 
O) (2) (3) 

second, third,  and fourth rank, respec t ive ly ,  and they do not contain de r iva t ives  of higher than f i r s t  o rde r  
of the wave functions xiJ,  y i j k  z i k l j .  

In [4], the r e l a t ions  (7)-(9) were  used  to invest igate  the conditions of exis tence of g rav i to ine r t i a l  
waves  of the obse rvab l e s  xiJ ,  y i jk ,  and z ik / J  for  all poss ib le  types  of f r a m e s  of r e f e r e n c e .  We r e p r e -  
sent these  r e su l t s  in the f o r m  of Table  1. 

It can be seen  f r o m  this  that g rav i to ine r t i a l  waves of both types  (X and Y waves) exis t  only in f r a m e s  
of r e f e r e n c e  c h a r a c t e r i z e d  by one of two conditions: 

Di~=/=O, F l = O ,  A i K = O ,  (10) 

o r  

* c)Ai~: 
Fi  =/= O, Ai~ ~" O, - -  ~ O, Dix = O. 

Ot 

A f r a m e  of r e f e r e n c e  of the f i r s t  type is synchronous;  we shall  call  one of the second type (moving with 
acce l e ra t ion  and ro ta t ing  without deformat ion)  a r ig id  f r a m e  of r e f e r e n c e .  

In a synchronous  f r a m e  of r e f e r e n c e ,  the obse rvab l e s  xiJ,  y i j k ,  and z ik / J  have the f o r m  [4] 

(11) 

X u  = - -  DDU H- D~ ~ D Kj + C ij, ( Cq = hi,  ~ CuPn), 

yiJK = *V./Di~ _ ,Vi  DJK, 

Zi~ti = DZ~ D l] _ D u D~J _ c e CiKtJ, 

(12) 

(13) 

(14) 

so that the X (Z) waves and Y waves  a r e  due sole ly  to the p r e s e n c e  of nonsta t ionary  deformat ion  of the 
f r a m e  of r e f e r e n c e  and the tnhomogeneity of th is  deformat ion .  

If__the given gravi ta t iona l  f ield admi ts  a r ig id  f r a m e  of r e fe rence ,  then in it the obse rvab le s  xiJ,  
y i j k ,  z i k [ j  take the f o r m  

XO = 3A'.'~ Ai~ ~, Cu, 

2 
yu~ = * yJ Al~ _ * Vi AJ~ q- c--~. AJZ F ~, 

ZiF;tJ = A i~ A U - -  A it A~J 4- 2AiJ A ~t - -  c 2 CiKlj 

It follows that  the X (Z) waves  a r e  due to the nonsta t ionar i ty  of the angu la r  veloci ty  t en so r  A ik, and the Y waves 
to nonsta t ionar i ty  of the t ensor  A ik and the s imul taneous  action of the acce le ra t ion  and ro ta t ion  (AjiFk). 

(15) 

(16) 

(17) 
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Note an interest ing special  case .  Suppose the accelera t ion field Fi is i rrotat ional:  *V[kFi] = 0. 
Then by virtue of the identities [1] 

*OAi~: 
at - + *v[~F~ = 0 (18) 

the tensor  Aik is stationary,  so that X (Z) waves are  absent but the Y waves never the less  exist even when 
there is s ta t ionary rotat ion since in this ease .  

* 0 yij~ 2AJi , OF ~ 
Ot ~ c 2 Ot (19) 

w Two T y p e s  of G r a v i t o i n e r t i a l  W a v e s .  

L i n e a r  A p p r o x i m a t i o n  

Let us consider the wave equation (4) for the case of weak waves. Suppose the gravitational field 
is described by the metric 

g ~ = ~ + a ~ ,  ~ 4 =  (+1,  --1, --1, --1}, } 
a~ (x ~ x', x 3, x 3) C 1. J" (20) 

Then the allowed coordinate t r ans fo rmat ions  are  of the type 

x �9 = x ~ + ~, (21) 

where ~a << 1, and a ~i/ox~ = 0. The conditions of the infinitesimally small  t ransformat ions  (21), which 
conserve  the split t ing of the met r ic  (20), do not change the chosen f rame of re fe rence  ei ther .  

We introduce the notation 

gee 1 + ao, go~ = a~, gi,~ = ~,~ + a~, 
~,,, = {--I, --1, --I}. (22) 

For this.metric, all three chronometrically invariant mechanical characteristics of the space of the given 
frame of reference are nonzero: 

c (Oa_ai C O a o )  (23) 
F i l + ao \ Ot 2 0 x  t ' 

Ai,, = V ~  \ Ox~ Oxi ' 

Di,~ = - -  . 1 c ) a i ~  (25) 
2 ] / l + a o  Ot 

together  with one geometr ic  chrac te r i s t i c :  

C~ty = 03 aKi 4 0 2 au 02 aKt 0 j at] 
Ox i Ox t Ox ~ Ox i Ox~Oxl Ox ~ Oxt. 

The wave functions (with allowance for the field equations) take the form 

X , ~ = c 2 C , ~ = c 3  [ O 'au  + O'a~, S i t (  02a,__.__..._~ + ~  
Ox" OM Ox ~ OM OM O #  

Ox~Ox----- T + Ox~Ox--------- 5 Ox~O# 

yU~ 0 ( D i ~ + A ~ ) - -  0 (Dj_~_AjK) 1 [ [ 03ai 

(26) 

03air ) ]  (27) 
OX~OX ~ ' 

03 au ~ (28) 
Ox ~ Ox t ] ' 

03a i r  ) ] ,  (29) 
O #  Ot , 

O" aj ) 1 ( O' aj~ 
'Ox i'Ox~ / - Y \ Ox t at 

and the following re la t ions  hold: 
t 02 

2 0 t  2 

1 02 a~/ 1 02 

2 OxYOt 2 Ox lo t  

(~2 al r 
__  _ _  (~t~ ai~)  - -  d - , - -  Aao = O, 

Ox ~ Ot 2 

( ~ a  1 , a ~a~ ) 

(30) 

(31) 
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where A = O2/OX12 + 02/0X22 + D2/DX32 iS the Laplace opera tor .  It can be seen f rom (26) and (27) that in the 
l inear  approximation the chronomet r ica l ly  invariant wave functions xij  and z ik / j  are determined solely by 
the spatial curvature  Cik/j,  whereas y i j k  is determined solely by the nonuniformities of the deformations 
Dik and the angular velocity Aik. 

Let us investigate the physical  nature of the X (Z) and Y waves for these two types of f rame of r e -  
ference (synchronous and rigid).  As follows f rom (26)-(28), in a synchronous f rame of re fe rence  there 
exist waves of both types: X (Z) and Y. In a r igid f rame of reference,  the X (Z) waves are absent because 
the wave functions are stat ionary,  and the Y waves exist only under the condition that the field F i is not i t -  
rotational: *V[kFi] ~ 0. Thus, in the l inear  approximation, in contrast  to the general  case, the observer  
es tabl ishes  the presence  of only Y waves in a r igid f rame of reference,  but he cannot establish the exist-  
ence of X (Z) waves. 

In the general  case (F i ~ 0, Aik ~ 0, Dik ;~ 0), the Y waves are  the resul t  of superposit ion of defor-  
mation waves and waves due to the combined influence of the accelerat ion F i and rotation Aik of the space 
of the given f r ame  of reference ,  while the X (Z) waves are, as before, purely deformationai  in nature.  

Thus, the X (Z) waves and the Y waves have different physical natures .  

The chronomet r ica l ly  invariant drAlembert  opera tor  in the case of weak waves takes the form 

* D = A  1 __'02 , (32) 
c ~ Ot 2 

where A is the ord inary  three-d imensional  Laplacian, and instead of the ordinary  operator  of differentia-  
tion with respec t  to the coordinate x ~ we have the chronometr ica l ly  invariant operator  

*0 ! 0 
Ot l~ l + a 0 0 t  (33) 

The wave equation (4) for weak waves simplifies appreciably since, first ,  the chronometr ica l ly  in- 
var iant  Laplacian is rep laced  by the ord inary  one, and, second, the ra ther  cumbersome r ight-hand side 
vanishes because of the assumption of l ineari ty;  the equation becomes  

( 0  -~ 02 03 1 *0 ~ ) 
+ ~ -~ 0x32 c "z Ot 2 f : O .  (34) 

Measurable quantities are  the tensor  of the three-dimensional  curvature  for purely deformational  
waves and the inhomogeneity of the tensor  of the angular velocity and the tensor  of the ra tes  of deforma-  
tion for the Y waves.  

Note that in a f ree ly  falling f rame of re fe rence  (F i = 0), and in par t icu lar  in a synchronous one (Fi= 
0, Aik = 0), the wave equation (34) takes the f o r m  of the ord inary  wave equation of the special theory of 
relat ivity:  

10~f 
/~f c 2 0 t  2 - 0 .  (35) 

For  this case,  the X (Z) and Y waves have a purely  deformational  nature, and the corresponding wave 
functions (xij, yi jk,  z ik l j )  a re  determined as the solutions of the wave equation (35) f rom the ordinary 
equations of mathemat ical  phys ics .  Thus, introducing the notation x i = x, x 2 = y, x 3 = z and considering 
the Cauchy problem for Eq. (35) with the initial conditions 

f t t = c ~ h f ,  f ( M , O ) : c ? ( M ) ,  f t ( M , O ) : ~ ( M ) ,  M = M ( x , y , z ) ,  (36) 

we obtain for  the wave functions (observables) the integral representa t ion 

l 

Set Sct 

(asp = (ct) ~ d~2p), 

where Set = S M is a sphere of radius  ct with center  at the point M. ct 

We turn to the case of weak plane waves descr ibed by the met r ic  [5] 

g=~=~=p+~=~, ~=p(x ~  t )<( l ,  ] 
~ 2 2 : - - ~ 3 3 = a ,  ~23=~32=b, a ~ + b  s~<l f" 

(37) 

(3s) 
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F o r  t h i s  m e t r i c ,  the  c h r o n o m e t r i c a l l y  i n v a r i a n t  F i and  Aik  a r e  z e r o ,  and  Dik has  the f o r m  

1 0 a  1 0 b  
D22 = - -  D33 = - -  - -  D ~  . . . .  , 

2 0 t  ' 2 Ot 
i . e . ,  weak  p l ane  waves  have  a p u r e l y  d e f o r m a t i o n a l  n a t u r e .  The  wave func t ions  t a k e  the  f o r m  

10~a 1" O2b 
X 22 : - -  X 33 ~ X 2 3  - -  

2 0 t  2 '  2 Ot 2 '  

c 2 O~a c s O2b Z1212 ~ - -  Z131~ ~ --  _ _  Z1213 -- 
2 Ox '2' 2 Ox '~' 

(39) 

(40) 

(41) 

1 O~b 1 O~'a y~zl3 = y312 -- y2.12 = - -  y313 
2 Ox 'Ot '  2 Ox"Ot (42) 

B e c a u s e  a and  b a r e  func t ions  of  x ~ + x l, in the  l i n e a r  a p p r o x i m a t i o n  the  p l a n e  w a v e s  of the  two t y p e s  (X 
and  Y) a r e  i den t i c a l ,  and  the  wave  e q u a t i o n s  t a k e  the  f o r m  

02 ( 1 0 ' a  02a ] 
Or-'-: ~c2 Ot 2 Ox,2 } = O, (43) 

o,( ,  o'b o'b.  
Ot ---~ ~ or' Ox,2 ] = O. (44) 

E i n s t e i n ' s  e q u a t i o n s  fo r  weak  p l a n e  w a v e s  r e d u c e  to the  two r e l a t i o n s  

1 c)~a O~a 
c 2 Ot 2 O x ,  2 

1 02b 02b 
c 2 0 t  'z Ox,2 = O. 

(45) 

(46) 

T h e r e f o r e ,  w e a k  p l a n e  X (Y) w a v e s  a l w a y s  e x i s t  b y  v i r t u e  of E i n s t e i n ' s  e q u a t i o n s .  

1 .  

2. 

3. 
4. 
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