GRAVITOINERTIAL WAVES IN VACUUM,.
LINEAR APPROXIMATION
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Zel'manov's method of chronometric invariants is used to develop an approach to the
description of gravitoinertial waves of a chosen frame of reference. It is shown that
there exist two basically different types of gravitoinertial waves in vacuum. Both
types are examined in general relativity in the linear approximation,

INTRODUCTION

Currently, there are various different methods for investigating gravitational wave fields in Ein-
stein's theory. One of them is the method of approximations, different variants of which have been con-
sidered by Havas and Goldberg (expansion of the potentials of the gravitational field in a series in the gra-
vitational constant), Bonnor and Rothenberg (the method of two-parameter approximations, which simulates
an expansion of the potentials in series in the multipole moments of the system of sources), Bondi and
Sachs (separation of the wave zone in the total gravitational field of an isolated emitting source by means
of an "information function" defined by an expansion of the metric in inverse powers of the distance from
the emitter), and others. The shortcomings of this method are the absence of a proof of the convergence
(at least in the wave zone) of the series and also that the fact that it is not covariant, which makes it
necessary to use a special (arbitrarily chosen) class of allowed coordinates.

A second method of describing gravitational waves, which is free of these shortcomings, is based
on the introduction of a specially postulated (in addition to the gravitational equations) generally covariant
criterion for distinguishing a class of gravitational wave fields. However, this approach not only entails
an unavoidable ambiguity in the solution of the problem but also leads to difficulties associated with the
lack of a direct physical interpretation of the employed generally covariant condition (algebraic or differ-
ential) used to determine the wave field, The interpretational difficulties arise because the generally
covariant conditions imposed on the curvature of spacetime in order that it should describe gravitational
waves do not admit an interpretation in the language of physical observables in the framework of the
generally covariant approach. In this approach, therefore, the problem of confronting the theory of gra-
vitational waves with the data of a physical experiment remains unsolved.

To solve the problem of the formulation of gravitational waves in terms of observables, it is ex-
pedient to consider a more general field of gravitoinertial waves., We say that a gravitoinertial field is
more general than a gravitational one in the sense that the results of its description apply to not only the
gravitational but alsc to the inertial field of the frame of reference of the observer, and our method of
description does not enable one to distinguish the one from the other. An invariant distinction between
gravitational and gravitoinertial wave fields is possible on the basis of an additional verification that the
adopted generally covariant criterion is fulfilled.

In contrast to gravitational waves, which are determined (in the framework of generally covariant
methods) independently of the choice of either the coordinate system or the frame of reference, gravito-
inertial waves are determined only for a fixed (in general, arbitrary) frame of reference of observers to
within "internal" coordinate transformations (which do not change this frame of reference) [1]:
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Thus, whereas in the method of approximations one fixes arbitrarily the class of allowed coordi-
nates, in the given (chronometrically invariant) approach the freedom in the choice of the allowed coordi-
nates is consistent with a unique determination of the frame of reference [1].

Besides covariance under the transformations (1), we require invariance under the transformations
(12). In other words, our definition of gravitoinertial waves [2] must be, first, invariant under the trans-
formations (1a) (chronometrically invariant) and, second, covariant under the transformations (1b) (spa-
tially covariant), )

This definition is based on the introduction of the chronometrically invariant, spatially covariant
d'Alembert wave operator

. . TR
£ — Hi *® =
O = H5* v vx = gp (2)
where hiK is the chronometrically invariant metric of the three-dimensional space of the given frame of
reference (hjx = — ik + (BoiZok/Eo0)» TV is the symbol of chronometrically invariant, spatially covariant

differentiation with respect to the coordinates of this space (see [1}]), and the asterisk here and in what
follows denotes chronometrically invariant operators, to distinguish them from ordinary ones.

The employed wave functions must be chronometrically invariant three-dimensional scalars, vec-
tors, or tensors. As chronometrically invariant representatives of the curvature tensor ([2], p.140):

Xi = —c? R——jbj’., Y= —¢ Rb{ﬁ ,
&oo Vg 00

Ziklj — c? RiKlj, (3)

which can be expressed in terms of the vector Fj of the gravitoinertial force, the tensor Ajy of the angular
velocity of rotation about the locally comoving geodesic coordinate system, the tensor Dy, of the rates of
deformation of the three-dimensional space of the frame of reference, and the curvature tensor Ciklj of
this space.

The chronometrically invariant criterion of gravitoinertial waves [2] consists of the reguirement
that the chronometrically invariant components of the world curvature tensor XU, viiK, and ziklj satisfy
equations of the form

*Of=A4, - (4)

where A is an arbitrary function of the world coordinates that does not contain derivatives of f of order
higher than the first, and the left-hand side of Eq. (4) is nontrivial, i.e., the wave function must be non-
stationary and spatially inhomogeneous. Depending on the choice of the wave function f, we shall distin-

guish the gravitoinertial waves X1J, Yijk, and Zik!j, However, in vacuum, Xij and Z1k!J are not indepen-
dent but are related by

Xi 2" =0, : (5)

so that in what follows we shall speak of two types of gravitoinertial waves: X (or Z) waves and Y waves,

§1, The Two Type‘s of Gravitoinertial Waves.

The General Case

In a vacuum, the Riemann world tensor Ry gys satisfies the identities [3]
0% Ruage + Rl Rigi + 2 (Roas RYE + Rigel R = 0. (6)
Writing out this system in a chronometrically invariant, spatially covariant form, we arrive at the three
systems
*O XU =AY, (7
@)

0 YR AU _ ®)
@
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TABLE 1

Chronometrically in- | Chronometrically in-
variant criterion for the| variant criterion for the
observable Xi(z""y | observable viik

Chronometrically invariant char-
acteristics of the reference space

Fi=0, A[-K: 0, D"KL‘ 0,

Aic#0, F;=0, D; =0, Not satisfied

Fi# 0, A =0, Di=0,

Fi=0, i‘%ﬁ =0 Not satisfied Satisfied
A+ 0,
D=0 -%—':35 # 0
Satisfied
D+ 0
0 ZiKl = ARE (9)

@)
where AlJ (A)‘Jk AKL gpe, respectively, the chronometrically invariant, spatially covariant tensors of
) @)
second, third, and fourth rank, respectively, and they do not contain derivatives of higher than first order
of the wave functions X4, vilk, ziklj

In [4], the relations (7)-(9) were used to investigate the conditions of existence of gravitoinertial

waves of the observables XU, Yk, and ziK!] for all possible types of frames of reference, We repre-
sent these results in the form of Table 1.

It can be seen from this that gravitoinertial waves of both types (X and Y waves) exist only in frames
of reference characterized by one of two conditions:

Di#0, Fi=0, Aux=0, (10)

or

* aAix

F"%O, Aix#"o, #0, Dix—“:O. (11}

A frame of reference of the first type is synchronous; we shall call one of the second type (moving with
acceleration and rotating without deformation) a rigid frame of reference.

In a synchronous frame of reference, the observables xil, vilk, and z1&lJ have the form [4]

X = — DDU - D+ D¥ - C,  (C¥ = By, CHIm), (12)
Yiik = *gi Dic — #gi Dix, (13)
Zisli = Dix DU — Dit DK — ¢2 Cisli, (14)

so that the X (Z) waves and Y waves are due solely to the presence of nonstationary deformation of the
frame of reference and the inhomogeneity of this deformation.

If the given gravitational field admits a rigid frame of reference, then in it the observables xij,
vijk  ziklj take the form

X = — 3A% As L+ C, (15)
Vs — # i Atk — % gl Ale ;2_ ARFe, : (16)
ZiR — Alk Al _ Ail AR] - QAN AR g2 Cinlj an

It follows that the X (Z) waves are due to the nonstationarity of the angular velocity tensor Alk, andthe Y waves
to nonstationarity of the tensor AIK and the simultaneous action of the acceleration and rotation (AJ ‘Fk)
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Note an interesting special case. Suppose the acceleration field Fj is irrotational: *V[kFi] =0,

Then by virtue of the identities [1] .
A;
Lol Fy=0
3 R G (18)

the tensor Aji is stationary, so that X (Z) waves are absent but the Y waves nevertheless exist even when

there is stationary rotation since in this case

QYU QAR *OFs
ot 2 6t

(19)

§2. Two Types of Gravitoinertial Waves.

Linear Approximation

Let us consider the wave equation (4) for the case of weak waves. Suppose the gravitational field
is described by the metric

gu5=8a3+aaﬁ, 6132{—'_1'1 —1,‘—‘1,_1}, }

(2] (x07 X1, x2: xs) << 1' (20)
Then the allowed coordinate transformations are of the type
Xt = o %, (21)

where {@ «1, and Bgi/axo =0, The conditions of the infinitesimally small transformations (21), which
conserve the splitting of the metric (20), do not change the chosen frame of reference either,

We introduce the notation

gOO =1 + @y, 8o = @i Lix = O + @i,

For this metric, all three chronometrlcally invariant mechanical characteristics of the space of the given
frame of reference are nonzero:

F,— (a_ai__i ‘?_a_o), (23)
14a, \ ot 2 dxt
aa, da,
1 Oy
Dirc:_‘z"‘l/_m -ET (25)
together with one geometric chracteristic:
Cry = L | P Oay _ Py (26)

oxidxt = dx#ox’ Oxigxt dxcoxt’

The wave functions (with allowance for the field equations) take the form

& ay; ia ay [ O @i Pay )]
e — o2 (5 = o2 ij ) il s 27
Xe=ciCu=c [Ox"axi + oxioxi ’ (0xidx’ * oxtoxx | 7)

Zucl} =c" Cuaj = Cz( ;il;"; - | 0?:3; - — aa;‘;’zj — ;j:xa(;;t \) (28)

e Ot A s Ot ) = e (G~ o )~ 7 (e~ amar )|
and the following relations hold:

-;_ :9 (3% ay) — 2 Ta:%lt' - C-;— Ag, =0, (30)

L E T re o ha v = @
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where A = 8%/6x1% + 82/6x2% + 8%/6x3% is the Laplace operator. It can be seen from (26) and (27) that in the
linear approximation the chronometrically invariant wave functions X1J and Z1k!j are determined solely by
the spatial curvature Cyj;:, whereas YUk is determined solely by the nonuniformities of the deformations
Djk and the angular veloc L%y Age

Let us investigate the physical nature of the X (Z) and Y waves for these two types of frame of re-
ference (synchronous and rigid). As follows from (26)-(28), in a synchronous frame of reference there
exist waves of both types: X (Z) and Y. In a rigid frame of reference, the X (Z) waves are abseut because
the wave functions are stationary, and the Y waves exist only under the condition that the field F; is not ir-
rotational: *Vv, Fij=0. Thus, inthe linear approximation, in contrast to the general case, the observer
establishes the presence of only Y waves in a rigid frame of reference, but he cannot establish the exist-
ence of X (Z) waves,

In the general case (F; =0, Ajk =0, Djx = 0), the Y waves are the result of superposition of defor-
mation waves and waves due to the combined influence of the acceleration F; and rotation Ay of the space
of the given frame of reference, while the X (Z) waves are, as before, purely deformational in nature.

Thus, the X (Z) waves and the Y waves have different physical natures.
The chronometrically invariant d'Alembert operator in the case of weak waves takes the form

*D:Aaj_ *02’
&t gr

(32)

where A is the ordinary three-dimensional Laplacian, and instead of the ordinary operator of differentia~
tion with respect to the coordinate x® we have the chronometrically invariant operator
* 1 a
ot Vita, of (33)
The wave equation (4) for weak waves simplifies appreciably since, first, the chronometrically in-
variant Laplacian is replaced by the ordinary one, and, second, the rather cumbersome right- hand side
vanishes because of the assumption of linearity; the equatxon becomes

fl ) 1
(0x‘2+ EYCRary: 6x32 e aﬁ)f - (34)

Measurable quantities are the tensor of the three-dimensional curvature for purely deformational
waves and the inhomogeneity of the tensor of the angular velocity and the tensor of the rates of deforma-
tion for the Y waves.

Note that in a freely falling frame of reference (F; = 0), and in particular in a synchronous one (Fi=
0, Aj, = 0), the wave equation (34) takes the form of the ordinary wave equation of the special theory of
relativity:
1 0*f
Af — — =2 =(. {
ct ot 5
For this case, the X (Z) and Y waves have a purely deformational nature, and the corresponding wave
functions (XiJ, YUK, ziklj) are determined as the solutions of the wave equation (35) from the ordinary
equations of mathematical physics. Thus, introducing the notation x! =x, x* = =y, x* =2 and considering
the Cauchy problem for Eq. (35) with the initial conditions

fh‘=caAf7 f(M,O):CP(M), ff(M,O):LP(M), M:M(x,y,z), (36)

we obtain for the wave functions (observables) the integral representation

£, t>~——[—t”w’) d9+tHwP>d9]

(S, = (ct)2 d2,), 37)
where Sgt = Sl(\:/{ is a sphere of radius ct with center at the point M.
We turn to the case of weak plane waves described by the metric [5]
o= T ha, (221,
b= — b =@,y =ty = b, a=+b=<<1} (38)
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For this metric, the chronometrically invariant Fj and Ajk are zero, and Djj has the form

1 da 1 o6
Dzz=”’Dsa=‘2“gt‘, 23='2—5;’ (39)
i.e., weak plane waves have a purely deformational nature. The wave functions take the form
1 &% 1 0%
X=X - — 2 XB—_ T 40
2 of 2 g2’ “0
s 2 Ja c? 0%
Z1e — _ 71313 o e 71218 . ©
2 oxt®’ 2 (41)
Yy — 8z — __l_ 3%b , Y22 — Y33 ___1_ da .
2 ox'ot 2 ox'ot (42)

Because @ and b are functions of x® + x!, in the linear approximation the plane waves of the two types (X

and Y) are identical, and the wave equations take the form

2 (1 d% d%a
— = 2=,
o (cz ot 0x12) (43)
o [1 0% 0%
A LA AN Y s 44
o <c2 ot 0x’2) @4
Einstein's equations for weak plane waves reduce to the two relations
1 &a  da _ (45)
2 o ax?t
1 % 0%
¢ o ox (46)

Therefore, weak plane X (Y) waves always exist by virtue of Einstein's equations.
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