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The paper considers the creation of particles from a vacuum in a closed, open, and quasi-
Euclidean Friedmann model. Finite general expressions are obtained for the density of
the number of pairs created, and also new analytical estimates are given of the intensity of
processes of creation at different stages of evolution of the universe,

The problem of pair creation in cosmology originated by the union of the theory of elementary
particles and the general theory of relativity, In the papers by D. D. Ivanenko and A, A. Sokolov [1-3],
interaction processes between quanta of a gravitational field and elementary particles were studied, In
particular, D. D. Ivanenko and A. A. Sokolov [1-3] found the interaction cross section of two gravitons
with the formation of an electron—positron pair,

Here we shall consider the effect of pair creation by a nonsteady classical gravitational field. The
creation of particles and antiparticles by a gravitational field can be considered by analogy with the well-
studied corresponding phenomenon in electrodynamics [4-8]. However, the specific properties of a gravi-
tational field, in comparison with an electromagnetic field, are related with the necessity for distinguish-
ing "true" and "virtual® gravitational fields and relating their special features to some or other specific
solution of the problem.

Pair creation from a vacuum by a classical external field is a consequence of instability of the
vacuum state, When the magnitude of the external field reaches a certain critical value, the work per-
formed by the field at the distance of a Compton wavelength of the particle, becomes equal to 2me?, In
this case, virtual pairs, which are always present in the vacuum, escape to a mass surface and may be
observed as real particles, On the other hand, the phenomenon of pair creation from a vacuum by exter-
nal fields can be conceived also on a more rigorous basis without the inclusion of a model of the vacuum
as a sea of virtual particles, It is well-known that the operator of a number of particles does not com-
mute with the operators of the field, the current density, the particle density, etc. In consequence of
this, there is always a so-called "zero" field in the vacuum, "which manifests itself in zero vacuum fluc-
tuations. The interaction of an external classical field with a zero field of particles and antiparticles can
lead to the appearance of a form of parametric perturbation in the theory of oscillations. With this per-
turbation, the energy of the zero oscillations increases so strongly that the vacuum converts to a state
containing a finite number of particles and antiparticles.

A study of the effect of particle creation from a vacuum by a gravitational field, is of great impor-
tance for cosmology. In particular, a point of view is possible according to which all observed matter
was created from a vacuum at a certain characteristic time. Such a cosmology would be free from the
difficulty associated with the infinite density of a substance in singularity. It is interesting also to consider
the possibility of the role of the effect of pair creation during the relativistic collapse of a star. This has
led to the appearance of a large number of papers devoted to the study of the effect of particle creation in
cosmology (see, for exai’nple, K. P. Stanyukovich.[9], L. Parker [10], Ya. B. Zel'dovich, and A. A,
Starobinskii {11], and also [12, 13], etc.).
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Schwinger showed [4] that particle creation by an electromagnetic field is accompanied by polariza-
tion of the vacuum, which leads to the necessity for replacing Maxwell's equations by more general non-
linear equations [4]. If the processes of pair creation by a gravitational field are sufficiently intense, then
Einstein's equations also, obviously, should be replaced by somewhat more general equations, which take
into account the phenomenon of polarization of the vacuum,

Particle creation from a vacuum is considered in this paper, in homogeneous isotropic models of
the universe. In this case, the effects of creation are not so intense that the reverse effect of the created
particles on the starting metric should be taken into account and the question of the possible modification
of Einstein's equations should be considered. Pair creation in the quasi-Euclidean and open Friedmann
models had been considered previously [10, 12, 13]. Here we shall write the general expressions for the
density of the created matter in open, closed, and quasi~Euclidean forms of the Friedmann model and also
we shall give new numerical estimates for the number of particles created in unit volume of space at dif-
ferent stages of expansion of the universe,

The metric of homogeneous isotropic models in conformal-static form is written

ds? = gy, dx*dx’ = a? () [dq® — dr? — 7° (r)(d6® + sin® tde?)], (1)
where ‘
shr —1
where f(f) =4 r for * = 0-
sinr 41

The quantity % is a constant [when a(n) = 1] of the curvature of three-dimensional space and the
time coordinate 7 is determined by the relation dt = a(n)dn, where t is the time in the synchronous frame
of reference, ¢ =1,

The Klein—Fock equation for the quantum complex scalar field in the metric (1) is
1 0 —_— Jdo R
— P wy T m2 —_ —
= axu[V gg 0x“]+< +6)<? 0, @)
where R is the scalar curvature (the tensor of the curvature is determined the same as in [14], & = 1),

Equation (2) corresponds to the Lagrangian

L=V=F e 22 S (5 it ®

The scheme of a quantum scalar field in isotropic Riemann space was developed in [15]. The general
solution of Eq. (2) is written in the following way:

L1
P 0) = g [ 411 (0 () 0+ 450 0 1) @

where /dI denotes summing and integration with respect to the quantum numbers of one-particle states;
P1(x) are eigenfunctions of the Laplace operator in the space part of the metric (1), with eigenvalues A%
and uy(n) is the solution of the equation

wr(n) + %3 (D ur(n) =0, x3(n) =m2a®(n) +x—)} (5)
with the starting conditions

w (n0) = T/%‘m () =i V().

The creation—annihilation operators of particles and antiparticles are denoted in accordance with
[16]. '

Pair creation from a vacuum by a classical gravitational field is manifested mathematically in that
the metric Hamiltonian [15] of the field (4) is diagonal with respect to the creation operator at a certain
initial instant 5, and when 5 > 7y, it becomes a nondiagonal quadratic form of the type [12, 13}:

1 * * T * , - o
H) = 5 | d1E ()@ e + a9 80) 1 F, (0 20+ F; (o) 47 a0, ®
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where
E (y=|a; ()|*+«3 (n)|ar ()| 2, F, () == [i () + #3 (n) % ()],

1is a set of quantum numbers for the complex-conjugate single-particle state.

The Hamiltonian (6) is written as Lagrangian, differing from Eq. (3) by the addition of the counter-
term (18/a%0m) (@a ¢ ™). The introduction of this counterterm, without changing the field equation (2),
enables finite expressions for the density of the number of particles to be obtained.

The nondiagonal Hamiltonian (6) can be diagonalized by a Bogolyubov transformation of the creation
—annihilation operators, of the type:
a7 = o, () 0 (v) + 8] (65 (m),
@ =at (1) 67 (1) + B (n) 6 (), ™
where la11* — I87% = 1; the transformations for the operators a;‘(i) are obtained from Eq. (7) with a Hermi-
tian conjugate.

The requirement for diagonality of Eq. (6) with respect to the operators by(#) and b’f(i) reduces to

the equation
' |Fr(n)|® ,
4o (1) [Er () + 210 ()] (8)

The vacuum state !O,7 >, which is the state with the least energy in the sense of the Hamiltonian
H(n), is determined by

[Br(n) (2=

7 (1) 0y > =67 () 10,> =0.
The matrix element of the density operator of the number of particles (antiparticles), determined

at the instant 7y, with respect to the vacuum IOn >gives the expression for the density of the created pairs

ﬁ(n)=a—5%5 il (|2 ©)

Numerical calculations of n{(n) from Eq. (9) and (8) are given in [12] for the case of the quasi-Euclid-
ean Friedmann model. In this case, the function obtained by means of the first iteration of the Volterra
integral equation equivalent to Eq. (5) was used for solving Eq.(5). Here we shall calculate n(n) at an early
and a recent stage of expansion of the universe, by means of the corresponding exact solutions of Eq. (5).

Let us consider first of all the case c'z(n)/a(n)«l, which corresponds to the recent stage of evolution
of the universe. In this case

a(m) = a,[1+ Hay (n— )], ' (10)
where H ~ 10-% per cm is Hubble's constant,

Taking Eq.(10) into account, Eq.(5) assumes the form

a®u
_ﬁ%l+w%u+wam(n=m a1
where om gt 3 M
m?aj nj . —
o=y Ky (1), h= oL g AT
@y "o

The exact solution of Eq. (11), with the initial conditions of Eq. (5), can be expressed in terms of an
Airy function. Its asymptotic, for the condition hf « 1 [this is valid if H(t —tg) < 1] is:

12 hEN . . h ‘
() =~ [ 1~~)e"“o¢ —-sin o &,
e R [ P as
Substituting Eq.(12) in Eq. (8), we obtain after transformations
2
|Br12= . sinZ o, k. (13)
: 16w}

The expression can be obtained from Eq. (9) and (13) for the number of particles created per unit
volume of space. For example, in the case of the open Friedmann model, we have
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sz[l/xz‘l‘ L ma, (n — o). {14)

n=

mH?* [ a, \? d xdx
i (ata) ) G

0
With the natural condition m(t —ty) >1, Eq.(14) gives

L mi —a7 1

for m mesons, which coincides with the calculation in [12]. From qualitative considerations, a result
which coincides with Eq. (15) to an order of magnitude was obtained by K, P, Stanyukovich [9].

Let us now consider the case a(n) = agn/ng which corresponds to evolution of a universe filled with
radiation, in the proximity of singularity.

In this case, the equation written in (5), in Weber's equation

2 < ‘
M _|,_ qz (1) ur (1) = 0’ (16)
d? :
where
P T2 2y 32 -
1=p =V Imag v, -, qz(t)zp2+—1~=‘f-ﬁ—n°(‘., M)+_~_"'_;,
Mg Yy 4 Copd o4
The solution of Eq. (16), with the starting conditions of Eq. (5), is:
__i_!"‘I(P‘) _E{ —a—E* 2
ul(h)“ 2 L To ] d": ( = ) Te=pn
. - 15} 7,
—ig (p) E* (= 12, u)]E(—pz, @+ |ig (p) E(—p% ) —GTE(—pz, %) ]E*(~p2, f)}, (17)

where

o

- ] .
E(a, x)=V72exp W—;i—k i( 5 -{—%)]D_m_g (xe 4),

o = arg I‘(1/2 + ig) and Dy, (z) is the function of a parabolic cylinder [17].

Introducing the momentum variable «* = %—7\% and calculating the asymptotic of Eq. (17) for the con~-
dition & /m >1/7n, we obtain from Eq. (8).

4 44 ._ 2
:?»,\Zz—”l—ﬁ“%[(u) +4—’3sm2x(n—~qo)]. (18)
16x5 793 "o Mo

If we denote by Kyy the minimum value of momentum at which the condition of applicability of the

asymptotic used is still satisfied, then it follows from Eqs. (9) and (18) that
3mt f— £y
128w2xd  £3

R, = (19)

Relation (19) coincides with [12] but gives a lower estimate for the density of pairs created in the
initial stage of expansion of the universe, We note that the magnitudes of Eqgs. (15) and (19) are small in
comparison with the density of the matter specified by the metric (1). This result, as already mentioned
above, allows the inverse effect of created particles in the starting metric to be neglected in the case of
homogeneous isotropic spaces.
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