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The functional equations of a r enormal i za t ion  group are  fo rmula ted  for  theor ies  for  
dimensional  coupling cons tants .  The s t ruc tu re  of the genera l  solut ions of the equation 
is de te rmined  for  an invariant  charge .  P a r t i c u l a r  attention is paid to models  with a 
negative m a s s  d imensional i ty  of the coupling constants  ( i . e . ,  to models  which are  un- 
r eno rma l i zab l e  in o rd ina ry  per tu rba t ion  theory) .  The cor respondence  between the 
general  solutions in the UV region with o rd ina ry  per tu rba t ion  theory  leads  to nonanalyt i -  
ci ty in t e r m s  of the coupling constant .  An additional assumpt ion  that the number  of 
invariant  cha rges  is finite leads  to l imi ta t ions  on the p a r a m e t e r s  of the Bogolyubov R 
opera t ion.  The poss ib i l i ty  of sckle  invar iance at smal l  d is tances  is d i scussed .  As an 
i l lus t ra t ion of these hypotheses,  an exact ly  solvable  unrenormal izab le  nonre la t iv is t ic  
model  is analyzed.  

1 .  R e n o r m a l i z a t i o n  G r o u p  in T h e o r i e s  wi t .h  a D i m e n s i o n a l  
t 

C o u p l i n g  C o n s t a n t  

A renormal i za t ion  group can be fo rmula ted  as a group of finite mult ipl ieat ive Dyson t r a n s f o r m a -  
t ions for G r e e n ' s  functions supplemented by a "compensa t ing"  t r an s fo rma t ion  of the coupling constant  
(constants) [1]. Th i s  approach fac i l i ta tes  an understanding of the c i r cums tance  that the exis tence of a 
r eno rma l i za t ion  group is not r e l a t ed  to e i ther  pe r tu rba t ion  theory  or  the d imens ion less  nature  of the 
coupling constants  and the s t ruc tu re  of the UV d ive rgences .  Incidentally,  this  c i r cums tance  was f ami l i a r  
long ago. It is r e f l ec ted  in the success fu l  applicat ion of the r eno rma l i za t i on -g roup  appara tus  to the p rob-  
l em of summing  the IR s ingular i t ies  in spinor  e l ec t rodynamics  [1, 2] and to the nonre la t iv is t ic  p rob lem of 
Coulomb screening  in an e lec t ron  gas [3]. To emphas ize  this point we p r e f e r  a slightly nonstandard de r i -  
vat ion of the equations,  which co r r e sponds  be t t e r  to the i r  fundamental  na ture .  

F o r  s impl ic i ty  we r e s t r i c t  the analysis  to the example  of in teract ing sca l a r  f ie lds .  One of the pa -  
r a m e t e r s  of this theory,  on which the n -pa r t i c l e  ampl i tudes  Tn(Pl . . . . .  Pn-1) depend, is the m a s s  m which 
a r i s e s  as the posi t ion of the pole of the G r e e n ' s  function: 

A (p2) = d (p~)(p2 _ rn~)-x. (1.1) 

The ampl i tudes  T n depend not only on this p a r a m e t e r  but also on a p a r a m e t e r  r e l a t ed  to the no r -  
mal iza t ion of the s ing le -pa r t i c l e  s ta te  and on p a r a m e t e r s  r ep re sen t ing  the s t rength  of the interact ion (the 
interact ion constants) .  The f i r s t  of these  is f ixed by specifying the value of tl/e function d at some point 
p 2 = ~  

zx = d ( p  ~ = ~): (1.2) 

Here  it is c l ea r  that the ma t r ix  e l emen t s  (the obse rvab le  quantit ies) mus t  not depend on the nor -  
mal iza t ion of the asympto t ic  s ta tes ,  so that we can wri te  

T n = z ~-,,/2 Tn (p~, m, k). (1.3) 
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In particu, l a r ,  
d ( p  S) = z x d ( p  ~', m S, ~.), d(~,, m 2, ) , )= I. (1.4) 

As a rule,  the in t e rac t ion  cons tan t s  a re  chosen  to be the magni tudes  of some  ampl i tudes  fo r  c e r t a i n  va lues  
of the i r  invar iant  a r g u m e n t s .  We a s s u m e  that  t h e r e  is only one such p a r a m e t e r  and we define it, e . g . ,  in 
t e r m s  of the va lue  of  the m a t r i x  e l emen t  r e l a t e d  to the" fou r -po in t  funct ion T 4 = F at the point 

1 p~ : - - - ~ p ~ p j  = ),, i . e . ,  

r (p~ pj) = z~ 2, r (p~ pj, tn 2, )., g~), (1.5) 

where  
- - ~ - P i P ]  = )', mS, )', gt = gx. (1.6) 

It is quite c l e a r  that  ins tead  of the d e t e r m i n a t i o n  point  k, the n o r m a l i z a t i o n  cons tan t s  z~, and the 
in te rac t ion  cons tan t s  gx, we could  have chosen  any o the r  point  Xi f r o m  the reg ion  in which d and F a re  real ,  
and we could  have chosen  the o the r  cons tan t s  

z~ = d (pS = ),,), g~, = z~, F i p~ =: t ) - - -~p~p)=) ,~  . 

This  a r b i t r a r i n e s s  m u s t  not be r e f l e c t e d  in the ampl i tudes ;  i . e . ,  we mus t  have 

--nl~ in  2 z;n/2 Tn(pi, tn ~, ),, g x ) = z x ,  Tn(pi, , ),~, gx,). (1.7) 

In pa r t i cu l a r ,  

zi -2 F (p; Pi, rn'~, ;', g~) ---- zV, 2 V (Pi Pj, mS, )'~, g~,), (1.8) 

z~d(p  2, m z, t, g~) = z ; ,d (p  2, m 2, k~, g~,). (1.9) 

It is not  diff icult  to see  that ,  with the subst i tu t ion k ~ ~'l, t r a n s f o r m a t i o n s  (1.7)-{1.9) f o r m  a group 
with an invar iant  cha rge ,  

"g (pS, m~., k, gx) d 2 (pS, m',  ),, gx) F p~ = --  -~ P~Pi = P ,  mS, )~, gx (1.10) 

and the usual  funct ional  equat ion of a r e n o r m a l i z a t i o n  group [1], 

~ ( p ,  ms, z, g~) =~(pS,  rn~, z~, ~(~,, m S, ~, g~)), {1.11) 

where  the in te rac t ion  cons tan t  gx is def ined by 

gx = g 0', rn2, )', gx)- (1.12) 

T h e s e  a r g u m e n t s  g r a ph i c a l l y  d e m o n s t r a t e  that  the r e n o r m a l i z a t i o n - g r o u p  equat ions  a r e  va l id  for  
t h e o r i e s  with z e r o  and pos i t ive  m a s s  d imens iona l i ty  of the coupl ing cons tan t s  ( e . g . ,  ~p4(D ) with D <_ 4) as 
well as  fo r  t h e o r i e s  with a nega t ive  m a s s  d imens ional i ty ,  which are  not r e n o r m a l i z a b l e  in the o r d i n a r y  
sense  ( e . g . ,  (fl4(D) with D > 4 ) .  They  r e f l ec t  the independence of the t heo ry  f r o m  the choice  of the point  
at which the coupl ing  cons t an t s  a re  d e t e r m i n e d  and f r o m  the n o r m a l i z a t i o n  of the a sympto t i c  s ta tes ;  con-  
sequent ly ,  they a r e  fundamenta l  condi t ions  in any field t heo ry .  

F o r  s impl i c i ty  we r e s t r i c t  the ana lys i s  to s c a l a r  p a r t i c l e s  and a s ingle in te rac t ion  p a r a m e t e r .  
However ,  the s a m e  a r g u m e n t s  can be r e p e a t e d  fo r  s eve ra l  f ie lds  and for  a l a r g e  n u m b e r  of in te rac t ion  
p a r a m e t e r s ,  if we der ive ,  ins tead  of (1.11), the equa t ions  of a mu l t i cha rge  r e n o r m a l i z a t i o n  g r o u p .  

Our pu rpose  is to ana lyze  the c o n s e q u e n c e s  of  the equa t ion  of  a s i n g l e - c h a r g e  r e n o r m a l i z a t i o n  
g roup  fo r  u n r e n o r m a l i z a b l e  mode l s  in quantum f ie ld  theo ry  with coupl ing cons tan t s  g having negat ive  m a s s  
d imens iona l i t i e s ,  [g] = [m2] -k,  k > 0. We a s s u m e  that  such mode l s  exist ,  i . e . ,  that  fo r  t hem we can define, 
in a cons i s t en t  m a nne r ,  G r e e n ' s  funct ions  which depend on only a finite number  of p a r a m e t e r s  of the coup-  
l i ng -cons t an t  type .  To  f u r t h e r  s impl i fy  the ana lys i s  we a s s u m e  that  f o r  at l eas t  s o m e  of these  models  we 
can  use the equa t ions  of  a s i n g l e - c h a r g e  r e n o r m a l i z a t i o n  group* 

One example  fo r  which these  a s s u m p t i o n s  hold is the solvable  non re l a t i v i s t i c  model  with a f ixed 
nucleon,  of the type  

2~L~., = g~ (x) ~ (x, t) ~ (x, t), (1.13) 

* Such a g roup  appa ren t ly  a lways  ex i s t s  as  a subgroup .  
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t r e a t e d  in [4]. The analog of  the invar tant  cha rge  he re  is the ampli tude fo r  m e s o n - - n u c l e o n  s c a t t e r i n g  f(w), 
divided by w; the expl ic i t  equat ion fo r  this  ampli tude,  

-g (to, g)  = f (o , )  g 
0~ 1 - -  g~o [c + V ~ ]  (1.14) 

shows a dependence on a s ingle  addit ional  p a r a m e t e r ,  c .  The  r e n o r m a l i z e d  in te rac t ion  cons tant  g in (1.14) 
is def ined by g = g(0, g). By shif t ing the n o r m a l i z a t i o n  point we can conve r t  (1.14) to a f o r m  sa t i s fy ing  (1.11). 

Mult ip lying both s ides  of Eq.  (1.11) by (p2)K and t r a n s f o r m i n g  to d i m e n s i o n l e s s  va r i ab l e s ,  we find 

T ( x , g ,  4 ) = v  T '  t '  , 

where  x = p2/X, y = mZ/X, t = Xl/X, 3' = gx hk, and T = (p2)k~. 

A r e m a r k a b l e  p r o p e r t y  of  Eq.  (1.15) is its un ive r sa l i ty :  i t  has  the s a m e  f o r m  for  any f ield theo ry  
with a s ingle  coupl ing constant ,  r e g a r d l e s s  of i t s  d imens iona l i ty .  The gene ra l  solut ion of Eq.  (1.15) in the 
l imi t  y = 0 ( i . e . ,  fo r  p2, X >>m 2) can be wr i t t en  [5] 

T( x, ~') -= {9 ( x'~ r  (Z)), (1.16) 

where  �9 is an a r b i t r a r y  funct ion.  

2 .  R e n o r m a l i z a t i o n  G r o u p  a n d  P e r t u r b a t i o n  T h e o r y  

One of the mos t  i n t e re s t ing  ques t ions  is the c o r r e s p o n d e n c e  of the r e n o r m a l i z a t i o n  g roup  and p e r -  
tu rba t ion  theo ry  for  u n r e n o r m a l i z a b l e  t h e o r i e s .  The  bas i c  d r a w b a c k  of  p e r t u r b a t i o n  t heo ry  is known to be 
the i n c r e a s e  in the n u m b e r  of sub t r ac t i ons  and thus the n u m b e r  of unde t e rmined  cons t an t s  as  the o r d e r  of 
the pe r t u rba t i on  t heo ry  i n c r e a s e s .  

F o r  s impl ic i ty  we t r ea t  the case  k = 1 (the impor t an t  r e s u l t s  can  be g e n e r a l i z e d  to the case  k # 1). 
The  p e r t u r b a t i o n - t h e o r y  expans ion  for  invar ian t  cha rge  is 

"f (x, "i') = 3 "x {1 q-- "~ [Ax  In x + ca, (x --  1)] -4- 3 "2 [Bx ~ In ~ x '+  Ex 2 In x 

-47 c2z(x - -  1) 2 -k Czt (x --  1)] -b 7 a [... ] q-. ---}. (2.1) 

We now a s s u m e  that ~/can be expanded in a c c o r d a n c e  with 

~'(x', l) -= 7x [1 ~- ~ ,  (x) + .;2 72 (x) A- . . .] ,  (2.2) 

where  ff can  be expanded in a c c o r d a n c e  with 

{9 (z) = z -t- z "~ {91 + z~ {92 + ... (2.3) 

Subst i tut ing (2.2) and (2.3) into (1.16) we find e x p r e s s i o n s  fo r  r which a re  p o l y n o m i a l s  in x and which expl i -  
c i t ly  do not c o r r e s p o n d  to p e r t u r b a t i o n  t he o ry .  F o r  example ,  we find 

cp, = (x - -  1) {91. (2.4) 

What is going on?  Can i t b e  that  the hypo thes i s  r e g a r d i n g  the poss ib i l i ty  of expanding T is i n c o r r e c t  (cf . ,  
e . g . ,  [6]) ? If we a s s u m e  for  ~i s o m e  sl ight  nonana ly t ic i ty  with r e s p e c t  to  z, we find, ins tead  of (2.4), 

~, (x, ~) = x{9, (x~) - {91 (~), (2.5) 

and we find 

~2 (X, 7) ~ (x, "() q- ~, (x, T) d {9, (x~() -k .~z {92 (x'~) --  {gs (4). (2.6) 
d in x T 

C o m p a r i s o n  of (2.5) and (2.6) with (2.1) shows that  

{gx (x'f) = a, In x -f o r  c,, = al in -(/[3, (2.7) 

{9~ = a s In 2 z q- b In z 4- d, (2.8) 

where  a 1 = A, a z and b a r e  r e l a t e d  t o  A, B, E, and/3.  Accord ing ly ,  c o r r e s p o n d e n c e  be tween the r e n o r m a l i -  
z a t i o n  group and pe r tu rba t i on  t heo ry  r e q u i r e s  the appea rance  of a nonanal~cticity with r e s p e c t  t o  the coup-  
l ing c o n s t a n t .  F o r  c a s e s  with k ;~ 1 this  is a nonana ly t ic i ty  of  the type y2t /x;  fo r  va lues  :K of  which a r e  in -  
t e g e r s ,  on the o ther  hand, a nonana ly t ic i ty  of the type 3' is added .  
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A second  consequence is an interrelat ion among the undetermined coefficients Cam. We see f rom 
(2.7), and (2.6) that in the t h i rd -o rde r  theory only one additional a rb i t r a ry  constant, d, appears,  (2.8), 

instead of the two in (2.1). In general ,  using the expansion 

~- ( x ,  "I) = "i -k- ( x  - -  1)  ~?~ (-() q-  ( x  - -  1) ~- , ~  (7)  q-  .. .  ( 2 . 9 )  

and the differential equation of the renormal iza t ion group which the invariant charge obeys 

a~-(x, ~) = ,~, (T(x,  -,.)), (2.10) 
x d x  

we can easi ly show that, by specifying a function ~1 (7), we unambiguously determine all the Sn ( i .e . ,  know- 
ledge of Ckt gives us all the C/n with n > 1). For  example, 

2,~., (7) = ,~, ('I) (9't (7) -- 1). (2.11) 

We have thus shown that per turbat ion theory for the coupling constants of negative dimensionality can be 
reduced to a cor respondence  with the renormal iza t ion-group equations. Fur thermore ,  we have found that 
all the a rb i t r a r iness  for the invariant charge can be incorporated in a polynomial of fifth degree in x (in 
the coefficients cK1)and thus in a finite number of eounte r te rms .  This resul t  is an important step toward 
a construct ion of a scheme of renormal iza t ions  of these theor ies .  To continue in this direction we must 
study the problem of the divergences  of the higher Green ' s  functions. 

3 .  A s y m p t o t i c  UV R e l a t i o n s  

An important feature of the arguments  in w is the presence  in the components ~Pn (x, y) of a rb i t ra ry  
t e r m s  of the type 

x" a~. (x~) - ~ .  (x),  (3.1) 

which can (and in fact do) contain the leading asymptotic t e r m s  ~ (x In x3z) n. 

Accordingly,  and in cont ras t  with the usual renormal izable  models (with dimensionless  coupling 
constants),  the principal  asymptot ic  components ~o n are mutually independent. Accordingly, in par t icular ,  
the Gell--Mann--Low equation in (2.10) turns out to be ineffective for  proving the approximating proper t ies  
of per turbat ion theory.  

Fur the rmore ,  it is not difficult to see that in general the renormal iza t ion group is of little a ss i s t -  
ance in the solution of such a problem.  Let us assume that we have managed to sum all the leading asym-  
ptotic fo rms  of the Feynman d iagrams of the type (xTlnxT) n and we have managed to find for the invariant 
charge the express ion 

~PT (X, -;) = ~(X~). (3.2) 

Then using the general  solution (1.14) we find, instead of (3.2), 

~-Rc(x, .() = tF (xtF -1 (-~)). (3.3) 

Since we have ,I,-l(y) -~ Y + 0(3 '2) at small  % Eq. (3.3) is essential ly the same as (3.2). 

Nevertheless ,  Eq. (3.2) is of interest  in the regions 

a) xTlnxT.~l ,  b) lnx',.>>l, c) xT<:. l .  (3.4) 

For  weak interactions this pe rmi t s  us to take a big step toward the unitary l imit .  However, we 
cannot go beyond the unitary limit in the region 

x "I ~) I . (3.5) 

4. D i s c u s s i o n  

This analysis  is based on the hypothesized existence of a s ingle-charge renormal izat ion group. 
However, the resu l t s  do not all depend on this hypothesis in equal measure .  The conclusion regarding 
the nonanalytic nature of the dependence on the interaction constants is not re la ted to this hypothesis.  It 
resu l t s  simply f rom the c i rcumstance  that in the UV limit, p2, k >>m 2, for  which the dependence on the 
masse s  drops out; the only dimensional pa r ame te r  which is permit ted by the renormal izat ion group for 
eliminating the dimensionali ty of the nonanalytic (e. g.,  logarithmic) dependence on the momentum is the 
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in teract ion constant .  Consequently, this  conclusion must  r ema in  valid even for  a mul t icharge  r e n o r m a l i z a -  
tion group. 

With r e ga rd  to the coupling between the subt rac t ion  p a r a m e t e r s  [of the type in (2.1)], we note that 
the f o r m  of this coupling for  a mul t icharge  r enormal i za t ion  group can turn out to be different,  since in the 
der ivat ion we explici t ly  used the different ial  equation for  a s i ng l e - cha rge  r enorma l i za t ion  group. 

However,  the ve ry  fact of coupling apparent ly  is re ta ined  for  r eno rma l i za t ion  groups  with any n u m -  
be r  of cha rges .  Nor is the conclusion in w rega rd ing  the imposs ibi l i ty  of going beyond the uni tary l imit  
affected, since the lack of coupling between the leading t e r m s  of var ious  o r d e r s  is due solely to the d imen-  
sionality of the coupling constant:  

One of the poss ib i l i t i e s  for  reaching region (3.5) is based  on the hypothesis  of scale  invariance at 
smal l  d i s tances  [7], which r equ i r e s  that, in the l imi t  x ~ 0% we have 

7---~const, F -~ x . . . .  , e ~ 0 .  (4.1) 

In pa r t i cu la r ,  this  behavior  follows f r o m  the model  of (I.13), (1.14). 

We would like to emphas ize  the following c i r cums tances :  

A) Simply the exis tence of a r enormal i za t ion  group for  unrenormal i zab le  theor ies  p e r m i t s  us to 
hope that the hypothesis  of sca le  invar iance will not contradic t  the genera l  p r inc ip les  of quantum field 
theory  (in cont ras t  with the s e m i c l a s s i c a l  case) .  F u r t h e r m o r e ,  this  group makes  it poss ib le  to approach 
the higher G r e e n ' s  functions, since it has been shown [8] that each t e r m  in the skeletal  expansion for  the 
higher functions tu rns  out to be finite, by v i r tue  of (4.1). The se l f -cons i s t ency  of this approach,  of course ,  
r e m a i n s  one of the bas ic  p r o b l e m s .  

F u r t h e r m o r e ,  the r enormal i za t ion  group impl ies  that the range of appl icabi l i ty  of this hypothesis  is 

p t p i ~  p ~  ~ m ~, g-11,~. (4.2) 

B) Region (3.7) is a f a r  nonphysical  region, and f r o m  the p rac t i ca l  standpoint the study of sca le  in- 
va r i ance  would be an idle game if there  did not exis t  methods permi t t ing  us to de te rmine  the consequences  
of this hypothesis  for  physica l  p r o c e s s e s .  H e r e  we a re  thinking of the Wilson expansion [9] and the m o r e  
r egu la r  method p roposed  by Ef remov  et al .  [10]. This  la t te r  method leads  to seve ra l  in teres t ing  qualit- 
ative p r o p e r t i e s  of h igh-energy  p r o c e s s e s  [10] (a power - l aw dec rea se  in the e las t ic  and inelast ic  c r o s s  s ec -  
t ions with increas ing  t r a n s v e r s e  momentum,  a modif ied Regge p ic ture  of the sca t t e r ing  in the diffract ion 
region,  e tc . ) ,  which can be checked exper imen ta l ly .  

In this connection it would be in te res t ing  to apply the appara tus  u sed  above to the unrenormal izab le  
quark  theory  of the type Lin t = g (~0 r ~) (see, e . g . ,  [11]). 

In conclusion we wish to r e e m p h a s i z e  the genera l  na ture  of the r enormal i za t ion  group and the va l id -  
ity of its equations not only for  theor ies  with a polynomial  Lagrangian  interact ion but a lso  for  nonpolynomial,  
e . g . ,  the chi ra l ly  invariant,  Lagrang ians  which depend on a single in teract ion constant .  A c h a r a c t e r i s t i c  
p rope r ty  of the r enormal i za t ion  group fo r  such theor ies  is a coupling even betweefi~the invar iant  ch a rg e s  
cons t ruc ted  f r o m  G r e e n ' s  functions of va r ious  o rde r s ,  a s  in the Yang--Mil ls  theory .  
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