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The propagation of waves in laminated composite materials whichhave a periodic struc- 
ture has been investigated both in the case with no initial stresses [i, i0, ii, 12, and 
others] and in the case with initial stresses [3, 4, 6, 9]. Investigations taking account 
of initial stresses have dealt with plane waves propagated along the layers and across the 
layers. In the present paper we study the problem of the effect of initial stresses on the 
phase velocities of axially symmetric waves. For this purpose we considered only propagated 
waves. We used a three-dlmensional linearized theory of elasticity for bodies with initial 
stresses [2]. It should be noted that in the case of laminated bodies without initial 
stresses such an approach has also been used by other authors [i, i0, ii]. 

i. Statement of the Problem. We consider a laminated composite material consisting of 
two isotropic linearly elastic alternating layers whose elastic potentials are arbitrary 
twice continuously differentiable functions. All quantities associated with each layer will 
be indicated by superscripts in parentheses. It is assumed that axially symmetric elastic 
perturbations are propagated in the deformed body. 

We shall distinguish three states of the body: the natural unstressed state; the initial 
deformed state, all of the quantities in which will be indicated with a superscript zero; 
and the state at a given instant of time, all quantities in which are equal to the sum of 
the corresponding quantities for the initial state and their perturbations caused by the wave 
field. With each layer in the natural state we associate a Lagran~ian cylindrical coordinate 
system (r(j), 0(J), xa(J)) and a Cartesian coordinate system (x,(J), x2(J), xa(J)). 

Since the elongations of the layers differ from each other, the coordinate system in each 
layer willalso be different, and therefore in the initial state we introduce a cylindrical 
coordinate system (r, 8, z) common to the two layers. We shall assume that the axis 0z is 
perpendicular to the layers and the coordinate plane z = 0 coincides with the interface plane 
between the layers. 

In the discussion that follows, we shall consider the initial stressed-deformed state of 
the body, characterized by the parameters 

.o~, _ . o ( ~ _  o; o;~ ~ o; 
f f l  1 = 0 2 2  =)t::: ~--- 

u, ~ = ( ~ ? ) -  t) r('); Uo ~i~ = O; 

Then 

Consequently, 
h(J), will be related by theformulas 

x? ) x~ ~ o; (~ = Xa q= O; 

o0) tlLo) (/) u3 = ~ - - l ) x 3  ( 1 = 1 , 2 ) .  

(i.i) 

r = %~1)?0; 0 = 0~; z = ~ x ~  ~ (] = 1, ~ .  ( 1 . 2 )  

t h e  t h i c k n e s s  o f  t h e  l a y e r s  i n  t h e  n a t u r a l  s t a t e ,  h(J), and i n  t h e  i n i t i a l  state, 

h(~) = x~% ('~ (l = l, 2). ( 1 . 3 )  

The equations of motion of a compressible body have the form [3] 

L~c,u~ ~ = 0  ( i ,m,  c t , [ ~ = l ,  2 ,3 ;  ] =  1,2); 

Lt/~ o) 0" 0 2 
= O)iraall ~UI)~..(i) PO)~m~t v.,q u~ B 0"1;2 " 

(1.4) 
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In the cylindrical coordinate system, in the case of the axially symmetric problem 
(u0(J) = 0), the general solution of the equations of motion can be represented in terms of 
one function • [2, 5] 

u~ri ~ = a~X '0 u~') 
a/nax~ n ; = O; 

^u,,..,,: ( ,.s,x,"" xl" a_.~_ ~ X~: a, )x,,~; 
ua = r (i) /^(i) !~(i h ,,,(i)= ax(i)= r,(i)= 

e'l /~'3 t.ttI3 "4- . 13/ t a l x  I t " l x  I " 
(1 .5 )  

A( n a ~ 1 a 
= ~ + rU ~ arU~ ( ] = 1 , 2 ) .  

The components of the surface load for xa(J) = const, referred to the dimensions of the 
body in the natural state, have the form [8] 

~i)~ Ur,x s + ~1 "3 pmUa, r; = O; 

( 1 . 6 )  

p,jO ~ti)~,O).O~ [u(i) ~_ Ur _i 4- p t% , (/~ 
= t'.q 3 "13 k r,r 7-- r(]) ) . ~ "3.X8 (]  = 1, 2) .  

The f u n c t i o n s  •  a r e  d e t e r m i n e d  f r o m  t h e  e q u a t i o n s  

[( c(i), .(j~z O' ~,~i)' 02 '~ [  "~ ~,li)' as [A( / ,+  s,x s ~, ) ~ A(/' ~,x, [ , .u: ~,~---~ axg: ,.u: a~' + c,n ---r- x~' Oxen" | 

~,tx~ -a ~4x a S~x~ (I. 7) 

~i)" 0 ~ ~ ~(n~X ~ (/) "i---'~m/(i~ " O s  ] 

o': ox': l S~x 1 

where, f o l l o w i n g  the no ta t i ons  of  [ 7 ] ,  C(J)7~x~ and C(J)S~x i are the v e l o c i t i e s  of  the ex- 
pansion waves and the shear waves in the deformed body, polarlzed in the plane Oxmx i and 
propagated along the axis 0x i (i, m = i, 2, 3; m # i). 

In all expressions, we pass to the cylindrical coordinate system in the initial state, 
(r, 0, z), which enables us to express the problem in a convenient form. To do this, taking 
account of the formulas (1.2), we write the expressions (1.5) for the displacements and the 
equations (1.7) for finding the functions • in the following form: 

u ~  = ~o~u~ O~xU~ �9 u~ ~ = O; 
�9 ~ , ~ a  O r O z  ' 

~(i)=O~o(hz / p(j)I 0 ~ a 2 ,~ 

,,m ~ "  q- rue 0z" C u~' O~ ~ .xu~ ( / = I ,  2); ) ( z . s )  

' ) 
1 $ ~I_~i.) 2 

Cul Ct/~ ,~sax ~ ,-.s~ (1.9) 

~,-,3 -r  ~ a ~  ~m = o ( i  = 1, 2): 
2q)sr,{D~C-~/)z ] P ~Zx 1 Ssx z 

here A = ~2/3rZ + 1 / r  3/,3r; p(J) = p ( J ) / ~ x ( J ) 2 ~ 3 ( J ) ;  p ( ] )  i s  the dens i t y  of the j - t h  layer  in  
the initial state. 

We introduce the components of the surface load for z = const, referred to the dimensions 
of the body in the initial state. Then from (1.6), taking account of (1.2), we obtain 

~ -u),~m' u m - -  dn. m. (n  Pe ~ O; : I J ' , . '81x ~ r , z  "1-  ~ l ~ l ~ z , r ,  "~" 

~n zu~,,(n'um .~(n_(n( m d4) = v ~l,~., , . ,  "I- ,~  ,aa Ur:  + (] = 1, 2). 

(1.10) 
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The coordinate system (r, O, z) is so chosen that the layer with superscript i occupies 
on the axis Oz a region O<~z~h(~), and the layer with superscript 2 occupies a region 
-~(~)~z<0. On the plane of contact between the two layers the continuity conditions for 
the displacements and the components of the surface load must be satisfied. Then for z = 0 
we find 

u~ ') (o) = u~(o); . p  (o) = g~)(o); ?~') (o) = ~)(o); ~') (o) = ~)(o). ( i .  11) 

By Floquit's theorem [i], for z = 6(t) and z = -~(~) the following periodicity conditions 
must be satisfied: 

u(; ) & ) )  = u(/) (--~%; u(? (~(')) = uP (-~(~));: 

The relations given above enable us to solve 
metric perturbations in a laminated material 

2. Dispersion Relations. The solution 
form of an axially symmetric wave which goes 
over the thickness of the layers [6] 

the problem of the propagation of axially sym- 
with two periodically alternating layers. 

of the equations (1.9) can be represented in the 
off to infinity and has an amplitude which varies 

^ 1 Z (t)-- u~ e - t ~  ( / =  I, 2). ( 2 . 1 )  

Here Ho(1)(y) is the Hankel function; k is the wave number; ~ is the frequency. 

For the unknown functions u(J)(z) we find from (1.9)that 

~0 (z) = A?e 'd/~z + 2 + . 0 ^  (~= + A~u -'=2 �9 '~3 = ( i  = l ,  2),  ( 2 . 2 )  

where Am(J) (m = i, 2, 3, 4; j = i, 2) are constants of integration; an(j) (n, j = i, 2) 
are the positive roots of the equations 

~  - -  k '  ~ ~ ~ + - - ~ %  

+ o ;  + + 
$ 1 5  1 5  

(2.3) 
+ k i ( V ~  -- ~ ~,~ ,.,(i) ~ ,, 

and V = w/k i s  t h e  p h a s e  v e l o c i t y  o f  t h e  a x i a l l y  s y m m e t r i c  wave d e f i n e d  i n  t h e  c o o r d i n a t e  
s y s t e m  ( r ,  0,  z ) .  

The e x p r e s s i o n s  f o r  f i n d i n g  t h e  d i s p l a c e m e n t s  o f  t h e  p a r t i c l e s  i n  t h e  l a y e r s  a r e  found  
f rom ( 1 . 8 ) ,  t a k i n g  a c c o u n t  o f  ( 2 . 1 )  and ( 2 . 2 ) :  

2 i O) ~_0") z 
-(/) /n? ) (kr) e- '" ~ ~ ' , @  ^ "~" " ( ' ~ - "  ' 2 . - - t ~  - -  t "L2n= ) ;  

n----1 

�9 I (i)z 
.?  = H(o ') (kr) e - ~  ~ (A(J~_~e t ~ ) ' -  + A~e - ~  ), 

n = l  

( 2 . 4 )  

where 

k.,,)_~,._o + ~ )  (n, ] = 1.2) ~3 ~,n ~t~13 

Substituting (2.4) into (i.I0), we obtain the components of the surface forces for 
z = const: 

A(/3e-" n �9 

.=I (2.6) 

r t=I  

5 9 1  
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where 

Dr, i) . O')ct(O?(i)c(i) ~ t,~o') . ~  
yR. R. {J SIX 3 " ~  /~'n'3 ~13; 

E~'~ _(t~l(i)r,O~ 2 t.~oX (0.o') = ~ , ~ V  u % + ~ s v n " ' s  ( n , ] =  I , 2 ) .  
( 2 . 7 )  

From the continuity conditions (i.ii) and the periodicity conditions (1.12), taking ac- 
count of expressions (2.4) and (2.6), we obtain a system of eight homogeneous algebraic equa- 
tions which enables us to determine the constants of integration. From the condition for the 
existence of nontrivial solutions of the system, we can write the dispersion relation corre- 
sponding to axially symmetric waves propagated in a laminated compressible medium. Since the 
dispersion relation is cumbersome, we shall not give it here and shall consider a number of 
special cases. 

To do this, we represent expressions (2.4) and (2.6) in the following form: 

2 . .  t i )  . , i f )  

~# = iH~ I) (kr) e -t~" ~-7.07 ~--=.--l='~(h ^'- __ ~r J.'" 
R.~---I 

,(i ) = H(0 ') (kr) e -'=" E '~P 
y(]) 

~o~ e" ., I. 2n--I r "Jr" JR. 1, 

"=' ( 2 . 8 )  
2 yfi) 

~ = - ~ ' ) ( k O  - ' =  O ~  ~ ,~%-"~" e Z ( , ~ _ , e  R. + ,R. l; 
~=1 
2 y(/') y(]) 

~(/3 :r_tO) ~0)i-~(I) ^ R. ~(b e- R. r ,  ----- - , o  (kr) e - ' i '= '  ~ .  ,'-. ~-I= -- ~,R. ,, 
R..~.[ 

where 

yff) z 

Suppose that in an elastic body there is propagated an axially symmetric wave CaseA. 
in which the displacements ur(J) are odd (antisymmetric) and the displacements uz(J) are even 
(symmetric) with respect to the middle surface of the layers. Such a wave is referred to, 
using the terminology of [1], as transverse in the mean, since the displacements averaged 
over the period of the structure will be perpendicular to the layers. In accordance with 
the proposition, in (2.8) we must take A(J)ln-1 = A(J)ln (n, j = i, 2). In this case the 
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continuity conditions (i.ii) and the periodicity conditions (1.12) coincide, and the system 
for determining the constants of integration takes the form 

2 2 2 2 

,,~(h sh (~ )  o; E ~,f2-, ch (izP) = o; E ~ ~ - , , , - 1  = E (-- 1)/+i  
I==I n-.~l I=,I  n==l 

( 2 . 9 )  
2 2 2 2 

(__ l ) /+ t  ~ ]  ~ - ( n  �9 (n ~ e ~ sh  ( t zP)  = O. O. A2,,-, ch (tz.) = 0; ~ ~ . .-,2,,-t 
l = l  n ~ !  ]==1 n,,=,! 

From the condition that system (2.9) has a nontrivlal solution, we obtain the dispersion 
relation 

I D(')2 - -  D (D, - -  (D~ ~) - -  DI D) - -  (D(2 2) - -  D i  D) 

. (1)-p(1) . (1)qr,(1) . (2),p(2) __. (1),T,(1) ~--- O ,  
n - I  -r--r1 �9 l (2.10) 

r.(,),,,(1) =(I),r.(I) E~'}~)q-NI)~ ') -2tr(2)~}2 -]- NI)T~ I) 

where 

(n , j  = 1, 2). 

Case B. Now suppose that in the axially symmetric wave the displacements ur(J) are even 
and the displacements Uz(J) are odd with respect to the middle surface of the layers. In 
this case the wave is called longitudinal in the mean [i], since the displacements averaged 
over the period of the structure are directed along the layers. In (2.8) we set A(J)2n-1 = 
--A(J)2n (n, j = I, 2); then the continuity and periodicity conditions (i.ii) and (1.12) coin- 
cide. Consequently the system for determining the constants of integration takes the form 

2 2 2 2 

7(i) u} h,.( i) ,  .~10 sh(iz~')) 0; ( -  l )  i+~ E ~ . - ~ ' e .  c t , z .  ~ = o; E,E 2.-~ = 
i = I  n-.~l ] = I  n = l  

2 2 2 2 

7(~ ~(h sh( iz~)  o; ~ ( - -  I)/+~ ~ -(~ (~ " ~ A2,,-IE,, ch ( l z .  ) = O, Z, E ,~2.-I,-,. = 

j ~ l  nm:l I=~1 n,==l ~ 

(2.11) 
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and the dispersion relation can be written in the form 

where 

D ( I )  r~(,) (D~ 2) --D~ `)) -- (D~ ~) -- D~") J 2 - -  ; - I 1  

..(~)C 0) . (0f~) . (~)f~) ~. fl),4x) ~2 , - u , . ,  ~ ,  ~ ,  - ~ ,  , . ,  v ~ " ~  2, + v~')~') = o, 

d. ~ -- ctg (z. #)) (n, i -- I, 2). 

(2.12) 

Equations (2.10) and (2.12) obtained above coincide with the dispersion equations for 
plane waves [9], and if there are no initial stresses, they pass into the known equations 
for plane waves propagated in periodically laminated elastic bodies [i, ii]. 

3. Example. We use the relations obtained above to investigate the effect of initial 
stresses on the phase velocity of axially symmetric waves propagated along the layers in an 
elastic body with two alternating layers. The elastic potential of the materials of the 
layers is taken in the Murnaghan form 

~0~ =~1 XOA~' +"~(DA(~ + 2  T a(~ A~)3 + b(DA~DA~/) +-3-c~ A[D" (3.1) 

where 1 (j), ,(J), a (j), b (j), c (j) are elastic constants; --~J) (m = i, 2, 3; j = i, 2) are 
algebraic invariants. 

The parameters  C~(~ ) '(J) l~J) , ~mn and [6], taking account of (3.1), can be calculated without 
using any more than a linear approximation [8]. The generalized stresses in such a case are 
equal to the physical stresses. As a result, we obtain 

a~ ) = Z(/) -{- 2F(D -]- (Z~)= - -  I )  (2a (/) + 4b 0~ -{- c (D) -{- (~(J)= - -  1) (a O -{- b~);  

a~ = x~) + 2~,~) +2  (x~' - l) (no) + b(~) + ( ~ '  - -  1) (a~ 3 + ~(~ + ~ ) ;  

a~ ---- X~ + ( ;~ '  - -  l) (~aW + b~) + (~p" - -  l) (a(I) + b(~); 

.o0) ;0~=o03 ~")'--I ~ (;&9 :(~l,(D)v,, --.. va3 . 
( S ~  + 2~o b ' 

(3.2) 
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We shall confine our attention to the case in which the initial stressed state of the 
laminated elastic body has the form 

co(~).~_ O; 0~1) 0~2) .0(2) j! -- = ----- =0. v33 (3.3) 

The results of the numerical solutions of the dispersion relations (2.10) and (2.12) for 
the ratio of layer thicknesses ~ = h(2)/h(I) = i are shown in the figures. The examples of 
[ii] were used to check that the calculation program for the phase velocities was operating 
correctly. Figure I shows curves characterizing the variation of Vo/Ct(*) as a functionof 
the parameter h = kt(1)h(1). The curves for the relative variation of the phase velocities 

= (Vo--V)/Vo'10 s of the symmetric (solid curves) and the antisymmetric (dashed curves) 
axially symmetric waves as functions of the parameter h for modes 0-4 are shown in Figs. 2-6, 
respectively. The quantities Vo and V are, respectively, the phase velocities in the lami- 
nated body without and with initial stresses (3.3). The numbers next to the curves indicate 
the degree of loading ~ = o11~ (i, 2, 3, 4 correspond to 0.0004, 0.00065, 0.0009, and 
0.00115). 

As the material of the first layer, we took 09G2S steel, and for the second we took 
plastic. The elastic constants are given in [5]. St can be seen from the figures that for 
some ranges of frequencies the calculations should be carried out with higher precision, but 
these ranges do not play a large role, since there the effect of the initial stresses on the 
phase velocities of the waves is insignificant. For low frequencies h (the long-wave approxi- 
mation) the calculation of the phase velocities of the waves can be carried out according to 
the theory of reduced moduli. However, the numerical results show that in this case the 
moduli depend on the stresses [3]. 

It should be noted that the authors carried out the calculation of the phase velocities 
of axially symmetric waves for different ratios of the layer thicknesses and different 
materials. 

Conclusions. From an analysis of the above results for ~ = 1 we can conclude the fol- 
lowing: 

i. The initial stresses have a substantial effect on the phase velocities of the gener- 
ated waves. 

2. There are frequencies at which the relative phase velocity is independent of the 
initial stresses. 

3. Each mode has a frequency range in which the variation of the phase velocity caused 
by the initial stressesis strongly dependent on the frequency. 

4, As the ratio of layer thicknesses varies, there is also a variation both in the 
critical frequencies and in the nature of the dependence of the phase velocity on the fre- 
quency and on the initial stresses. 
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INVESTIGATION OF THE STRESSES OCCURRING IN THE NONSTATIONARY 

PERTURBATION OF AN AXISYMMETRIC CAVITY SURFACE 

Yu. N. Podil'chuk and Yu. K. Rubtsov UDC 539.3 

Besides the traditional methods [i, 2], among the number of intensively developed methods 
of solving nonstationary elasticity theory problems are methods of the theory of geometric 
optics, or ray methods. The ray series method is used [3, 4, 8, 9] to investigate different 
nonstationaryproblems of elasticity theory. However, in the case of axisymmetric wave 
fronts, the calculation of the large quantity of ray series terms needed to determine the 
time dependence of the stresses being investigated behind a nonstationary wave front evokes 
serious difficulties. The method of nearby characteristics [14] developed in application to 
plane nonstationary problems of elasticity theory [12, 13], assists in averting them. The 
purpose of this paper is a further development of the method of nearby characteristics in 
application to axisymmetric nonstationary problems of elasticity theory. 

i. Let us examine the problem of a nonstationary perturbation of the surface of an 
axisymmetric convex cavity. To solve this problem, a system of orthogonal curvilinear co- 
ordinates must be used which is formed by the fronts being propagated from the wave cavity 
and the normals to it, i.e., by rays. As is knownfrom the theory of geometric optics [4, 5], such 
fronts can be described by using the functions T(~) and T(~), which satisfy the eiconal equa- 
tions 

! ! 
(i.i ) 

where the function T determines the expansion wave front propagation (P-waves) and the func- 
tion T determines the shear wave front (S-wave), ~ and 8 are the respective propagation 
velocities of these waves. 

To find T and T the Cauchy problem for (i.i) must be solved, respectively, by taking in- 
to account that at the initial time t = 0 the surface of the P- and S-wave fronts determined 
by the equations T -- t = 0 and r -- t = 0 agrees with the surface of the cavity. As is known 
[6], the solution of this problem reduces to the solution of a system of ordinary differential 
equations. As a result of solving this system of equations we obtain expressions completely 
determining the P- and S-wave fronts that are being propagated from the cavity, and the rays, 
or bicharacteristics, perpendicular to them [8] 

7= +7(0, (1.2) 
17- ~(o, ~)I ~ (1.3) 

Here (1.2) determines the system of rays, and (1.3) the system of fronts for the P-waves (the 
corresponding expressions for the S-waves are written analogously), ~ is the unit normal to 
the cavity surface, E is the length of a ray measured from ths cavity surface, ~(8, q) is a 
vector function determining the cavity surface (the equation s = f(8, n) is a parametric equa- 
tion of the cavity), and 0, q are certain coordinates on the cavity surface (Fig. i). 

We introduce a coordinate system (~7) formed by rays and P-wave fronts and an analogous 
coordinate system for the S-waves in'the x--r plane passing through the axis of symmetry, 
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