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Evaluation and Comparison of Spatial Interpolators 1 

Dennis  Weber  2 and Evan Englund 3 

This study evaluates 15 different estimators to determine their relative merits in estimating block 
concentrations at contaminant waste sites. The evaluation was based on 54 subsets of data drawn 
from an exhaustive set of 19,800 data. For each subset, 198 block estimates were made with each 
estimator. The measurements of estimation quality were a linear loss function and a more standard 
statistic, the mean square error. The linear loss function showed that seven of  the estimators 
produced scores close enough to be within the same statistical population. Results based on the 
mean square error were similar. The surprising results of this study were that inverse distance and 
inverse distance squared both produced better scores than kriging. 
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INTRODUCTION 

Previous studies have examined the effects of various estimation parameters on 
the quality of estimates from spatially correlated data. Englund (1990) showed 
that the variance of estimates was high among 12 different statisticians who 
made local block estimates from two common sets of data. A second study by 
Englund et al. (in press) investigated different sampling design parameters, sam- 
ple size, grid type, and noise level, and showed that the only statistically sig- 
nificant parameter was sample size. The present study evaluates the relative 
accuracy of 15 different spatial estimators. 

EXPERIMENTAL PROCEDURE 

Fifteen spatial estimation methods were used in this study. All methods 
produced estimates for the same 198 blocks, and had no missing values. The 
198 block estimates for each of 54 sample sets and for each estimator were 
compared with the " t ree"  values from the original 19,800 data. Evaluation 
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statistics included a cost to society and the mean square error (MSE) averaged 
over the 54 sample sets. 

W A L K E R  L A K E  D A T A B A S E  

A subset of the larger Walker Lake data set derived from a digital elevation 
model was used as a surrogate "site model." The local variance of elevation 
data was used as a surrogate for measured soil contamination data. A grid of 
19,800 data in a 110 x 180 array (Fig. 1) was obtained by calculating the 
variance of 5 x 5 blocks of elevation data (Isaaks and Srivastava, 1989). The 
frequency distribution is in Figure 2. The site model was subdivided into 198 
square blocks, each containing 100 variance values. These blocks, for which 
average "true values" were computed, represent units of a size assumed to be 
practical for remediation. 

SAMPLING DESIGN 

Fifty-four different sample data sets were drawn independently from the 
site model according to a 3 x 3 x 2 factorial design with three sample sizes, 
three sample patterns, and two levels of sample error: 18 different sample de- 
signs were produced, each combination of which was repeated three times. The 
sample sizes were 104, 198, and 308 data: the three sample patterns were simple 

Fig. 1. Subset of the Walker Lake data set. 
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Fig. 2. Frequency distribution of  19,800 data f rom the subset o f  the Walker Lake database.  

random, cellular stratified, and regular grid. The two levels of  sample error were 
a base level of  zero error, and a high level at a relative standard deviation of  
32 %. Errors were normally distributed, with zero mean. 

E V A L U A T I O N  S T A T I S T I C S  

Linear Loss Score. The primary measure, the linear loss score (LLS), is 
calculated from an asymmetric  linear loss function. The underlying assumption 

is that society pays a cost for all contaminated areas, either as a remediation 
cost for each block cleaned, or as a less easily defined group of  costs (health 
effects, ecological  damage,  etc.) for each block which remains contaminated. 
We assumed their sum to be a l inear function of  concentration, while the unit 
remediation cost was assumed to be constant. 

An "ac t ion  l eve l "  for remediation is assumed to be society 's  best estimate 
of  the breakeven point, i .e. ,  the contamination level at which the cost of  cleaning 
a block is exactly equal to the cost of  not cleaning it. We define loss in units 
of  "b lock  remediation cos t , "  which we normalize to " o n e "  at the "act ion 
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l eve l . "  The loss assigned to a block can fall in one of  the four categories shown 
in Table I. 

For  a block of  any concentration, the cost associated with a correct re- 
mediat ion decision is found from lines 1 and 2; the loss of  an incorrect decision 
is found from lines three and four. The sum of  the 198 block scores is the total 
loss for the site, excluding sampling costs. 

To minimize the effect of  action level on linear loss score, we computed 
the scores (excluding sampling costs) at nine action levels. Thus, the linear loss 
score (LLS) derived from the l inear loss function is expressed as 

Linear  Loss Score = ~ ~ Loss/j k 
i=1 j= l  \ k = l  

where the summations i, j ,  and k are over the 54 data sets, the nine action levels, 
and the 198 blocks,  respectively. An example and additional detail regarding 
the calculation of  the LLS are given in Englund et al . ,  in press. 

Mean Square Error. A second quality measure is the mean square error 
(MSE), averaged over all 198 blocks and all 54 sample sets, which is 

54 198 
~4 ~1 [ ' ~] (ze/j stimate - 7~!rue'2] MSE = T ~  - ,  , .= j l 1 

where Z estimate and Z TM are the estimates and true values for the blocks, and i 

and j represent the blocks and data sets, respectively. MSE does not depend on 
the action level. 

E S T I M A T O R S  

For  each est imator described below, 198 block estimates were produced 
for each of  the 54 data sets. Blocks were numerically approximated by discrete 
2 × 2 arrays of  point estimates. All  kriging estimates were made by using Geo- 
EAS software (Englund and Sparks, 1988). 

Table 1. Linear Loss Function" 

True Assigned True linear 
Decision Estimate value linear loss loss 

1 Correct > AL > AL 1 1 
2 Correct <AL <AL TV/AL (< 1) TV/AL (< 1) 
3 Incorrect > AL < AL 1 TV/AL ( < 1) 
4 Incorrect < AL > AL TV /AL ( > 1) 1 

~AL and TV represent action level and true value, respectively. 
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Ordinary Kriging and Simple Kriging. Variograms using spherical models 
for each of the 54 data sets were estimated by a single investigator who modeled 
the variograms visually according to a prescribed set of  instructions. The kriging 
neighborhood was defined as the 20 closest samples. For each of the 54 data 
sets, the mean value of  the data samples was provided to the simple kriging 
program. 

Log Kriging. The natural logarithms of  the data sets were used to cal- 
culate the variograms for the 54 data sets. They were calculated according to 
the same procedures used above in ordinary kriging. Then ordinary kriging was 
performed as above to obtain the estimates in log space. To recover block 
estimates in units of  concentration, six methods of  backtransform (Rendu, 1979; 
David, 1988; Rivoirard, 1990) were used: 

and 

l V ZAC = e :eij, ZBo = exp [Y/s + 5 ij], 

ZD,; ' /Xdj _ el',,) ', 
g ~  

Zco= exp [Y~j + ½V/j - Xij], 

Ze~ j = --/% exp [Yij + ~' Vii], ZFo = --/xdJ exp [Y/j + ½V, j - X/j] 

where ZKi j is the K-backtransforrn (K -- A, B, C, D, E, and F) for block i in 
data set j. Y~ is the log-kfiged estimate, Vii is the Kriging variance, and Xij is 
the Lagrange multiplier. Backtransfonn bias was accounted for by ~dj which is 
the mean value of the sample data values for set j, divided by #xj which is the 
mean of the 198 K-backtransfonned estimates for the same set. 

Rank Kriging. For a data set of  n measured values (Z i), the (Z i) were 
assigned ranks (Ri) according to their magnitudes (Singh and Sparks, in prep- 
aration). Rank values were treated as measured values in ordinary kriging. The 
backtransform from the kriged rank estimate was obtained by linear interpolation 

(Ro 1. 
Z o = Z j  Jr" (RJ +1 _ Rj)J 

where Rj and Rj + l are the ranks below and above the estimated rank, respec- 
tively, and Zj and Zj + ~ are the measured values that correspond to Rj and Rj + 1. 
A bias correction was made as in the log kriging backtransforms (/zaj//z,~nkj), 
where j represents the j t h  data set. 

Mean. For each of  the 54 data sets, the mean value of the data samples 
was assigned to each of the 198 blocks. 

Radian CPS/PC. The following four estimators use the CPS/PC software 
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package (Radian, 1990). Available software options did not permit the same 
search scheme used for the kriging estimators. The four CPS/PC estimators all 
used a search scheme defined as a circle, divided into octants, with a search 
radius (r s) of 800 feet. Estimates were made using a maximum of three samples 
per octant, with a minimum total of eight. 

Inverse Distance and Inverse Distance Squared. These estimators are 
defined as: 

n 

Z o = ~ wiZ(xi)  
i = l  

where Zo represents the estimated value, w i are weights, Z(xi)  are sample values 
at locations xi, and the summation is over the n samples included in the estimate. 
The weights for inverse distance (w t°) and inverse distance squared (w tDs) are 
defined as 

(r s -- ri) 2 ( rs  -- r i )  2 

\ ri / 
w(  D - (rsri)' and w[ Ds = 

(r s _ r i ) 2  n 2 
i=1 (rsri) l ,Y] rs -- ri 

\ r i / 

where r i is the distance between estimate and the ith sample location, and r s is 
the search radius. 

Piecewise  Least  Squares. A polynomial equation (a surface) is fitted to 
the selected samples 

Zo = ao,0 + al.0 + a0.1Y + a l , l x y  

where Z o is the estimated value at coordinates x and y, and ai, j a r e  the fitting 
coefficients. Coefficients are obtained by regressing sample values against their 
x, y coordinates while constraining the fit to minimize the weighted residual 
sum-of-squares. The residual weights were w ~Ds as calculated above. 

Projected Slope. This procedure individually fits a first order polynomial 
function as described by Zo above through each selected sample location. The 
distance weighting is calculated as w xDs above where ri are the distances between 
the selected sample location and the remaining sample locations. This procedure 
results in as many surfaces as sample locations. The estimate is calculated from 
the surface values at their intersections with the estimate location, weighted 
again as w *Ds above, but where the distances ri are the distances between the 
estimate location and the sample locations. 
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RESULTS 

Results for the 15 estimators are summarized in Fig.  3 and 4 where the 
means and standard error of the means are given for the linear loss score and 
mean square error, respectively. In Fig. 3, the estimators are grouped by LLS 
means. 

Figures 3 and 4 show the surprising result that both inverse distance squared 
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Fig. 3. LL Score means and standard errors for the 15 estimators. 
Horizontal and vertical bars represent means and ranges including 
plus and minus two standard errors, respectively. Log kriging back- 
transforms (ZA, Z~, etc.) are labeled according to their definitions 
given under Log Kriging in the section on Estimators. 
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Fig. 4. MSE means and standard errors for the 15 estimators. Hor- 
izontal and vertical bars represent means and ranges including plus 
and minus two standard errors, respectively. 

and inverse distance estimators scored better than any other methods according 
to both quality measures. The next best estimates were obtained from the log 
krigings and rank kriging, all with bias corrections. The best log kriging was 
obtained by using the back transform which included the log value and its kriging 
variance. All three log kriging backtransforms with bias correction outperformed 
ordinary kriging, although the difference is not statistically significant. 

Rank kriging without bias correction did the poorest with respect to both 
LL score and MSE; however, with bias correction, the LL score was better than 
ordinary kriging and only slightly worse with respect to MSE. 

Ordinary Kriging produced better estimates than simple kriging because of 
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the non-stationarity of the data. The original data set had large areas where the 
values were low and large areas where the values were high. 

The eight poorest performing estimators scored percentage increases in LLS 
from 20.39 to 47.07 over the tree values. These increases are significantly 
greater than the seven better performing estimators. They will, therefore, not 
be considered as competing methods in further studies. 

Table II shows the linear loss for 11 of the interpolators vs. the action 
level. For action levels below 19.7 contamination units, the linear losses for the 
Piecewise Least Squares and Projected Slope interpolators are significantly higher 
than the other 13 interpolators. This is caused by underestimating blocks by 
these two interpolators. 

DISCUSSION 

Based on the results of this experiment, should geostatisticians abandon the 
use of kriging and adopt the simpler inverse distance algorithms? In the authors' 
opinion, the answer is no, for two reasons. First, an argument can be made that 
the particular results in this experiment are fortuitous, and second, reasonable 
variations of this experiment can be imagined wherein kriging would be expected 
to have a distinct advantage over the particular inverse distance algorithms used 
here. 

In theory, kriging is an optimal interpolator in the sense that it minimizes 
estimation variance when the variogram is known and the expected values of 
the mean and variance are constant over the area of interest. In practice, these 

Table 2. Linear Loss vs. Action Level 

Action level 

Estimator 2.0 8.2 19.7 41.0 68.8 108 151 210 297 

Inverse distance squared 206 192 177 164 152 137 120 100 77 

Inverse distance 203 196 182 167 154 139 122 101 77 

Log kriging - Ze ~ 204 196 186 170 t55 136 119 99 78 
Log kriging - ZF ~ 202 196 185 171 155 137 119 99 78 

Rank kriging a 216 196 181 168 154 138 121 101 78 

Log kriging - ZD a 212 199 186 171 155 136 118 99 77 

Ordinary kriging 201 196 184 171 159 143 125 102 77 

Simple kriging 202 199 195 182 165 148 126 102 77 
Piecewise least squares 294 211 184 167 152 137 120 99 77 
Data means 198 198 198 198 198 202 154 1 I0 78 

Projected slope 389 238 199 175 156 138 121 100 78 
m 

a With bias correction. 
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conditions are never met; kriging has become a popular interpolator in large 
part because it is robust--it generally produces good sub-optimal estimates even 
when reality departs substantially from the ideal. 

The example used in this experiment is not ideal. Kriging at best should 
provide near-optimal estimates, and we would expect that if enough alternatives 
were examined, some would eventually be found which provide better estimates. 
That this occurred among the small number of interpolators tested in this study 
is, as was stated earlier, surprising, but not totally unexpected. The inverse 
distance methods are linear-weighted-average estimators in the same general 
category as kriging, and as such, can be expected to also be quite robust. 

From a theoretical standpoint, only the MSE score should be used to com- 
pare interpolators, as this is the estimation variance which kriging attempts to 
minimize. Of the 15 interpolators tested, only ordinary and simple kriging use 
ordinary variograms and thus actually attempt to minimize the MSE as computed 
here. The log krigings, for example, use log variograms and attempt to minimize 
the mean squared log-error, which was not computed in this study. Thus, whereas 
ordinary and simple kriging might be expected to have the two lowest MSE 
scores under ideal conditions, they actually ranked a quite respectable third and 
fourth. 

The kriging approaches used in this study can be described as relatively 
simplistic. Kriging varieties such as universal kriging, indicator kriging, and 
disjunctive kriging might be better suited to the case at hand. 

The inverse distance methods used here, like kriging, involve some judg- 
ment on the part of the user. The search scheme described earlier has a signif- 
icant effect by limiting the number of samples used for each estimate. The choice 
of search radius also affects the weights assigned. A different set of search 
parameters for the ID and IDS might produce worse (or even better) results. In 
addition to selection of a search strategy, the kriging estimators use variogram 
models which must be estimated from the data. In this study, single spherical 
models were fitted manually by visual inspection according to a simple set of 
instructions. This was done to minimize the learning effect of fitting multiple 
variograms from different samples of the same population, but it may have 
negatively affected the results. 

Two frequently-encountered circumstances which would tend to favor krig- 
ing over inverse distance estimators were not present in this study. These are 
strong anisotropy and biased clustering of samples. The portion of the Walker 
Lake data set used here is only weakly anisotropic, and significant data clustering 
could occur only by chance in the 18 data sets generated by simple random 
sampling. 

In conclusion, the results of this study, while provocative, should not be 
interpreted to mean that the inverse distance methods tested here are superior 
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to kr iging es t imators  in all cases.  The  search for  the ideal interpolator  is far 

f rom over .  
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