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Decomposed and Weighted Characteristic Analysis 
for the Quantitative Estimation of Mineral 

R e s o u r c e s  1 

G u o c h e n g  Pan  2 and  DeVerle  P.  Harris  3 

Characteristic analysis has been employed as a means of  selecting favorable targets for  mineral 
exploration. This paper describes a new version o f  characteristic analysis that is designed to estimate 
mineral resources as well as delineating exploration targets. The new version, referred to as 
decomposed and weighted characteristic analysis, employs a weighting scheme for  both samples 
and variables involved in the model to extract the useful information on tonnages and the order of  
importance o f  variables. To construct a decomposed model, an optimum cutting technique for  the 
ordered quantity is developed. The model is demonstrated on a case study o f  pegmatitic Nb-Ta 
deposits in China. 

KEY WORDS: decomposed and weighted characteristic analysis, mineral resources estimation, 
Nb-Ta deposit, optimum cutting. 

INTRODUCTION 

Characteristic analysis (also called decision modeling) was proposed by Botbol 
(1971). It was demonstrated as a tool for quantitatively describing how typical 
each of a number of geological characteristics, such as mineralogy, geochem- 
istry, geophysics, etc., is of a set of mineral deposits (Harris, 1984). Since 
1977, this statistical technique has been described as a means for selecting 
exploration targets (Botbol et al., 1978; McCammon et al., 1983; Pan and 
Wang, 1987). This methodology has been developed to the stage that it brings 
together three separate efforts: the analysis of geological characteristics, genetic 
modeling, and decision making. 

One of the major advantages of characteristic analysis is its simplicity, 
rendering it easily understood by geologists. Another appealing feature of the 
method is that it consists of quantitative procedures by which different modes 
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of geological data pertinent to mineralization can be quantified, integrated, and 
analyzed. 

Much progress has been made in recent years. Perhaps, the most noticeable 
development is the probabilistic description of association between character- 
istics (McCammon et al., 1983; Pan, 1985a). This development leads to a better 
understanding and interpretation of the kinds and strengths of relationships be- 
tween variables. McCammon et al. (1983) proposed a so-called generalized 
characteristic analysis in which the established model is progressively expanded 
by adding to the statistical base the unknown cells that are most closely related 
to the initial control cells selected for model identification. 

This paper presents a modification of characteristic analysis especially de- 
signed to make it more useful as a method for resource appraisal. This modified 
procedure is referred to as decomposed and weighted characteristic analysis 
(DWCA) and is demonstrated on a case study of Nb-Ta resources in pegmatite 
deposits in China. 

CONVENTIONAL C HAR AC TER ISTIC  ANALYSIS 

Like most other statistical models in mineral exploration, characteristic 
analysis is primarily based on observations or measurements taken in and around 
known ore deposits. Use of the model has been predicated upon the assumption 
that the favorability of the region of unknown mineral potential is a positive 
function of the similarity of its characteristics with those of the known deposits. 
Let X = (x U) denote the matrix containing the data of n observations on m 
geological characteristics, where x/j is either binary or ternary. When xij is bi- 
nary, it is assigned one if characteristic j exists in cell i and zero otherwise. For 
ternary coding x U is one if the presence of characteristic j is favorable to cell i, 
negative one if the presence of characteristic j is unfavorable to cell i, and zero 
if the characteristic j is unknown or unevaluated. 

The matching coefficients between pairs of m characteristics are defined by 

S = (sjk) = n - l X T X  (1) 

where sjk = n - '  F,']=ixUxik, j ,  k = 1, 2 . . . . .  m. Beginning with matrix S, a 
weight for each of the m characteristics is usually calculated by one of the 
following two ways: 

(1) Square Root  Method.  The weight for characteristic j is defined as 

~ i =  m-' 2 (21 k=l sjk , j  = 1, 2 . . . . .  m 

(2) Principal Component  Method.  According to the theorem of spectrum 
decomposition for a matrix, the coefficient matrix S can be expressed as follows: 
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S = X i a l a  r + . . .  + ~kmam aT (3a) 

where Xj is the j th  eigenvalue of  S and ~,~ > X2 - • • • >-- hm --- 0; a t is the 
j th  eigenvector o f  S associated with ~i. Define 

~pj = X j / ~  Xk, J = 1 , 2  . . . . .  m (3b) 

Clearly, 1 > 6~ > . .  • > ~bm > 0, since S is generally a non-negative definite 
matrix. If  q51 is large enough (e.g., 0.8), matrix S can be approximately ex- 
pressed by its first eigenvector without losing much information, i.e., 

S ~ h l a l a  r (3c) 

Therefore, it is reasonable to define the weights for the m characteristics based 
upon the first principal component, i.e., fv = (a~, a2 . . . . .  am) T. Consequently, 
a characteristic model can be constructed for measuring the favorability f of  a 
given cell: 

f = ~Tx ~4) 

where x is a vector containing observations of  the m characteristics on the given 
cell. 

I f  the weights are regularized, such that Ej~j = 1 and ffj >_ 0 ( j  = 1, 
. . . .  m), then values of  f a r e  valued in the interval [0, 1] for binary-transformed 
variables, or in the interval [ -  1, 1] for ternary-transformed variables. For a cell 
outside the model area, values of  f close to 1 indicate high degrees of  match 
with the model and hence are judged to be highly favorable; values o f f  close 
to - 1 (for ternary variables) or 0 (for binary variables) indicate low degrees of  
match with the model and therefore are judged to be unfavorable; values o f f  
close to zero (for ternary variables) indicate neither high degrees or low degrees 
o f  match, and consequently, are judged to be of  undefined favorabilities. 

O P T I M U M  C U T T I N G  T E C H N I Q U E  F O R  O R D E R E D  G E O L O G I C A L  
S E Q U E N C E S  

In mineral resources appraisal, it is important and useful to examine the 
ordered mineral resource values (such as tonnage of  ore, average grade, number 
of  mineral occurrences, etc.) with a set of  standard sample points. These sample 
points are collectively referred to as the ordered variation sequence (OVS). In 
order to identify controlling properties (directions and magnitudes) o f  a quan- 
titative variable to mineral resource potential in space, mineral resource descrip- 
tors should be correlated to patterns of  characteristics in the OVS. Such asso- 
ciations allow one to examine a restricted set o f  combinations of  features among 
known mineral deposits. Because of  a great diversity of  geological character- 
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istics and complexity of mineral resource distributions in space it would be 
extremely difficult, if not impossible, to quantify the explanatory power of each 
attribute or attribute combination for all possible outcomes of mineral resource 
values. By using a cutting technique for ordered data, it is only necessary to 
investigate the discriminating power of each attribute or attribute combination 
for those "critical" mineral resource values. 

Consider the subjective classification in which a known mineral deposit of 
a specific genetic type is placed into one of a set of categories, such as large, 
medium, and small. While reasonable and intuitive, such a procedure cannot 
generally give an optimum solution when the objective is resource prediction 
by geologic attributes (Pan and Harris, 1990). Classification should be based 
upon optimizing in some way the associations between geological attributes and 
an ordered variation sequence of mineral resources. Clearly, looking for the 
cutoffs in an OVS can be considered to fall within the scope of optimum cutting 
techniques. Optimum cutting techniques for ordered data so far have been con- 
stmcted using the Fisher's criterion (called F-method) (see Fang and Pan, 1982), 
which determines the cutoffs in a sequence such that the sum of variances within 
each of the groups is minimized. However, in view of the particular features of 
mineral resources appraisal, the F-method possesses several important disad- 
vantages: 

(1) Data employed in mineral resource estimation are both qualitative and 
quantitative. Values assigned to qualitative attributes are only nominal. For 
example, the opposite values like 1 and - 1  do not imply that one is greater 
than the other; instead, they can be equally important in the prediction of min- 
eralization. 

(2) The natural cutoffs should be determined on the basis of associations 
of geological characteristics, instead of considering only the contributions of 
variances separately as is done in the F-method. Allowance should be made for 
the possibility that different scales of mineral resources correspond to different 
subsets of characteristics. 

(3) The cutting procedure should accommodate the so-called "light-head 
and heavy-feet," i.e., few large deposits and many small deposits. Since the 
F-method is designed to cut a sequence evenly, i.e., cutoffs identified are such 
that the number of sample points in the groups tends to be equal (Fang and Pan, 
1982). Cutting highly skewed distributions by the F-method may lead to absurd 
results. 

Considering all of the shortcomings of the F-method, a new optimum cut- 
ting technique, called the P-method, has been developed by Pan (1985b). As- 
sume that we have m geological characteristics and n sample points ranked to 
an order variation sequence in terms of some mineral resource descriptor (e.g., 
tonnage). Let X = (Xpq) be the n x m data matrix, where Xpq s are binary values 
defined in an earlier section. Let {i . . . . .  j } (1 < i < j ___ n) denote the section 
of sample points from i to j in the variation sequence. Define 
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m j - 1  j 

= O o ( i , j )  + ~ ~ ~ (x# + x k , )  (5) 
t = l  l = 1  k = l + l  

where 1 <__ i < j < n, D ( j ,  j )  = O, l <- j < n, and Do(i ,  j )  = 2 - 1 ( j  - i) 
( j  - i + 1). The quantity D( i ,  j )  is called the consistent degree in section {i, 
. . . .  j } ,  measuring the similarities among the sample points in section {i, 
. . . .  j } when the characteristics are binary. Based upon this measure, a new 
cutting method (the P-method) is proposed in this section. The P-method de- 
scribed below maximizes the global consistency among the m characteristics 
within each group and minimizes the similarities between different groups. 

Suppose that the ordered sequence is cut into g sections. The criterion is 
to search for cutting points 1 _ P l < P2 < • • • < Pg-~  < n such that the 
following quantity is maximized: 

QE~(g, n) - D(1 ,  p j )  + D ( p  I + 1, P2) 

+ • ' '  + D ( p g _ l  + 1, n) (6) 

where Eg = {p~ . . . . .  pg - 1} is the set of  cutoffs. The criterion (6) may also 
be expressed more concisely as 

Qg~(g, n) = max { Q & ( g ,  n)} 
E~ 

where/~g is the set of  opt imum cutoffs. The algorithm for searching is described 
below. 

First, calculate the matrix of  consistent degree 

Then, let 

D = 

and 

O ( 1 ,  1) O(1 ,  2) 

(2,. 1) D ( 2 , 2 )  

N O ( n ,  1) D ( n ,  2) 

• . -  D ( 1 ,  n ) \  

) • "" D(2,  n) 

• ' '  D ( n , n )  

Q~ (1, j )  = D(1 ,  j )  

E~ = { j } , j  = 1 , 2 ,  . . .  , n ,  

(i) QEg(g,J)  = Q~g_~(g - 1, i)  + D ( i  + 1 , j )  
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w h e r e i = g -  1, g . . . . .  j -  1 ; j = g , g +  1 . . . . .  n ; g  = 2 , 3  . . . . .  n. 
Finally, 

Q& (g, j ) = max [Q&_, (g  - 1, i)  + D ( i  + 1, j ) ]  
g--l<_i<_j--1 

(i) max [Qe~ (g, J)] (7) 
g--I<~i<--j--I 

Whenj  = n in Eq. (7),/~g will be the set of optimum cutoffs. Accordingly, 
the ordered sequence of n sample units would be optimally cut into g groups: { 1, 

. . . .  p ,} ,  {p, + 1 . . . . .  P2} . . . . .  { P g - I  + 1 . . . . .  n} .  

DECOMPOSED AND W E I G H T E D  C H A R A C T E R I S T I C  ANALYSIS 
M O D E L  

More often than not, mineral resources are closely associated with a variety 
of  related geological characteristics and their combinations. Therefore, quanti- 
fying mineral resource descriptors requires the detailed investigation of the re- 
lationships between geological characteristics. Such an idea is the basis of the 
new technique, decomposed and weighted characteristic analysis (Pan, 1985b). 
The DWCA model is constructed as follows. 

(1) Construct matrix X by arranging the n samples into an ordered variation 
sequence of the selected resource feature or endowment descriptor. Use the 
P-method to cut the sequence into g groups. The number of g is appropriately 
determined on the basis of the Q - g curve and the number of samples in each 
partitioned group. 

(2) Construct decomposed characteristic model of variables that have been 
refined vis-h-vis the g groups obtained in the first step. The word "refine" 
indicates the further optimization of variable selection by auxiliary subjective 
or objective knowledge about relevant geological processes. Each characteristic 
is then given g weights by g decomposed models, that is, wf  = (wlj, w2j, 
. . . .  wgj),  j = 1, 2 . . . . .  m,  where wkj is generated from the ordinary char- 
acteristic analysis based only on the samples in the kth group. 

(3) Calculate the average value of mineral resource descriptor (e.g., ton- 
nage) in each group so that we have ~ r  = (Vl . . . . .  ~g). Establish regression 
models: 

E [~ ]  = /30 + /31wj, j = 1, 2 . . . . .  m (8) 

(4) Reject, according to the results of regression analysis, two types of 
variable: (a) variables which are not significantly correlated with the mineral 
resource descriptor based upon some statistical criterion, e.g., t-statistics, (b) 
variables that are significantly correlated with the mineral resource descriptor, 
but the largest weights are too small, e.g., less that 0.1. Note that the justifi- 
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cation of a weight as " too small" is based upon the relative size of the coeffi- 
cients. By deleting the rejected characteristics, a refined set of variables is 
obtained. Reassign values to those characteristics that are negatively associated 
with the mineral resource descriptor, i.e., assigning the negative characteristic 
a value 0 if it is present in a cell, and 1, otherwise. For convenience, the refined 
data set is still denoted by X. 

(5) Construct a weighted characteristic model. Let 

Y = HXV 

where the weighting matrices H = diag(hl, h 2 . . . . .  h~) and V = diag(vl, u2, 
. . . .  Vm) are appropriately selected on the basis of  known samples and decom- 
posed characteristic analysis. Thus, the matrix of match coefficients is given by 

Z = n - ~ y T y  

= n -1VXTH2XV (9) 

(6) Beginning with matrix Z, the weight vector for m characteristics can 
be obtained in the same way as that of the conventional characteristic analysis 
(e.g., principal component method) described in an early section. The favor- 
ability Eq. (4) is then derived from the DWCA model. 

(7) Establish the regression model based on the estimated favorability val- 
ues in the control areas, i.e., 

E [ Y ]  = o~ o + c~, f 

where Y is the variable related to a mineral resource descriptor such as tonnage, 
number of occurrences, and average grade. It can also be a function of some 
mineral resource descriptors. For example, Y could be log-transformed metal 
tonnages, i.e., Y = L n ( M ) ,  where M is the metal tonnage. 

(8) Test the statistical significance of the regression models established 
above. I f  the regression models are acceptable, they are applied to the estimation 
of mineral resources in unknown sample units. 

Care should be exercised in the selection of weighting matrices H and V, 
because an appropriate selection plays a crucial role in the estimation of mineral 
resources by the new model. Careful examination should also be made of the 
relationships between favorability f and mineral resource descriptors. 

CASE STUDY 

The DWCA model developed above is applied to pegmatitic niobite-tan- 
talite deposits in southern China. A region of about 3500 krn 2 has been exten- 
sively explored for Nb-Ta deposits. In the past decade, there have been more 
than 30 Nb-Ta deposits discovered and over 2000 pegmatite veins were recorded 
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in this area. The pegmatit ic N b - T a  deposits occur in Precambrian metamorphic 
rocks and trend in the NE and SW directions. With  the help o f  local geologists,  
data were collected on 40 geological  and geochemical  variables on 23 known 

pegmatit ic N b - T a  deposits.  From the 2000 + pegmatit ic veins, 67 groups were 
selected as promising units on the basis of  the clustering features of  the veins 
and their spatial distributions. In this case study, the grouped pegmatitic veins 
serve as the basic sampling units in place of  the inter-grid areas used in previous 
studies. 

O p t i m u m  Partit ioning o f  Data Set 

Of  40 variables,  27 are quantitatively valued and 13 are binary character- 
istics. With  the aid of  opt imum discretization techniques (Pan, 1985b; Pan and 
Harris, 1990), the quantitative variables were transformed into binary charac- 
teristics. Then, the 23 known deposits were ranked into an ordered variation 
sequence to form the original data matrix X23 x 40 for the control region. Use of  
the P-method to cut the ordered variation sequence produced the results listed 
in Table 1, in which a datum is the sum (Q) of  within-group similarities when 
there are L groups. For  example,  five (L = 5) optimally cut groups produce 
within-group similarities shown in Table 2, and the sum of  these five similarities 
is 8.522. The relationship of  Q to L is displayed in Fig. 1. Determination of  

Table 1. Within-Group Similarity by P-Method 

L Q L Q L Q L Q 

1 5.07 7 9.19 13 10.57 19 11.37 
2 7.24 8 9.50 14 10.72 20 11.44 
3 7.83 9 9.77 15 10.85 21 11.47 
4 8.20 10 10.03 16 ° 11.00 22 11.49 
5 8.52 11 10.23 17 11.12 23 11.50 
6 8.87 12 10.41 18 11.25 -- -- 

Table 2. Grouped Samples by P-Method 

Group no. Sample no. Similarity 

1 {1, 2, 3, 4, 5} 2.14 
2 {6, 7, 8, 9, 10, 11} 1.95 
3 {12, 13, 14, 15, 16, 17} 2.00 
4 {18, 19, 20} 1.22 
5 {21, 22, 23} 1.22 
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Fig. I. Curve for the P-method. 

the appropriate number of decomposed groups should consider both the features 
of the Q-L curve and the numbers of sample points within each of the groups~ 
In this case, the sample was cut into five groups. 

Decomposed Models and Variable Selection 

On the basis of the partitioned groups of samples shown in Table 2, five 
decomposed characteristic models were established by the square root method, 
generating five weights for each of the 40 variables, which are shown in Table 
3. A regression model between the average Nb + Ta metal tonnage in each 
group of samples and the weights from the decomposed models is estimated for 
each variable. A geologic characteristic is considered important if the regression 



816 Pan and Harris 

Variable 

Table 3. Decomposed Characteristic Models 

M 1 M2 M3 M4 M5 

1 0.215 
2 1.000 
3 1.000 
4 1.000 
5 1.000 
6 0.818 
7 0.818 
8 0.000 
9 0.625 

10 0.632 
11 0.811 
12 0.632 
13 0.233 
14 0.818 
15 1.000 
16 1.000 
17 0.625 
18 0.233 
19 0.625 
20 1.000 
21 1.000 
22 0.818 
23 0.632 
24 0.000 
25 1.000 
26 0.000 
27 0.233 
28 0.000 
29 0.415 
30 0.215 
31 0.233 
32 0.619 
33 0.439 
34 0.000 
35 0.233 
36 1.000 
37 0.811 
38 1.000 
39 1.000 
40 1.000 

0.347 1.000 0.415 1.000 
0.739 0.000 0.726 0.000 
1.000 0.398 0.375 0.000 
1.000 0.720 1.000 0.000 
0.869 0.404 0.415 0.000 
0.347 0.265 0.415 0.000 
0.711 0.905 1.000 0.725 
0.708 0.630 0.726 0.439 
0.211 0.000 0.000 0.459 
0.340 0.775 0.000 0.000 

0.739 0.852 0.728 0.439 
0.211 0.243 0.000 0.000 
0.866 0.390 0.726 0.725 
0.359 0.443 0.415 0.000 
0.681 0.630 0.726 0.000 
1.000 0.759 1.000 0.619 
0.866 0.596 1.000 0.419 
0.211 0.000 0.000 0.000 

0.866 0.596 1.000 0.419 
1.000 0.672 0.000 0.784 
0.540 0.408 0.000 0.459 
0.398 0.243 0.428 0.784 
0.375 0.443 0.415 0.459 
0.353 0.183 0.000 0.000 
0.519 0.243 0.415 0.000 
0.576 0.243 0.656 0.419 
0.576 0.516 0.726 0.439 
0.661 0.390 0.000 0.439 
0.409 0.609 0.726 0.784 
0.000 O. 183 0.000 0.000 
0.576 0.265 0.428 0.784 
0.000 0.000 0.428 0.725 
0.211 0.527 0.000 0.419 
1.000 0.443 0.726 0.662 
0.366 0.422 0.428 0.784 
0.211 0.000 0.000 0.000 
0.000 0.483 0.359 0.000 
0.519 0.000 0.415 0.000 
0.519 0.000 0.000 0.000 
0.211 0.375 0.000 0.000 
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model corresponding to this variable is statistically significant. Several features 
in Table 3 merit a comment. 

1. Each variable shows different weights in different scales of mineral 
deposits. Some of these variables have weights which change approximately 
monotonically with respect to the size of  ore deposits, while others do not. Most 
of  the variables are positively correlated to the Nb + Ta metal tonnages, since 
their weights increase as the Nb + Ta tonnages in the different sample groups. 
Only a few samples are negatively correlated to the Nb + Ta tonnages, such 
as characteristics 1, 29, and 35. 

2. Some variables having nearly constant weights across different decom- 
posed models are not really useful in making quantitative estimation of mineral 
resources since they carry little information on variation in size of ore deposits. 
For instance, variable 16 has very large weights in every scale of ore deposits. 
Conversely, some variables with relatively small weights discriminate strongly 
between one or more magnitudes of deposit size, e.g., variable 18. 

3. Global averages of weights in each of the five models display a very 
clear monotonic-changing pattern with respect to the size of ore deposits, i.e., 

WI > WlI > WlII > WIV > WV 

where ~i  is the mean of the estimated weight across all variables. This fact 
indicates that most of the useful variables are positive features, and that for 
different sizes of ore deposits the variables make different contributions to the 
model. 

To summarize, the decomposed models show that (a) a set of variables 
should be refined under statistical criteria, (b) properties of elements in the set 
should be analyzed in detail, and (c) sample points with different scales of  ore 
deposits should be treated differently in order to make a quantitative estimation 
of mineral resources. 

In a consequent step, regression Eq. (8) was employed to select useful 
variables on the basis of  data in Table 3 (note that numbers in Table 3 are the 
weights computed from the decomposed characteristic models for all five indi- 
vidual groups of samples; the " M I , "  etc., represent different models). Given 
the 10% significance level (c~ = 0.1), we obtained the cutoff correlation coef- 
ficient r0 ~ = 0.67. Of the 40 variables, 20 are statistically significant by means 
of this test, but only 19 of them are important, because variable 18 should be 
rejected, since the weights associated with this variable are all very small. The 
selected variables are listed in Table 4. 

Because variables 1, 29, and 35 are negative characteristics, their values 
are reassigned as that described in an early section. 

Weighted CA Models and Resource Estimation 

The next step is the construction of weighted characteristic models on the 
basis of the decomposed models. The first task in this stage is to find appropriate 
weighting matrices H and V. It is intuitively reasonable to choose the following: 
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N e w  

Table 4. The Refined Variable Set 

no. Old no. R Name 

1 1 -0.688 Wall rock I 
2 2 0.687 Wall rock II 
3 3 0 .926 Pegamat. veins 
4 4 0.925 Wein relations 
5 5 0,966 Vein length 
6 6 0,837 Max (L/W) 
7 10 0.714 Fold features 
8 11 0.739 Lense veins 
9 12 0.903 Stratiform ore 

10 14 0.860 Struc. number 
11 15 0.839 Strong Nb Alt. 
12 21 0.718 Ta205 
13 25 0.895 Sn 
14 29 -0.963 Ti 
15 35 -0.901 Y 
16 36 0.807 SnAMn anomaly 
17 38 0.799 Sn/YASn anomaly 
18 39 0 .886 Sn/LaASn anomaly 
19 40 0.847 Sn/YAMn anomaly 

~ I  2 = Diag(ln MI, In M2 . . . . .  In Mn) (10) 

where M i (i = 1, 2 . . . . .  n )  are the sums of Nb and Ta metal quantities for 

known sampled units. And 

V = Diag(vl ,  v2 . . . . .  Vm) (11) 

= F2 ~ 1 / 2  • wherevi  [(r 2 - r 2 . 0 / ( 1  - 0.1)1 , j  = 1 ,2  . . . . .  m and r is the correlation 
coefficient between weights and log metal tonnages. These weights are listed in 

Tables 5 and 6. 
Then, ten weighted characteristic analysis models are established, one model 

for each of the following numbers of control samples: 14, 15, 16, 17, 18, 19, 

20, 21, 22, and 23. By comparing their results, two of them for the schemes 
of 17 and 22 sampled units are selected as the final models. For comparison 
purposes, the intimate probabilistic characteristic models (Pan, 1985a,b) were 
also estimated on the basis of the same control samples. Only three "bes t "  
models were used. The nomenclature for these models is given as follows: (1) 
SR17: model estimated by square root method based on 17 samples, (2) PP17: 
model estimated by principal component method based on the intimate proba- 
bilities and 17 samples, and (3) SQ22: model estimated by square root method 
based on 17 samples. 
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Table 5. Weights for Control Samples 

No. Value No. Value No. 

i 

Value 

819 

1 7.21 9 3.42 17 1.43 
2 7.20 10 3.25 18 0.85 
3 5.78 11 2.51 19 0.80 
4 5.29 12 2.26 20 0.42 
5 5.06 13 2.00 21 0.21 
6 4.89 14 1.95 22 0.15 
7 4.32 15 1.87 23 0.07 
8 3.59 16 1.80 -- -- 

Table 6. Weights for Characteristics 

No. Value No. Value No. Value 

1 0.25 8 0.46 15 0.72 
2 0.25 9 0.84 16 0.65 
3 0.89 10 0.70 17 0.92 
4 0.42 11 0.72 18 0.75 
5 0.35 12 0.39 19 0.49 
6 0.72 13 0.84 - - 
7 0.35 14 0.94 - - 

The  es t imated results for  these models  are col lec ted  in Table  7. Based on 

the control  samples ,  the favorabi l i ty  va lue  es t imated f rom the three character is t ic  

models  are associated with the sum o f  Nb  and Ta  metal  quantit ies by s imple  

l inear  regress ion analysis:  

SR17:  In M = 1.272 + 5 . 3 5 0 f  (12a) 

PP17:  In M = 1.574 + 5 . 1 6 2 f  (12b) 

SR22:  In M = - 0 . 4 7 9  + 7 . 5 4 8 f  (12c) 

Accord ing  to the F-test ,  all o f  the three regress ion models  are highly significant 

at 1% level .  Combina t ion  o f  the point  es t imate  with its error  produces  an interval  

es t imate ,  assuming  that the quant i ty  o f  Nb  + Ta  is lognormal ly  distributed. 

These  results are d isplayed in Fig.  2. 

Us ing  models  (12a, b, and c), the metal  quanti t ies o f  Nb  + Ta  mineral  

resources  in the selected 55 unknown  pegmat i t ic  veins  were  est imated.  Table  8 
shows the average  es t imates  in order  scales for  the unknown veins.  
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Table 7. Estimated f in the Control Samples 

Veins SR 17 PP 17 SR22 

1 1.000 1.000 1.000 
2 1.000 1.000 1.000 
3 0.940 0.931 0.951 
4 0.710 0.710 0.751 
5 0.727 0.668 0.766 
6 0.649 0.550 0.550 
7 0.468 0.449 0.696 
8 0.324 0.249 0.553 
9 0.162 0.159 0.424 

10 0.280 0.266 0.294 
11 0.022 0.002 0.400 
12 0.050 0.002 0.174 
13 0.160 0.007 0.200 
14 0.246 0.169 0.297 
15 0.352 0.285 0.362 
16 0.097 0.002 0.460 
17 0.001 0.015 0.238 
18 -- -- 0.157 
19 -- -- 0.210 
20 -- -- 0.001 
21 -- -- 0.084 
22 -- -- 0.003 
R 2 0.945 0.954 0.941 
F 126.1 152.8 155.1 

C O M P A R I S O N S  AND C O M M E N T S  

In order to demonstrate the effects of decomposition and weighting as 
described in the preceding section, consider performing traditional characteristic 
analysis based upon the match matrix on each of the two subsets of 17 and 22 
samples and computing the correlation of the resulting favorability indexes on 

quantity of metal (Nb + Ta). This was done separately for the square root (SQ) 
and principal components (PC) methods, and the results are provided in Table 
9 under the column heading of CAMM. Similar analyses were performed for 
decomposed and weighted characteristic analysis, based upon the match matrix; 

these results are shown in Table 9 under the column heading of DWCA. Com- 
parison of correlations for DWCA to CAMM emphasizes the great value of 
decomposition and weighting when the objective is the estimation of mineral 
resources. Table 9 also shows, for comparison purposes, the correlations of 
favorability to quantity of metal for traditional and decomposed characteristic 
analysis based upon the intimate probability matrix (Pan, 1985a) under the 
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Fig. 2. Regression models based on the DWCA analysis: (a) SR17, (b) PP17, and (c) SR22~ 
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Table 8. Predicted Nb + Ta Quantities in Unknown Veins 

f Nb + Ta (tons) Vein numbers 

>0.75 >200 1 
0.63-0.75 100-200 2 
0.49-0.63 50-100 1 
0.18-0.49 10-50 18 
<0.18 <10 33 

Table 9. Comparison of Several CA Models by Correlation of Favorability 
with Logarithm of Quantity of Metal Nb + Ta 

Size By CAMM CAIP DPMM DWCA 

17 SQ 0.780 0.826 0.954 0.945 
17 PC 0.699 0.868 0.914 0.911 
22 SQ 0.823 0.879 0.901 0.941 
22 PC 0.605 0.610 0.890 0.919 

headings of CAIP and DPMM, respectively. These results cleady suggest that 
decomposed characteristic analyses (DPMM and DWCA) provide the best es- 
timates, and for the 22-sample model, DWCA appears to be superior to DPMM. 
Several points merit a comment: 

1. The new model, DWCA, created by decomposing and weighting, ap- 
pears to be considerably improved over previous versions of characteristic anal- 
ysis. The decomposition helps much in refining the useful variables and re- 
vealing the power of the variables in discriminating different sizes of mineral 
resources. Weighting enhances the contributions from different variables and 
sample units with different scales of mineral resources. The combination of the 
two kinds of weight increases considerably the potential power of the charac- 
teristic analysis for quantitative mineral resources appraisal. 

2. Table 9 shows that the decomposition analysis is the most critical step 
in improving the quantitative estimation of mineral resources by characteristic 
analysis. The decomposition helps to refine the geologic characteristics by omit- 
ring unimportant variables. It should be noted, however, that decomposition can 
be done only when the control area contains a sufficiently large number of known 
samples. The P-method plays a central role in the partitioning of the entire data 
set, which contains the ordered samples in terms of known metal quantities. 
The P-method is optimum in the sense that the partitioned samples have the 
largest similarities within each group and have the smallest similarities between 



Estimation of Mineral Resources 823 

groups. The best number of  partit ioned groups is selected on the basis of  the 
pattern o f  within-group similarity with number of  groups and the number of  
samples within each parti t ioned group. The choice of  the group number may be 
somewhat subjective, when the similarity curve does not exhibit a unique in- 
flection point. 

3. The pre-weighting o f  the original data is also important in utilizing the 
different contribution o f  each individual sample or  characteristic to the quanti- 
tative estimation of  mineral resources. The choice of  the weighting matrices for 
samples and variables in this study is generally appropriate for many other 
mineral resource estimations: metal tonnages are usually available in control 
areas. The decomposed characteristic models  provide the weights for geologic 
variables based on simple regression analysis. Of course, other choices for the 
weights are also acceptable as long as the weights are reflective of  the importance 
of  different samples or variables. For  example,  the weights might be obtained 
from expert geologists who are knowledgeable on the geology and ore deposits 
of  the study region. 

4. The application of  regression model  to the decomposed and weighted 
characteristic analysis provides a means to quantitative estimation of  mineral 
resources. Since the favorabili ty value computed at each sampled unit (cell) not 
only characterizes the l ikelihood of  the occurrence of  mineral deposit,  but also 
quantifies the magnitude of  metal concentration, the regression model  of  the 
relationships of  metal tonnage to favorabili ty value established in the control 
region is applicable to the estimation of  discoverable resources in unknown 
sampled units. 
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