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Problems in Space-Time Kriging of  Geohydrological 
Data 1 

Shahrokh Rouhani 2 and Donald E. Myers 3 

Spatiotemporal variables constitute a large class of geohydrological phenomena. Estimation of 
these variables requires the extension of  geostatistical tools into the space-time domain. Before 
applying these techniques to space-time data, a number of important problems must be addressed. 
These problems can be grouped into four general categories: (1) fundamental differences with 
respect to spatial problems, (2) data characteristics, (3) structural analysis including valid models, 
and (4) space-time kriging. Adequate consideration of these problems leads to more appropriate 
estimation techniques for spatiotemporal data. 
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I N T R O D U C T I O N  

There are many geohydrological variables that can be viewed as spatiotemporaI 
phenomena. For example, piezometric readings or monthly rainfall exhibit ran- 
dom aspects both with respect to time and to space. The estimation of such 
variables at unsampled spatial locations or unsampled times requires extending 
the usual geostatistical techniques into the space-time domain. 

Despite the apparent straightforward appearance of such an extension, there 
are a number of theoretical and practical problems that must be resolved prior 
to the successful application of geostatistical methods. These problems seem to 
have received less than an adequate amount of attention. In part this is due to 
the traditional applications of geostatistics wherein only spatial or only temporal 
dependence, but not both, need be considered. In some instances the problems 
are avoided by removing one or the other forms of the dependence in some 
manner. Let y(x, t) be a variable of interest defined in a region of space and 
also in a domain of time; for example, y might be the infiltration rate at location 
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x and on day (or time) t. New variables can be defined in a number of ways, 
e.g., 

Zl(X)= fry(x,t)dt or z2(x)=(1/T) fry(x,t)dt (1) 

Measuring time in days already suggests that the time dependence has been 
altered from instantaneous to the cumulative or average value for the day. This 
could be extended further to monthly or yearly averages, for sufficiently long 
periods the values might be treated as replications of the same variable in space. 
For a small number of intermediate-length time periods, the values might be 
treated as different variables. Examples of some of these approaches can be 
found in Delhomme (1978), Chua and Bras (1980), and Rouhani (1986) among 
others. Alternatively, the spatial dependence might be removed by using spatial 
averages, usually leading to the use of time-series methods. 

w,( t )  = fAY(X,t) dx or w2(t) =(1/A) fAY(X,t) dx (2) 

None of these approaches is completely satisfactory since there is some loss of 
information, in particular before using one of these, it should be determined 
whether the spatial or temporal dependence is dominant. Inadvertent removal 
of the dominant source of variability could result in a significant loss of infor- 
mation. If  the temporal dependence is removed, then the phenomena is treated 
as static rather than as dynamic. 

It would seem then that the best approach is to treat the variable of interest 
as is suggested by the notation y(x, t)--that is, time is treated as another di- 
mension. In general, the dependence of y on x is related to its dependence on t 
and conversely. There are only a few examples in print of attempts to model 
functions in this more general form. Bilonick (1985, 1987) used nested vario- 
grams to model and krige an atmospheric chemical deposition data set. Egbert 
and Lettenmaier (1986) used a similar approach for similar data. Rouhani and 
Hall (1989) used intrinsic random functions for space-time kriging of piezo- 
metric data. However, little attention has been given to the problems associated 
with treating time simply as another dimension. 

FUNDAMENTAL DIFFERENCES 

As noted by Joumel (1986, p. 120), there are major differences between 
spatial and temporal phenomena. In most cases the function or variable of in- 
terest is unique and the uncertainty or stochastic nature of the problem reflects 
a lack of knowledge about the values at unsampled locations or the functional 
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form. While there may be some directional dependence (i.e., an anisotropy), 
there is in general no ordering, whereas for temporal phenomena there is always 
the notion of past, present, and future. Although spatial variables of interest are 
treated as realizations of a random function, i.e., 

= z ( x , ,  (3 )  

where xi denotes a location in space and coj is the element of the underlying 
probability space or index on the realizations, this stochastic dependence is 
usually suppressed. [See, e.g., De Marsily and Ahmed (1987, p. 58) with re- 
spect to the modeling of transmissivity.] 

This approach may not be fully satisfactory when time is treated as simply 
another dimension and the variable is considered a unique realization of a ran- 
dom function defined in space and time. For example, piezometric head might 
represent a unique realization for the past and present, but in the case of the 
future there is a truer stochastic dependence. For some variables this dilemma 
can be resolved by taking advantage of a periodicity in time, by considering the 
variable over multiple time periods which might be treated as multiple real- 
izations. The difficulty lies in determining the temporal extent of each realiza- 
tion, in particular these may not be of constant length. Because the spatial extent 
of the region of interest is always taken to be finite and generally is considered 
fixed, periodicities in space are not often modeled. For example Journel and 
Froideveaux (1982) concluded in one instance that there was very little im- 
provement in the estimator by modeling a spatial periodicity with a hole effect 
variogram. It seems less likely that modeling a temporal periodicity by using a 
hole-effect variogram would produce an improved estimator. A further compli- 
cation may occur if the time domain is segmented to generate multiple real- 
izations; these are often correlated and it becomes necessary to consider the 
multiple "realizations" as single realizations of several correlated random func- 
tions. The analysis in this case requires the use of cross-variograms and co- 
kriging. 

The most important difference is not so much that between spatial and 
temporal problems, but rather that between spatiotemporal problems and either 
of the two simpler models. In the spatial context or in the temporal context one 
can construct a valid covariance or variogram easily (i.e., by starting with known 
valid models such as the spherical, exponential, Gaussian, etc.). Valid vario- 
grams are obtainable as positive linear combinations. In the case of co- 
variances, positive linear combinations and products are valid covariances. 
These constructions are in general not valid if combining a valid temporal model 
with a valid spatial model to produce a spatiotemporal model. This is essentially 
the same problem as attempting to construct a valid model in 2-space from 
models valid in 1-space. This will be discussed in greater detail in the section 
on Structural Analysis. 
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TYPICAL DATA CHARACTERISTICS  

Normally, geohydrologic data, such as piezometric data, are composed of 
few scattered clusters of observation wells with long time series at each point. 
Similar configurations could also be found in precipitation or atmospheric 
chemical data sets. Such conditions are dictated by the economy of sampling 
and the accessibility of sampling sites. The main factor seems to be the rela- 
tively high cost of establishment of an observation station, which usually leads 
to more intense sampling at the already existing sites. 

The above condition creates a situation wherein there is a disparity in the 
amount of information available in the spatial and temporal domains. This means 
that the data is usually dense in the temporal domain but sparse in the spatial 
domain. Such a circumstance often results in estimates of the spatial and tem- 
poral structures with quite different degrees of reliability and accuracy. 

Geohydrological space-time data often exhibits another characteristic, that 
of periodicity in time and nonstationarity in space. The temporal periodicity is 
usually reflected in the mean, which can be modeled by a variety of functions, 
including diurnal and seasonal cycles with relatively stable periods but with 
varying amplitudes and phases. More specifically, periodic mean functions could 
be represented as sums of sines and cosines but with coefficients that are random 
variables. One of the difficulties in using such a representation is that of esti- 
mating the unknown parameters. Seguret (1989) has proposed a solution in the 
context of universal kriging. 

Climatic Cycles represent a second type of temporal trend in that they are 
only quasiperiodic: not only will the periods vary but so will the amplitudes 
and phases. To adequately detect and model such trends, one must observe time 
series over a very long time. If  the data is observed or analyzed by the use of 
moving windows, whose length is less than the approximate periods of the 
cycles, then the trend may simply appear as linear or quadratic. In such a case 
the quasiperiodic trend may not be distinguishable from a true nonperiodic trend. 
The latter are a third type of trend which may reflect long-term climatic or man- 
made changes. 

In addition to nonstationarities with respect to time, often there are non- 
periodic spatial nonstationarities governed by geographical and topographical 
conditions. The modeling of these nonstationarities can give rise to a number 
of problems. Usually, the nonconstant drift, whether temporal or spatial, is 
modeled by a linear combination of basic functions. The basic functions are 
usually taken to be monomials in the position coordinates or sines and cosines 
]i.e., the general class of polynomials as noted in Chauvet (1982)]. Omre (1987) 
has proposed the use of a much wider class of drift functions in the context of 
a Bayesian prior. In all such problems one is faced with the question of how to 
estimate/model the drift with first determining the variograms and how to es- 
timate/model the variogram without first determining the drift. As noted in 
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Myers (1989), the partitioning of the random function into a random stationary 
part and a deterministic drift part is not unique, and consequently the variogram 
may be indeterminate. Obviously one cannot solve the kriging equations with- 
out knowing the order of the drift and the variogram. One way to resolve this 
conundrum is to use intrinsic random functions of order k and an automatic 
structure recognition as described by Delfiner (1976). That algorithm, however, 
is only directly applicable to drift functions that are monomials. On the other 
hand, if a moving neighborhood is used in the kriging, it may be possible to 
consider all components of the drift function as approximated by monomials as 
suggested by Rouhani and Hall (1989). 

The nonstationarity is not always limited to the first moment. In many 
cases, even when local stationarity of mean can be assumed, strong differences 
in the variances are observed at different sites. For instance, the portions of an 
aquifer, which are in a closer hydraulic contact with surface waters, often ex- 
hibit a wider range of variation, when compared to the more confined zones. 

The above conditions may require some modifications due to the usual 
stationarity requirements of geostatistical procedures. The typical practical rem- 
edies in the spatial context include removing of the outlier sites in the structural 
analysis, or dividing the data sets into more homogeneous subsets. The small 
size of a typical groundwater data set, specially in space, may prohibit such 
modifications. 

STRUCTURAL ANALYSIS 

As suggested above, the most reasonable method for extending into the 
spatiotemporal domain is to treat time as another dimension. There are two 
ways to utilize this extension to model variograms and covariances: (1) keep 
the spatial and temporal coordinates completely separate; and (2) introduce a 
distance into this higher dimensional space and treat geometric anisotropies in 
a manner analogous in Euclidean space (i.e., use an affine transformation to 
transform to an isotropic model). Components dependent on time or space co- 
ordinates only would correspond to zonal anisotropies. One must, of course, 
verify that the resulting model is valid and that the kriging system has a unique 
solution. 

Perhaps the easiest way to extend from both domains to the spatiotemporat 
domain is to represent the random function as a simple construct of models in 
the separate domains. For example, suppose that Y(x,  t) = Z ( x )  + U( t )  or 
Y(x,  t) = Z ( x ) U ( t ) ,  where Z(x) ,  U(t )  are assumed to be independent or at 
least uncorrelated. Important special cases include those where one or the other 
of the two components is deterministic. In the case of the sum, this would 
correspond to a spatial random function with the drift dependent on time or 
conversely. In the case of a product, this would correspond to the sill of the 
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spatial variogram being time-dependent or the sill of  the temporal variogram 
being spatially dependent. Several authors have used models corresponding to 
these constructions, e.g. ,  

C(h, t) = Ct(t)Ch(h ) (4a) 

(Rodriguez-Iturbe and Mejia, 1974), 

T(h,  t) = 3"0 + T,( t )  + 3"h(h) + 3'h,,([gh 2 + ?]0.5) (4b) 

(Bilonick, 1987), 

GC(h, t) = GCt(t) + GCh(h) (4c) 

(Rouhani and Hall, 1989), where, 

C = spatiotemporal covariance 

C, = temporal covariance 

Ce = spatial covariance 

3' = spatiotemporal variogram 

3'0 = nugget effect 

3', = temporal variogram 

3'h = spatial variogram 

3'h,, = isotropic space-time variogram 

GC = spatiotemporal generalized (polynomial) covariance 

GC~ = temporal generalized covariance 

GCh = spatial generalized covariance 

g = geometric coefficient of  anisotropy between space and time 

h = space lag 

t = time lag 

An examination of the literature in (spatial) geostatistics suggests that geo- 
metric anisotropies are modeled occasionally, but it is much more common to 
use an isotropic model for several reasons: (1) there may be an insufficient 
number of  sample locations in the various directions; (2) even with an adequate 
number of  pairs for most lags, it may be that the directional variograms are 
more difficult to model than one isotropic variogram; (3) the geometric anisot- 
ropy only incorporates a change in the range; (4) anisotropies are sometimes 
indistinguishable from nonconstant drift; and (5) assumed or known properties 
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of the phenomena are external from the variogram computations, which support 
or suggest isotropy. There are practically no examples in the literature for non- 
geometric anisotropic variograms. This suggests that such modeling, when ex- 
tended into the spatiotemporal domain, is much more difficult. The difficulty is 
exacerbated because the extent of sampling in the time domain is usually quite 
different from that in the spatial context. Drilling additional wells for making 
piezometric head readings is expensive, whereas making additional observa- 
tions over time is relatively inexpensive. Given that variogram modeling in the 
spatial context is partially subjective, the difficulty is substantially compounded 
when extended into the spatiotemporal domain. Some of these problems are 
shown in the following two examples. 

Example 1 

Several of the space-time variogram or covariance models cited above were 
constructed under the premise that a positive linear combination of variograms 
or covariances (and in the case of covariances, a product) is a valid model-- 
that is, if the components separately satisfy the appropriate positive definiteness 
condition, then the sum (or product) satisfies the same condition. Joumel and 
Myers (1989) have shown that this is generally not true when the components 
are functions of only a part of the components of the position vector. Specifi- 
cally, it is shown that if a sum of two components is considered, one a function 
of the horizontal distance only and the other a function of the vertical distance 
only, that the result is not a valid model in two-dimensional space. The follow- 
ing is a recasting of that example for the case of a two-dimensional space where 
one component is time. 

Consider four points in (x, t) space (x in one-dimensional space) with 
coordinates as follows: Point 1:(0, 0), Point 2:(0, ~), Point 3:(c~, 0), Point 
4 : (a ,  z) and a variogram model is constructed to represent a zonal anisotropy 
as follows: 

v(h, t) : vh(h) + V,(t) (5t 

Suppose that 7h(O) = O, 3,h(O~) = U, 7,(0)  = O, %(~') = V, and consider the 
coefficient matrix for ordinary kriging when using these four data locations 

m 

0 u v u + v  1 

u 0 u + v  v t 

v u + v  0 u 1 

u + v  v u 0 1 

1 1 1 1 0 

( 6 )  
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It is easily seen that this matrix is singular and hence the kriging system will 
not have a Unique solution. The specific cause of the singularity is that the 
constructed variogram (5) is not strictly conditionally positive-definite but rather 
only semi-definite. Note that very little was assumed about the variograms that 
are the subcomponents, and hence the counter-example is very general. In par- 
ticular the subcomponents might well be models that are valid in arbitrary di- 
mensions [i.e., the problem does not arise because of the difficulties associated 
with the counter-example given by Armstrong and Jabin (1981)]. They show 
that the "truncated" linear model (linear up to a range and then with a sill) is 
valid in one-dimensional space but not in higher-dimensional space. The zonal 
anisotropy in (5) is obtained by two transformations; the first maps the point 
(x, t) (in 2-space) onto the point x (in 1-space), whereas the second one maps 
the point (x, t) onto the point t. Neither of these transformations is one-to-one 
(i.e., they are not invertible). While the coefficient matrix will not fail to be 
invertible for all sample location patterns, it will fail for all patterns that are 
rectangles with sides parallel to the coordinate axes. One could also construct 
less obvious examples by rotating the axes. 

Example 2 

The use of positive linear combinations of valid generalized covariance 
functions, such as the third model in Eq. (4), causes another problem, concern- 
ing the family of admissible polynomial covariance functions. For instance, as 
suggested by Rouhani and Hall (1989), one can conduct separate automatic 
structural analysis in the two-dimensional space and the one-dimensional time, 
such that orders of the drifts can be determined. In the case of second-order 
space and time drifts, the monomials will include 1, x, y, x 2, y 2  t, and t 2. One 
can further estimate the parameters of the two generalized covariances, such 
that they be admissible in space and time, respectively. This approach, how- 
ever, is not equivalent to a three-dimensional process with second-order drift, 
because it ignores the composite space-time monomials, such as xt  and yt. In 
other words, the three-dimensional intrinsic random function approach, as sug- 
gested by Matheron (1973), is modified by including only selected monomials 
in our estimation process. Consequently, the functional form of the admissible 
family of generalized covariance functions should be modified, too. This mod- 
ified form of the generalized covariances is rather complex and has not been 
determined yet (Matheron, 1979, p. 29). So, the linear combinations of two- 
dimensional space generalized covariances and one-dimensional temporal gen- 
eralized covariances may not constitute all the admissible functions. Alterna- 
tives for avoiding the difficulties listed above are discussed in the next section 
in the context of co-kriging. 
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S P A C E - T I M E  K R I G I N G  

If  time is simply considered as another dimension, then there is no change 
in the form of the kriging estimator nor in the kriging equations--that is, if (x0, 
to) is an unsampled location-time, then Y(xo, to) could be estimated by 

Y(xo, to) = Z XiY(xi, ti) (7) 

where there are no assumptions about any interrelations between the space and 
the time coordinates of  a point (i.e., the estimator will interpolate in either space 
or time and will extrapolate in either space or time). The definition of the var- 
iogram or covariance for Y is completely analogous to the spatial case, and 
(strict) conditional positive definiteness is sufficient for the kriging system to 
have a unique solution as shown in Myers (1988b). 

Y(x, t) is said to satisfy the intrinsic hypothesis (in time and space) if for 
any increment (h, t) 

E [ Y ( x  + h, + t) - r ( x ,  7) ]  : o 

0.5 Var [Y(x  + h, r + t) - Y(x, ~-)] 

= "y(h, t) exists and does not depend on x or 7- 

Note that it is not necessary to introduce a metric or distance in space-time 
(i.e., to combine spatial and temporal distance in order to introduce variograms 
or for kriging), although if it is desired to have some form of isotropy, then 
such a distance would be necessary. Such a form of isotropy, however, seems 
unrealistic because of the intrinsic ordering for time and nonreversibility. In the 
spatial context there is essentially no difference between interpolation and ex- 
trapolation, although the kriging variances will be larger when extrapolating in 
either domain. In general, in the spatial context one expects to find sample 
locations relatively uniformly spread around the location to be estimated (except 
on the border of a region), but in the temporal context the sample locations will 
usually be on one side, the past, and hence the estimation is most often a form 
of extrapolation. Again, in the context of hydrologic data this results in serious 
problems. For example, if the data is all taken during a wet season and the time 
to be estimated is in a subsequent dry season, then the estimator cannot adapt 
to the temporal transition without incorporating the temporal nonstationarity. 
This latter option will lead to all the indeterminacy problems known to be as- 
sociated with the separate estimation of the drift (spatial or temporal) and the 
residuals as noted by Armstrong (1984). Where the estimator is written in the 
form of kriging or as a time series model, some model assumptions must be 
incorporated when the objective is prediction into the future. 

Computational problems may arise in a number of ways: in particular, the 
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coefficient matrix in the kriging system may be ill-conditioned for specific sam- 
ple location patterns. The difficulty may be due to an insufficient number of 
sample locations compared to the order(s) of the drift(s) or because the locations 
are concentrated in a lower-dimensional space--for instance, one will obtain 
poor estimates spatially if all the data is concentrated at one location but at 
different times. This is analogous to the problem of estimating at a point in 
2-space when all the data is on a transect not containing the point to be estimated 
or estimating a point in 3-space when all the data is on a plane. In general, the 
latter problem is worse than the former, and the difficulty increases with the 
dimension (i.e., extending from 2-space spatially to space-time is worse than 
from 1-space spatially to space-time). This problem is shown in the following 
example. 

Example  3 

Consider a spatiotemporal process with a linear drift in the space with an 
underlying variogram 3, (h, t). An estimated point is located at a location near 
an observation site with spatial coordinates (a, b). Due to this vicinity, all the 
neighboring points of the estimated point belong to the same site, (a, b), at 
time t i ,  i = 1,  2 ,  • • " ,  T .  The ~/ij is defined as 3/(0, I t  i - -  t j l  ) .  The coefficient 
matrix for universal kriging will then be 

~11 TI2 "°" "}/In 1 a b 

"~2i '~22 " ' '  "~2n 1 a b 

1 a b 

3 ' n  l " Y n 2  " " " 3 /  n n  

1 1 ' ' '  1 

a a • • • a 

b b " . .  b 

l a b  

0 0 0  

0 0 0 

(s) 

0 0 0 

It is easy to see that the above matrix is singular, and therefore estimation is 

impossible. 
As shown in the above example, while the form of the Universal Kriging 

equations for space-time kriging would be completely analogous to the spatial 
case, estimating and modeling the drift will likely cause much greater problems. 
If local neighborhoods are used for the estimation, then low-order nonstation- 
arities can be ignored in the estimation process as suggested by Journel (1986, 
p. 127). Seguret (1987, p. 83) points out that if the drift is of low order (e.g., 
trigonometric), and the size of  the kriging neighborhood is much smaller than 
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the "per iod"  of the drift function, then the matrix will be ill-conditioned. Se- 
guret suggests including additional sample locations corresponding to large time 
lags, these improve the efficacy of the inversion methods but have little impact 
on the estimated value. 

Special  Cases  

Suppose that data is known only for a finite number of times Ii, " • " , l T 

and the objective is only to estimate at an unsampled location for one or more 
of these times then one solution is to define T spatial variables yl (x) = y ( x ,  

tl ), • • •, y r (x)  = y ( x ,  tr) and use co-kriging in either a full or undersampled 
form as described in Myers (1982, 1984, 1988a). In a similar fashion Solow 
and Gorelick (1986) and Rouhani and Wackernagel (1990) consider measure- 
ments at each site as realizations of separate random functions, which are cor- 
related with each other, such that for n measurement sites there will be n vari- 
ables Yl (t) = y ( x l ,  t ) ,  " • • , y n ( x , ,  t ) .  Co-kriging of these variables allow 
forecasting and hindcasting in time, such as estimation of missing data. The 
above approaches will require the use of cross-variograms and hence the process 
is more complicated. 

SUMMARY 

The application of geostatistical techniques to space-time data raises basic 
problems. These occur because of fundamental differences between spatial and 
spatiotemporal processes, specific geohydrological data characteristics, a lack 
of adequate procedures for modeling variograms and covariances, and difficul- 
ties more directly related to the kriging. If  the random function is assumed 
ergodic (at least with respect to time), then temporal periodicities can be used 
to interpret the data as multiple realizations, whereas spatial data must generally 
be interpreted as a sample from one realization. It has been seen that one of the 
most serious problems is that of constructing valid models in space-time, and 
that models constructed from valid models in lower-dimensional space gener- 
ally are not valid in the higher-dimensional space. Geohydrological data is usu- 
ally concentrated in time but sparse in space; this imbalance in information will 
lead to models or structures with significantly different levels of reliability in 
space and time. In some instances it may be better to utilize the greater avail- 
ability of temporal data to enhance the spatial modeling as in Switzer (1989). 
It has been shown that extending the kriging estimator to space-time is essen- 
tially the same as extending it from 1-space to 2-space, provided an adequate 
definition of positive definiteness is used and the problems associated with mod- 
eling variograms are overcome. Finally, the advantages and disadvantages of 
using co-kriging to extend from a spatial context to a spatial-temporal context 
are identified. 
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