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Spatial and Multivariate Analysis of Geochemical 
Data from Metavolcanic Rocks in the Ben Nevis 

Area, Ontario ~ 

E. C. Grunsky z and F. P. Agterberg 3 

A study of the lithogeochemistry ofmetavolcanics in the Ben Nevis area of Ontario, Canada has 
shown that factor analysis methods can distinguish lithogeochemical trends related to different 
geological processes, most notably, the principal compositional variation related to the volcanic 
stratigraphy and zones of carbonate alteration associated with the presence of sulphides and gold. 
Auto- and cross-correlation functions have been estimated for the two-dimensional distribution of 
various elements in the area. These functions allow computation of spatial factors in which patterns 
of multivariate relationships are dependent upon the spatial auto- and cross-correlation of the 
components. Because of the anisotropy of primary compositions of the volcanics, some spatial 
factor patterns are difficult to interpret, lsotropically distributed variables such as C02 are delin- 
eated clearly in spatial factor maps. For anisotrapically distributed variables (Si02), as the neigh- 
borhood becomes smaller, the spacial factor maps becomes better. Interpretation of spatial factors 
requires computation of the corresponding amplitude vectors from the eigenvalue solution. This 
vector reflects relative amplitudes by which the variables follow the spatial factors. Instability of 
some eigenvalue solutions requires that caution be used in interpreting the resulting factor pat- 
terns. A measure of the predictive power of the spatial factors can be determined from autocor- 
relation coefficients and squared multiple correlation coefficients that indicate which variables are 
significant in any given factor. The spatial factor approach utilizes spatial relationships of varia- 
bles in conjunction with systematic variation of variables representing geological processes. This 
approach can yield potential exploration targets based on the spatial continuity of alteration haloes 
that reflect mineralization. 

KEY WORDS: auto-correlation, cross-correlation, lithogeochemistry, multiple correlation coef- 
ficients, trend eigenvector, amplitude eigenvector 

I N T R O D U C T I O N  

Volcanic rocks frequently host several types of  mineral deposits such as syn- 
genetic polymetal l ic  massive sulfides and epigenetic precious metal deposits. 
Alteration of  the volcanic host rocks occurs from passage of  hydrothermal fluids 
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associated with the mineralizing event and is discernible because of mineral- 
ogical, textural, and chemical changes. Most deposits are surrounded by haloes 
of alteration that are defined by anomalous chemical signatures. These zones 
are spatially much larger than the ore deposits and thus are significant explo- 
ration targets. Lithogeochemistry can be instrumental in detecting these alter- 
ation zones when statistical techniques are used to recognize patterns of alter- 
ation. The application of multivariate methods provides a quantitative and 
concise means by which systematic variation of lithogeochemical data can be 
described. Because lithogeochemistry of igneous rocks reflects geological pro- 
cesses that have acted in forming or altering the rock, multivariate methods can 
assist in delineating these effects. 

The Ben Nevis area of Ontario in the Abitibi Volcanic Belt of the Canadian 
Shield (Fig. 1), contains an occurrence of gold, silver, copper, zinc, and lead 
mineralization surrounded by a larger zone of carbonatized volcanic rocks. Mi- 
neralization of the Canagua Mines Property appears to be of an epigenetic vein 
type origin. Another significant occurrence is the Croxall property northwest of 
Verna Lake (Fig. 1). This occurrence consists of a zone of brecciated and 
sheared rhyolite with interstitial pyrite, chalcopyrite, chlorite, calcite, and 
quartz. Gold assays up to 1 ppm have been reported. A smaller zone of sericitic 
and pyritic alteration also surrounds this occurrence. Several other sulfide-rich 
zones occur throughout the map area. Some occurrences have small alteration 
zones and some have no alteration associated with them. Details on the occur- 
rences and geology can be found in Jensen (1975). A later study (Grunsky, 
1986) of the lithogeochemical data (39 chemical components per sample) com- 
bined with correspondence analysis and dynamic cluster analysis outlined the 
compositionally distinct volcanic units (Fig. 2), zones of carbonate alteration, 
sulfur enrichment, and other lithogeochemically anomalous zones. For exam- 
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Fig. 1. Location of Ben Nevis study area. 
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Fig. 2. General geologic map of Ben Nevis area. 

pie, the second factor in correspondence analysis has large weight for C02 ,  and 
delineates the carbonate alteration zones. 

The purpose of the present study is to consider spatial auto- and cross- 
correlation of lithogeochemical data previously subjected to multivariate anal- 
ysis. Auto- and cross-correlation functions describe the variation of a variable 
over an interval of measurement, in this case distance. Functions used in this 
paper are isotropic in that they describe variation in one direction only. Ani- 
sotropic variation of variables presents a more complex problem and is not dealt 
with here. Thus, by using isotropic statistical models for auto- and cross-cor- 
relation functions, the multivariate relationships between chemical constituents 
of volcanic rocks are based on neighborhoods of samples instead of individual 
samples only. 

The presentation of spatial patterns for individual variables and factors is 
one of the most significant aspects of  this type of study and is explained first. 
The distribution of the 825 samples used in the study (Fig. 3) is uneven, and a 
gridding process was used to estimate variables over a regular interval. All of 
the spatial patterns of oxides and multivariate factors and scores of the spatial 
factors of the experiments were gridded using the inverse distance-squared 
weighting function method (cf., Shepard, 1968). At each grid node, the eight 
nearest neighbors were included in grid estimation. This relatively simple con- 
touring method has been used for presenting patterns of the original data in the 
next section as well as different types of factor scores in later sections. The 
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Fig .  3.  Loca t ion  m a p  o f  samples  in Ben Nevis  area.  

approximate dimensions of the area are 12.7 km east-west and 7.4 km north- 
south. The area was divided into a 40 × 40 grid such that dimensions of each 
grid cell are 320.0 × 195.0 m. Various grid sizes were tried; results indicated, 
as expected, that as grid cell dimensions increased, the detail of geochemical 
patterns decreased. Although, even in a grid size of 10 × 10, the major regional 
geochemical features still were evident. A grid size of 40 x 40 was considered 
the optimum size for the purpose of this study. 

LITHOGEOCHEMICAL VARIATION IN THE BEN NEVIS AREA 

Chemical patterns that variables exhibit reflect results of several geological 
processes. Si, A1, Fe, Mg, Ca, Na, and K lithogeochemical patterns generally 
reflect the compositional variation due to fractionation of the initial magma. 
Variation of Si in the map area (Fig. 4a) shows how Si abundance reflects 
volcanic rocks (Fig. 2) that contain varying amounts of Si. This pattern of com- 
positional variation due to initial magma composition is exhibited by several 
variables and is the most dominant pattem in the area. Also, rock types that 
reflect this pattern can be mapped visually. Other variables such as A1, Ca, Na, 
and K usually reflect as well effects of other secondary processes (i.e., meta- 
morphism, alteration). The overall compositional variation of Ca (Fig. 4b) is 
reflected in this pattern as well as other secondary effects related to alteration. 
Spatial variation of CO2, S, and Li (Figs. 4c-4e) show hydrothermal alteration, 
and mineralization has resulted in larger pattems which surround the mineral- 
ized S-rich zones. Other components, such as A1, Ca, and K, also reflect alter- 
ation associated with mineralization. For example, Ca (Fig. 4b) shows a zone 
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of enrichment around the zone of carbonatization, and A1 shows depletion. Sul- 
fide-rich occurrences are observed readily in the map of S (Fig. 4d). The sizes 
of these zones are smaller than they actually appear because of gridding used 
to present the data. The more significant mineralized sulfide occurrences have 
associated alteration within the host rocks which does not show when looking 
only at the sulfur map. A multivariate approach might better assist in distin- 
guishing the more significant exploration targets. 

E L E M E N T  V A R I A T I O N  P A T T E R N S  D E R I V E D  BY 
CORRESPONDENCE A N A L Y S I S  

Correspondence analysis, a technique similar to principal components 
analysis, was applied previously to the Ben Nevis data and interpretation of 
factor scores was discussed then (Grunsky 1986). In order to provide a con- 
sistent interpretation, the method of correspondence analysis was reapplied to 
three sets of variables used in this study. These three sets of  variables are: 

a. A set of four variables, comprised of CO2-S-Li-Zn,  that represent al- 
teration and mineralization in the area. 

b. A set of seven variables comprised of S i -A1-Fe-Mg-Ca-Na-K,  which 
represent primary compositional variation within the volcanic rocks. Secondary 
alteration effects occur mostly within Ca, Na, and K. 

c) A set of  nine variables consisting of S i -A1-Fe-Mg-Ca-Na-K-CO2-  
Li, which reflect both primary compositional variation (S i -A1-Fe-Mg-Ca-Na-  
K) and alteration (K-COz-Li) .  

Results of the correspondence analysis for the set of four variables CO 2- 
S-Li-Zn show that CO2, Li, and Zn contribute over 95 % of the variation in 
the first factor and 61% of the total variation in the data. The second factor is 
dominated by S. Zones of sulfur enrichment correspond to sulfide zones asso- 
ciated with base and precious metal mineralization. The distribution of Zn re- 
flects both base metal enrichment associated with sulfdes and also the presence 
of the larger alteration zone that surrounds the Cu-Au mineralization. 

Two major patterns emerge from this analysis (Fig. 5a); a pattern associ- 
ated with large-scale alteration (CO2, Li, Zn) and a pattern associated with 
locally enriched mineralized zones. 

Results of the correspondence analysis on the seven-variable set shows that 
the first factor accounts for 58 % of the total variation of the data. The first 
factor is dominated by contributions of Si, A1, Fe, Mg, and Ca (Fig. 5b). The 
second factor accounts for 20% of data variation and is dominated by Ca. The 
spatial pattern of factor 2 (not shown) indicates a zone of Ca enrichment (cf., 
Fig. 4b) around the zone of carbonatization. The third factor (12% of the data 
variation) is accounted for by variation of Mg and K enrichment associated with 
mafic intrusive rocks and K-rich rhyolitic rocks and alteration zones. 
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Fig. 4. (a) Map of SiO 2 in Ben Nevis area. SiO 2 typically reflects rock type 

in volcanic terrains. Note that the pattern of the map is similar to the geolog- 
ical map (Fig. 2). (b) Map of CaO in Ben Nevis area. Note that the pattern 
of the map outlines both compositional variation and a zone of Ca enrichment 
around the main zone of carbonate alteration. (c) Map of CO2 in Ben Nevis 
area. An abundance of CO2 greater than 1.0 wt % in volcanic rocks is indic- 
ative of alteration, and the zone of carbonatization associated with hydro- 
thermal alteration is clearly shown. (d) Map of Sulfur in Ben Nevis area. S 
reflects local zones of mineralization, some of which are associated with hy- 
drothermal alteration zones whereas others are not. (e) Map of Li in Ben 
Nevis area. Li enrichment is associated typically with hydrothermal systems. 

Li anomalies are similar to CO2 anomalies. 
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Fig. 5. (a) Factor 1 scores from correspondence analysis for the seven-varl- 
able case. This factor outlines compositional variation of the volcanics. (b) 
Factor 1 scores from correspondence analysis for the four-variable case. The 
main zone of carbonate alteration is outlined by this factor. 

The nine-variable set of  elements,  when subjected to correspondence anal- 
ysis,  produced four significant factors that account for 53%, 22%, 12%, and 
6% of  the data, respectively.  The first factor is dominated by variation of  Li, 
Si, and CO2 and produces a spatial pattern similar to Fig. 5a. The second factor 
is dominated by variation of  A1, Fe,  Mg,  Ca, and K and reflects primary com- 
positional variation of  the volcanics with a spatial pattern similar to Figs. 5b 
and 4a. The third factor is dominated by a combination of  Ca and CO2 enrich- 
ment showing a pattern where both variables are combined.  This spatial pattern 
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is similar to a combination of Figs. 4b,c. Factor 4 (not shown) shows the op- 
posing relationships of Na and K that occur in close proximity to the mineral- 
ized zones. 

SPATIAL AUTO- AND CROSS-CORRELATION 

Various statistical models have been developed for estimating the auto- 
and cross-correlation of variables in space as described by Journel and 
Huijbregts (1978), Bennett (1979), and Upton and Fingleton (1985). Most of 
these methods are based on situations in which sampling points occur at regular 
intervals along lines or at nodes of a regular grid. Because of irregular distri- 
bution of outcrops in our study area, the sampling points are not at equal inter- 
vals (Fig. 3) and estimates obtained in this study have been determined from 
irregularly distributed points. 

Areal distribution of samples must be considered when auto-correlation 
and cross-correlation functions are estimated. The problem of modeling spatial 
auto-correlation of residuals from polynomial trend surfaces has been discussed 
by Huijbregts and Matheron (1970), Delfiner (1975), and, more recently, Hain- 
ing (1985). Models tested by Haining can be applied also to data from which 
trends have not been eliminated. A simple model for estimating a quadratic 
approximation to the autocorrelation function from irregularly spaced data orig- 
inally proposed by Agterberg (1970) performed well in Haining's tests. The 
basis of the quadratic model and derivation of functions used in this model are 
outlined in Appendix A. 

In this study, auto- and cross-correlation functions were estimated with 
neighborhood radii (D) varying from 50 m to 4 km (Table 1). The degree of 
fit of a parabola for a specific neighborhood is best in the vicinity of the average 
distance for this neighborhood. 

Shapes of the parabolic functions (Fig. 6) and coefficients of estimated 

Table 1. Average Sample Distances and Numbers Within Selected 
Neighborhoods 

m 

Neighborhood Average number Average sample 
(m) of samples distance 

50 .4 18.4 
100 1.1 55.6 
250 4.2 149.3 
500 13.6 309.5 

1000 44.6 631.6 
2000 154.6 1273.1 
4000 421.0 2369.8 
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Fig. 6. Quadratic function approximation of  the auto-correlation and cross-correlation func- 
tions for Si, AI, CO2, S, Li, and Zn. Each curve terminates at the end of  the neighborhood 
for which the function was calculated. The correlation coefficient (R) is shown as an asterisk 
on the y axis of the parabolic function curves. The first six curves (a)-(f) ,  approximate auto- 
correlation functions. The remaining curves, (g) to (1), approximate cross-correlation func- 
tions of the variables. Not all variables used in the study are shown in these curves. 
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Neighborhood 

Table 2. Auto/Cross-Correlation Coefficients 

Autocorrelation coefficients 

Si-Si Coefficients CO2-CO2 Coefficients 
A B*X C*X 2 A B*X C*X 2 

250. 
500. 

1000. 
2000. 
4000. 

Neighborhood 

.35002905 -.00165903 .00000395 .37507474 -.00076527 .00000275 

.27103460 -.00032546 -.00000016 .33522120 -.00010958 -.00000035 

.28688642 -.00055850 ,00000029 .33841121 ,00002346 -.00000013 

.19479574 -.00024118 .00000008 .36612883 -.00008893 -.00000004 

.15599529 -.00013267 .00000003 .44675118 -,00026461 .00000003 

S-S Coefficients Li-Li Coefficients 
A B*X C*X 2 A B*X C*X ~ 

250. 
500. 

1000. 
2000, 
4000. 

Neighborhood 

.44571537 -,00398575 

.38999817 -.00192112 

.30765647 -.00069744 

.21431395 -.00022178 

.16959698 -.00012425 

.00001271 .44000834 -,00202260 .00000821 

.00000306 .31681520 .00048445 -.00000076 

.00000045 .39288762 -.00008181 -.00000004 

.00000006 .40857968 -.00011333 -.00000004 

.00000002 .49133605 -.00029038 .0000000 

Zn-Zn Coefficients 
A B*X C*X 2 

250. 
500. 

1000. 
2000. 
4000. 

Neighborhood 

.39444730 -.00161057 .00000020 

.30731270 -.00060191 .00000017 

.32113951 -.00075676 .00000047 

.24101809 -.00033361 .00000010 

.16430871 -.00016236 .00000003 

Crosscorrelation Coefficients 

Si-CO2 and CO2-Si S-Si 
Averaged coefficients Averaged coefficients 

A B*X C*X 2 A B*X C*X 2 

250. 
500. 

1000. 
2000. 
4000. 

Neighborhood 

,05204545 .00075619 -.00000387 .24651165 -.00050872 -.00000167 
.11605299 -.00058276 .00000090 .23030779 -.00071020 .00000073 
.07770173 -.00014910 .00000006 .20141356 -.00048352 .00000033 
.03303507 -.00001784 .00000000 .12007903 -.00012998 .00000004 
.02900602 -.00000353 .00000000 .09366345 -.00006613 .00000001 

Si-Li and Li-Si Si-Zn and Zn 
Averaged coefficients Averaged coefficients 

A B*X C*X 2 A B*X C*X 2 

250. 
500. 

1000. 
2000. 
4000, 

-.04713026 ,00245305 -.00001059 .05451455 .00251247 -.00001163 
• 09296227 -.00057745 .00000078 .16177064 -.00015417 -.00000056 
.05084213 -.00018231 .00000012 .18861033 -.00056788 .00000039 

-00967754 .00003336 -.00000002 .08129474 -.00011721 .00000004 
-.01189961 .00002691 -.00000001 .04195785 -.00003659 ,00000001 



Neighborhood 

Spatial and Multivariate Analysis of Geochemical Data from Metavolcanic Rocks 837 

Table 2. Continued 

COz-S and S-CO2 CO2-Li and Li-COz 
Averaged coefficients Averaged coefficients 

A B*X C*X 2 A B*X C*X 2 

2 5 0 .  , 0 1 4 6 7 5 4 4  .00015919 -.00000036 .21902244 .00696544 -.00000197 
5 0 0 .  . 0 0 9 5 2 8 8 0  .00011460 -.00000002 .21893354 .00084671 -.00000128 

1 0 0 0 .  . 0 2 5 9 9 6 9 7  .00005519 -.00000007 .29982153 .00016699 -.00000022 
2 0 0 0 .  . 0 1 7 5 9 6 6 2  .00005798 -.00000004 .34697002 -.00002273 -.00000007 
4000. .06542861 -.00005655 .00000001 .45758158 -.00026864 .0000(03 

CO2-Zn and Zn-CO2 S-Li and Li-S 
Averaged coefficients Averaged coefficients 

Neighborhood A B *X C*X 2 A B *X C*X 2 

2 5 0 .  -.06695214 .00194061 -.00000484 .06851044 .00082216 -.00000467 
5 0 0 .  . 0 0 8 7 1 5 6 1  .00046083 -.00000026 .09509793 -.00018106 .00000012 

1 0 0 0 .  . 0 3 6 2 4 7 2 2  .00034957 -.00000031 .10598613 -.00025913 .00000016 
2 0 0 0 .  . 0 8 7 3 6 0 3 6  .00010264 -.00000009 .05441260 -.00004168 .00000000 
4 0 0 0 ,  .18206951 -.00013883 .00000002 .05276841 -.00005069 .00000001 

S-Zn and Zn-S Li-Zn and Zn-Li 
Averaged coefficients Averaged coefficients 

Neighborhood A B*X C*X 2 A B *X C*X 2 

2 5 0 .  . 2 0 2 3 8 0 3 7  .00147146 -.00000973 .30718029 -.00154954 .00000335 
5 0 0 .  . 24263397  -.00026885 -.00000056 .25826758 -.00074132 .00000113 

1 0 0 0 .  . 25701344  -.00063112 .00000037 .22879666 -.00033904 ,0000~22 
2 0 0 0 .  . 18580724  -.00028883 .00000010 .17716601 -00008871 -.00000001 
4000. . 10216813  -.00009151 .00000002 .19826043 -.00016227 .00000003 

Note: Model Y = A + B * X  + C * X  2 using the Model Y = A + B * X  + C*X 2 

functions (Table 2) for selected chemical constituents, mainly SiO2, CO2, S, 
Li, and Zn provide approximations of unknown auto- and cross-correlation 
functions. The curves and coefficients are averaged for pairs of variables and 
are for standardized values of the elements. Means and standard deviations are 
shown (Table 3). 

As models of  estimation, parabolas do not fulfill some of the properties 
required by the auto-correlation function. The quadratic functions are not pos- 
itive-definite, nor do they satisfy the Cauchy-Schwarz inequality. However 
within the range of use (i.e., neighborhood limits), values of the functions are 
within the required range ( - 1 -< r _< 1 ) so that the Cauchy-Schwarz inequality 
is satisfied. This can be observed in the curves (Fig. 6). Auto- and cross-cor- 
relation functions were also estimated using discrete lag intervals that normally 



838 Grunsky and Agterberg 

Table 3. Means, Standard Deviations, and Correlation Coefficients 

Mean Std. Dev. SiO 2 C O  2 S Li Zn 

SiOz 58.5594 7.4084 1.0000 .0000 .0000 .0000 .0000 
CO z 1.3223 1.8122 -.1262 1.0000 .0000 .0000 .0000 
s .1255 .4834 .0318 -.0342 1.0000 .0000 .0000 
Li 17.0091 11.3595 -.3954 .5554 .0442 1.0000 .0000 
Zn 88.7825 96 .5587  -.0586 .1323 .0538 .2343 1.0000 

are used to determine spatial covariances and the variance of lagged differences 
for the semi- and covariogram. Estimates of the auto- and cross-correlation 
functions, as well as estimates derived from the semi- and covariograms, for a 
given interval h are close to the value of the quadratic functions. This suggests 
that quadratic functions are good estimates of the auto- and cross-correlation. 
Also, these functions decay to zero as the lag (h) increases, which is equivalent 
to approaching the sill of the semivariogram, and this suggests that stationarity 
exists within the data. Because these quadratic functions, as models of auto- 
and cross-correlation functions, are not positive-definite, some cases occur in 
which the condition of positive-definiteness is violated. An adjustment algo- 
rithm (shown below) can be applied which ensures that this condition is met. 
This is considered in the next sections where auto- and cross-correlations for 
groups of four, seven, and nine variables are combined with one another. 

The patterns suggested by the overlapping parabolas for auto-correlation 
are of two kinds: (1) exponential-type curves with a relatively steep slope at 
the origin (discontinuous first derivative) are indicated here by Si, A1, S, and 
Zn; and (2) gaussian-type curves which are horizontal at the origin (continuous 
first derivative) are shown by CO2 and Li. The average cross-correlation func- 
tions are also of two kinds: (1) exponential-type decrease as exemplified by the 
Li-Zn cross-correlation; and (2) increase toward a maximum in the vicinity of 
400 m before decrease toward larger distances is indicated most clearly by CO2- 
Li. The second kind of cross-correlation is shown also by the originally fitted 
parabolas of this pair before coefficients were averaged. 

A geological interpretation of the preceding auto- and cross-correlation 
patterns is as follows. Most chemical constituents such as Si are subject to 
abrupt changes in two-dimensional space at contacts between different rock types 
(Fig. 2). This results in exponential-type auto- and cross-correlation functions. 
Because of the east-west structural trend in the area, contacts between rock 
types are, on the average, more closely spaced in the north-south direction. 
The corresponding spatial correlation functions are therefore probably aniso- 
tropic. Exponential-type decreases such as for Si (Fig. 6a) are primarily deter- 
mined by the frequency of contacts of the lithological units; this frequency has 
been averaged with respect to direction. On the other hand, Co2, Li, S, and Zn 



Spatial and Multivariate Analysis of Geochemical Data from Metavoicanic Rocks 839 

are characteristic of alteration patterns which tend to be isotropic. These con- 
stituents, primarily CO2 and Li, are characterized by a spatial variability that 
changes more slowly and gradationally than the others such as Si. Regional 
zoning also is indicated for the alteration. The maximum cross-correlation of 
CO2 and Li at about 400 m suggests existence of clusters of relatively large 
CO2 values, occurring, on the average, at a distance of 400 m from clusters of 
relatively large lithium values. This suggestion is confirmed when the contour 
maps for CO2 and Li (Figs. 4c, e) are compared with one another. Both patterns 
show a number of distinct small peaks, especially within the northern part of 
the area. Several CO2 peaks occur at a distance of about 400 m from Li peaks 
closest to them. 

SPATIAL FACTOR ANALYSIS 

The spatial analysis of multivariate systems in petrology and geochemistry 
has been studied from different points of view by Agterberg (1966, 1974), Myers 
(1982, 1988), Royer (1984, 1988), Switzer and Green (1984), and Wackernagel 
(1985, 1988). Myers has developed methods of "cokriging" in order to per- 
form multivariate prediction of values of variables at points from the same var- 
iables measured at other points in the neighborhood. Most authors first treated 
their data by existing methods of multivariate analysis such as principal com- 
ponents analysis or correspondence analysis in order to extract "factors" from 
a symmetric matrix Co, which is usually a variance-covariance matrix or a cor- 
relation matrix. For spatial factor analysis, eigenvalues and eigenvectors of a 
matrix of the type C o 1C 1 usually are determined where C1 is a distance-variance 
matrix, generally of differences between variables measured at points with a 
given distance between them. Royer (1984) and Switzer and Green (1984) ob- 
tained linear combinations of variables which show continuous spatial variabil- 
ity versus "noise"  components that are linear combinations without significant 
positive spatial correlation. Wackernagel (1985) first extracted a "noise"  com- 
ponent from each individual variable before obtaining linear combinations for 
signal components of the variables. Our method of spatial factor analysis for 
the Ben Nevis area is explained in detail in the next section. It differs from 
earlier applications in Agterberg (1966, 1974) in the following ways: 

1. Distinguishing between a forward and backward transition matrix di- 
rected according to the dimension of time was important in the earlier work. 
Such a distinction is not relevant for the present application in which the for- 
ward and backward transition matrix give identical results. This is accom- 
plished by constructing a symmetrical matrix G .  In this respect, our new ap- 
proach is similar to those based on a distance-variance matrix of differences 
between variables measured at a given distance from one another. 

2) Our approach is based on spatial correlation parabolas for the 500-, 
1000-, and 2000-m neighborhoods (Fig. 6). The "noise"  component in each 
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of the variables is to have been eliminated successfully before spatial factor 
analysis is applied. However, several inconsistencies in the structure of inter- 
relationships between variables are introduced when a parabola is used as a 
model. For example, the resulting estimated variance-covariance matrices Co 
and C~ generally are not positive-definite. In other methods of approach, this 
problem is avoided by using estimators that are positive-definite. In our study, 
positive-definiteness of C O and C1 will be imposed by use of an adjustment 
algorithm (Appendix B). Imposition of the adjustment algorithm ensures posi- 
tive-definiteness, and comparison of the matrix before and after adjustments 
indicates that only minor changes to the coefficients occur, thus not greatly 
changing the correlations between variables. 

3. As in ordinary factor analysis, the result of spatial factor analysis, ide- 
ally, consists of one or more linear combinations of the variables that reflect 
one or more independent geological processes. The first spatial factor would 
have maximum autocorrelation whereas, at the same time, the sum of squared 
differences between observed and predicted values at a given distance is mini- 
mized if the entire transition matrix is used for extrapolation (minimax criterion; 
Agterberg 1974, p. 467). Quenouille (1957) has shown that, for a first-order 
Markov scheme in multiple time-series analysis, the first canonical variable 
(which is equivalent to a spatial factor) has maximum estimated autocorrelation 
coefficient which is positive and less than one. 

However, in practical applications, Quenouille (1957, e.g., his artificial 
series no. 2, p. 31) found that large positive ( > 1) or negative ( < - 1 )  eigen- 
values can occur. These spurious results were caused primarily by approximate 
linear relationships between variables (Quenouille, 1957, p. 93, 94). Such large 
positive and negative eigenvalues were encountered in most applications of the 
model described in this paper. In part, they are caused by lack of precision of 
the estimator employed. For this reason, each spatial factor must be tested for 
its goodness of fit in extrapolation. 

Application of Spatial Factor Analysis to Four-Component Subsystem 
CO2-Li-S-Zn 

The method of spatial factor analysis used here is explained initially by 
using a relatively simple example. The ordinary correlation matrix of the geo- 
chemical subgroup consisting of CO2, S, Li, and Zn in the Ben Nevis area is 

R 

CO2 S Li Zn 

1.00 -0 .03  0.56 0.13 
-0 .03  1.00 0.04 0.05 

0.56 0.04 1.00 0.23 
0.13 0.05 0.23 1.00 
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Suppose that estimated values of the constant term a are taken from the 
best-fitting parabolas for D = 1 km. Then, the correlation matrix becomes 

Rol 

CO2 S Li Zn 

0.34 0.03 0.30 0.04 
0.03 0.31 0.11 0.26 
0.30 0.11 0.39 0.23 
0.04 0.26 0.23 0.32 

Rol is not a correlation matrix in the strictest sense because its diagonal 
elements are not equal to 1. It represents the variance-covariance matrix of 
signal values corresponding to standardized values of the elements as implied 
by Eqs. (1)-(5) (Appendix A); the diagonal elements in this array are consid- 
erably less than unity, suggesting that the "noise"  component of the four var- 
iables is considerable. The off-diagonal elements were obtained by averaging 
the two separate estimates of the cross-correlation function (Table 2). Extrap- 
olation of the cross-correlation function for D = 1 km to the origin resulted in 
correlation coefficients that are either greater or slightly less than the ordinary 
correlation coefficients. This suggests that the "noise"  components of these 
variables are either positively correlated or not correlated with one another. Part 
of the noise in the variables can be assumed to be due to measurement errors 
and these would be uncorrelated. Some local variability may be correlated pos- 
itively and this is borne out by the preceding comparison. For example, CO2 
and Li have ordinary correlation coefficient equal to 0.56 and an extrapolated 
value of a = 0.30, suggesting that noise E(NliN2i ) = 0.56-0.30 = 0.26 (cf. 
Appendix A). Any pair of the elements taken for this example is not likely to 
be negatively correlated with one another. The weak negative correlations de- 
rived from the slightly negative differences are due probably to sampling fluc- 
tuations. A direct measure of  the magnitude of these sampling fluctuations is 
available for cross-correlations. As explained before, off-diagonal elements in 
matrix R0~ are averages of values of a for two separate parabolas. The following 
matrix shows original values of a before averaging 

CO 2 S Li Zn 

CO2 0.34 0.01 0.30 -0 .01  
S 0.04 0.31 0.14 0.23 
Li 0.30 0.08 0.39 0.12 
Zn 0.08 0.29 0.34 0.32 

Elements above the diagonal pertain to the situation where chemical con- 
stituents labeling the rows were placed at the centers of the neighborhoods and 
those labeling the columns at the other points. Elements below the diagonal 
were obtained by placing chemical constituents for the columns at the centers. 
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The cross-correlation function for Li and Zn has the largest discrepancy at the 
origin. The next correlation matrix shows values of a as derived from the best- 
fitting parabola for D = 2 km 

C02 S Li Zn 

0.37 0.02 0.35 0.09 
0.02 0.21 0.05 0.19 

R°2 = 0.35 0.05 0.41 0.18 
0.09 0.19 0.18 0.24 

Correlation coefficients of this new matrix are probably not as good as 
corresponding values of a in the matrix for the 1000-m neighborhood. This is 
because the goodness of fit of the parabola decreases toward the origin for larger 
neighborhoods when D is increased. Nevertheless, values of a in matrices R01 
and Ro2 are close to one another indicating that both estimates are relatively 
good. Suppose a correlation matrix Rll is formed by taking correlation coeffi- 
cients from parabolas for the D = 1000-m neighborhood at a distance 500 m 
from the origin 

e l l  = 

C O  2 S Li  Z n  

0.32 0.04 0.33 0.13 
0.04 0.07 0.02 0.03 
0.33 0.02 0.34 0.11 
0.13 0.03 0.11 0.06 

The sampling fluctuations of elements of Rll are probably less than those 
of R01. This is indicated by the following matrix, which is based on two separate 
parabolas before averaging 

CO2 S Li Zn 

CO 2 0.32 0.04 0.33 0.13 
S 0.03 0.07 0.02 0.03 
Li 0.33 0.02 0.34 0.11 
Zn 0.13 0.05 0.11 0.06 

Off-diagonal elements for separate parabolas in this matrix are nearly equal 
to one another. 

In analogy with previous methods (Agterberg 1974; Royer 1984), the non- 
symmetric transition matrix U which satisfies 

U = RoI1Rll (1) 

can be formed. The underlying statistical model is 

z;  = z j  u + E; (2) 
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where Z[ and Zj are row vectors consisting of standardized values for the four 
variables at points i and j;  Ei is a row vector consisting of residuals. Let Sj 
represent a column vector for signal values corresponding to Z. Then, premul- 
tiplication of both sides of Eq. (2) by Sj yields 

s j z ;  = s j z ;  u + sjE;.  

If  expected values are taken, the second term on the right side of this 
expression disappears and Eq. (l) follows from R~I = RoT U. Each column of 
U would represent a set of regression coefficients by which the value of a var- 
iable at point i is predicted from values of  all variables at point j .  Suppose that 
the residual variance for variable Z~ is written as cr 2. If the approach is valid, 
the kth column of U would have o~R~las its variance-covariance matrix, with 

- 1 0 . 4  12.2 16.5 -20 .3  

Roil = 12.2 - 1 . 1  -14 .8  10.0 
16.5 -14 .8  -20 .3  24.5 

-20 .3  10.0 24.5 -20 .1  

Variances of the variables are proportional to elements along the main di- 
agonal of this matrix. They would be negative, indicating that the approach 
does not give valid results. The reason for negative variances is that Rol has a 
negative eigenvalue in violation of the condition that it should be positive-def- 
inite. In other attempted applications, similar violations of the condition of pos- 
itive-definiteness for both Roj and R~j were found. The subscript in these expres- 
sions is related to the type of neighborhood used for evaluation, e.g., j = 1 for 
d = 500 m, D = 1000 m. However, the negative eigenvalues of the Ri; matrices 
(i = 0 or 1 ) were small and a simple adjustment could be made. Appendix B 
outlines the adjustment algorithm that was applied to give the matrix R~ a pos- 
itive-definite characteristic. For the present example, the eigenvalues of Ro~ 
were 

0.842 0.437 0.096 -0 .015  

The sum of these values is Trace (RoT) = 1.360. Consequently, -0 .015  was 
replaced by 0.014. The new matrix Rm is 

CO 2 S Li Zn 

0.34 0.02 0.29 0.04 
0.02 0.3l 0.11 0.25 

R°1 = 0.29 0.11 0.40 0.22 
0.04 0.25 0.22 0.33 

This positive-definite matrix is only slightly different from the previous 
matrix Rol. However, its inverse R~ 1, which also has become positive-definite, 
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has changed considerably 

Rol I = 

C O  2 S L i  Z n  

19.0 - 7 . 9  -21 .1  17.4 
- 7 . 9  12.6 10.7 -1 5 .6  

-21 .1  10.7 27.6 -23 .6  
17.4 - 1 5 . 6  - 2 3 . 6  28.1 

Application of the adjustment algorithm to RI~ gave 

CO 2 S Li Zn 

0.33 0.04 0.32 0.13 
0.04 0.07 0.02 0.03 

R11 = 0.32 0.02 0.35 0.12 
0.13 0.03 0.12 0.07 

The new transition matrix U = R ~ R l l  is 

U = 

C02 S Li Zn 

1.33 0.38 0.76 0.82 
-0 .63  0.26 -0 .47  -0 .35  
-0 .56  -0 .36  0.16 -0 .63  

1.06 0.09 0.50 0.78 

All elements of this matrix have positive variances. Note that Eq. (1) im- 
plies 

Zj = Z I U +  E; (3) 

because RI~ is symmetrical. Equation (3) states that the transition matrix for 
predicting from point i to j is the same as that for predicting from point j to i. 
Another property of U is that all eigenvalues are real (positive or negative num- 
bers) because it is the product of two positive-definite matrices (Bellman, 1960, 
p. 67). 

The number of coefficients in U is equal to p2 being the square of the 
number of variables p. This number can be reduced by decomposition of U into 
p separate spectral components Ui = XiViT[  (i = 1, 2 . . . . .  p )  with 

P P 

i = l  i = l  

and retaining only one or a few of these components. The largest eigenvalue 
( ~,1 ) of U represents a "spatial factor" with scores Z[ VI, where V~ is the ei- 
genvector of U corresponding to ~,. VI is one of the columns of V with 

U' V = VL 
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where L is the diagonal matrix of  the eigenvalues of  U. For the case of  four 
variables and a neighborhood of D = 1000 m, d = 500 m, eigenvalues are 

1.292 0.827 0.372 0.03l  

Each of these corresponds to a linear relationship between the variables. Ide- 
ally, the relative importance of  a relationship is controlled by the magnitude of  
its eigenvalue. Here 

Z[ V1 = 0.553zl - 0.310z2 - 0.504z3 + 0.587Z4 

where z~, z2, z3, and z4 represent standardized CO2, S, Li, and Zn values, 
respectively. Each of  these elements describes a pattern proportional to that of  
the scores (Z" I11 ). Constants of  proportionality or amplitudes are given by the 
"ampli tude vec tor"  T I, which is a row of  the matrix T = V -1. For the example 

TI  = (2.644, 0.319, 2.223, 1.289) 

The first and third coefficient of  this amplitude vector are largest, indicating that 
the first spatial factor is primarily for CO2 and Li. The second eigenvalue ( X 2 
= 0.827) is not much smaller than X~. Its spatial factor is 

Z[ V 2 = - 1.162zl - 0.430z2 - 2.216z3 + 1.545z4 

with amplitudes 

T~ = (0.631, - 0 . 2 5 7 ,  0.465, 0.351) 

The second spatial factor, therefore, is also primarily for CO2 and Li. It pro- 
vides a refinement of  the pattern provided by the first spatial factor. 

A reason for adopting the preceding approach of  spectral decomposition 
of  the transition matrix is as follows. Suppose that U is replaced by its first 
dominant component  

Uj = X~VIT~ 

This relationship would apply to points which are d = 1 km apart. For points 
which are d km apart, the corresponding transition matrix is 

u = 

When d is increased, U d approaches Ul d in all applications. Normally Xj and 
other eigenvalues of  U are expected to be less than unity as in the situation of 
a first-order Markov scheme (cf., Quenouille, 1957). In this example,  our initial 
estimate of  ),1 = 1.292 is too large. For d = 0, which is equivalent to extrap- 
olation toward the origin, Eq. (4) reduces to 

i ° = V, TI 
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If  two eigenvalues are much larger than the others, as in the present ex- 
ample, this approach leads to 

U°2 = U o + w U  ° = V1T ~ + wV2T~_ 

where w - X1/),2 is a weighting factor reducing the relative influence of U ° 
with respect to U °. In the example w = 0.640. The spatial factor for Z; V1 is 
shown (Fig. 7a). Patterns for the first two spatial factors represent carbonate 
alteration zones. Later, X1 = 1.292 is shown to indeed be a poor estimate of 

the largest eigenvalue and U 1 is shown to be improved by replacing it by U* 
= cl U1 where cl is a constant (C 1 ---~ .475 for this example). Even if k~ cannot 
be estimated with precision, Z[ I,'1 still provides the pattem of the first spatial 
factor, whereas coefficients of T~ provide relative amplitudes by which varia- 
bles describe this pattern. Similar modifications can be applied to other com- 
ponents or sums of components such as U~ + U 2 in the present example. 

The preceding experiment was repeated by using R02 and constructing R~2 
from the estimated auto- and cross-correlation functions for D = 2000 m with 
d = 1000 m. This led to a transition matrix with eigenvalues 

2.196 0.685 0.392 0.022 

The first eigenvalue is much larger than the others. The corresponding spatial 
factor is 

Z; V~ = 0.356zl - 0.480z2 - 0.506z3 + 0.622z4 

with amplitudes 

T~ = (0.124, -1 .604 ,  0.164, 0.434) 

Without further analysis, this might suggest that in prediction from d = 
1000 m, sulfur dominates. However, this is not true (shown later). On the other 
hand, the second eigenvalue (k2  --- 0.685) has spatial factor 

Z ~ V  2 = 1.157Zl + 0.1172z2 + 0.124z3 + 0.054Z4 

which is comparable to the first spatial factor of the 1000-m neighborhood. The 
pattern of Z[ 1/2 for the 2000-m neighborhood is shown (Fig. 7b). Its amplitudes 

T~ = ( - 0 . 7 6 2 ,  -0 .100 ,  -0 .753,  -0 .254)  

also shows that this trend factor represents carbonate alteration. 
The squared multiple correlation coefficient R2m can be used to evaluate 

the relative predictive power of the kth spatial factor for the mth variable in 
comparison with other spatial factors. This will permit identification of spurious 
results such as those related to the largest eigenvalue for the D = 2000-m neigh- 
borhood. Each signal component S m initially has variance a m. Therefore, with 
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C[~MPONENT 1 SUBSYSTEM C(~2-S-LI-ZN O=lOOOH d=5OOM a 

L 
COMPONENT 2, SUBSTSTEM C02-S-LI ZN EI=2OOOM d=IOOOM 

Q 

Fig. 7. (a) Spatial factor map of the first component of  the U transition matrix 
(CO2, S, Li, Zn) evaluated from cross- and auto-correlation functions in the 
1000 m neighborhood. (b) Spatial factor map of the second component of  the 
U transition matrix (CO2, S, Li, Zn) evaluated from cross- and auto-correla- 
tion functions in the 2000 m neighborhood. The pattern reflects zones of car- 
bonatization and sulfide mineralization. 

p variables, the total variation in the system is equal to 

P 

T = ~ ] a  m 
r n =  l 

For prediction of S.~ at point i from all p variables at point j 

=zju,. 
m i  



848 Grunsky and Agterberg 

where Um represents the mth column of U. If  Rim is the mth column of R1, the 
squared multiple correlation coefficient R2m for predictive power with respect to 
the mth variable (c.f., Rao, 1975, p. 266) satisfies 

R2m = e~mUm/a m 

Total predictive power of U can be expressed by means of the quantity Q 

P 

O = E a m R Z / T  
m = l  

For example, the transition matrix U for the D = 1000-m neighborhood 
has 

R] = 1.050 R~ = 0.097 RZ3 = 0.876 R ] = 0.211 and 

Q = 0.587 

Note that R 2 is slightly greater than one which is its theoretically largest value. 
No attempt was made to adjust the model in order to avoid this minor discrep- 
ancy. 

The first component U1 for this example satisfies 

U I = 

C O  2 S Li  Z n  

1.89 0.23 1.59 0.92 
- 1 . 0 6  - 0 . 1 3  - 0 . 8 9  - 0 . 5 2  
- 1 . 7 2  -0 .21  - 1 . 4 5  - 0 . 8 4  

2.01 0.24 1.67 0.98 

Comparison of U1 to U indicates that values of U~ should be divided by a 
constant cl in order to obtain values of U1 which are relatively close to values 
of U. The initial discrepancy between U1 and U may be due to imprecision of 
our initial estimate of eigenvalue ~,l. Suppose that constant c~ is estimated by 
minimizing the expression 

E ( U,j - c, U,,~) 2 
6 

This leads to the solution 

1 
C l ~- Z ( U i j U l i j / Z  U2ij 

For the example c 1 -- 0.4745, multiplication of ),l -- 1.292 by c 1 would 
give a modified eigenvalue ~,~ = 0.613, which is less than one. The modified 
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first component U* = ClU1 satisfies 

CO 2 S Li Zn 

0.90 0.11 0.75 0.44 
- 0 . 5 0  - 0 . 0 6  - 0 . 4 2  - 0 . 2 4  
- 0 . 8 2  - 0 . 1 0  - 0 . 6 9  - 0 . 4 0  

0.95 0.11 0.80 0.46 

This matrix shows good agreement with U. In terms of  squared multiple cor- 

relation coefficients, the first component U* has R 2 coefficients equal to 

R21 = 0.380 R~2 = 0.006 R23 = 0.230 R24 = 0.094 and 

Ql = 0.185 

Correction constants c i (i = I, 2 . . . . .  p )  can be estimated for all com- 
ponents. The second component has c2 = - 0 . 4 3 1  and its structure is such that 
all squared multiple correlation coefficients resulting from it would be negative, 

indicating that U* alone cannot be used for prediction. However, addition of  
U2 to U1 gives Ulz with c12 = 0.903 and 

CO2 S Li Zn 

1.17 0.30 0.68 ().74 
- 0 . 7 6  - 0 . 1 5  - 0 . 5 2  - 0 . 4 3  
- 0 . 5 3  - 0 . 3 8  0.13 - 0 . 5 9  

1.09 0.35 0.52 0.77 

which is close to U. Its squared multiple correlation coefficients are 

R22, = 0.935 R~22 = 0.019 R~23 = 0.788 N1224 = 0.185 and 

Qt2 = 0.508 

Although the addition of  U2 to UI increases these values, the overall pat- 
terns are not changed greatly, as pointed out before. 

Application of  the preceding method to the first two spatial factors derived 
from the transition matrix U for the 2000-m neighborhood gave the following 
results. For U 

R~ = 0.463 R 2 = 0.080 R32 = 0.421 R42 = 0.098 and 

Q = 0.358 

This result is comparable with that for the 1000-m neighborhood. How- 
ever, the first component has Q¿ = 0.051, whereas the second component, with 
Q2 = 0.263, has about five times as much predictive power. This proves that, 
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although it has the largest eigenvalue, the spatial factor dominated by sulfur is 
less meaningful than the carbonate alteration factor. 

Application of Spatial Factor Analysis to Seven- and Nine-Component 
Subsystems 

In the preceding section, application of the method of spatial factor anal- 
ysis was restricted to the four variables that describe alteration and mineral- 
ization of the area. In particular, variables that were studied tend to be more 
isotropic in their spatial distribution than variables that define compositional 
variation. Many of the distinct geological units that reflect primary composi- 
tional variation are spatially anisotropic in their patterns (Fig. 2). An obvious 
case is that of felsic volcanic rocks. This anisotropy is revealed in spatial pat- 
terns of chemical variables (Fig. 4a). Also, auto-correlation functions for Si 
(Fig. 6) and several other variables that reflect compositional variation (not 
shown) indicate a steep decay of the function as distance increases. This reflects 
poor auto- and cross-correlation at distances greater than 500 m. 

Application of spatial factor analysis to larger groups of seven and nine 
variables was made using three neighborhoods of D = 2000 m, 1000 m, and 
500 m. From the discussion of factors that have been determined from corre- 
spondence analysis, the spatial factor analysis is expected to reveal the same 
spatial patterns. In all three neighborhoods for both seven and nine variable 
sets, R 0 estimates were subjected to small adjustments in order to satisfy the 
positive-definite condition. 

Evaluation of the seven variable case with D = 2000 m showed that the 
R0~ coefficients are small. This is due to rapid decay with distance of values 
determined from the auto- and cross-correlation functions for variables that re- 
flect compositional variation. Because of small Rol coefficients, the resulting 
R~ 1 matrix coefficients are large and the diagonals represent large variances of 
variables when D = 2000 m. When large variances exist, eigenvalue solutions 
will not be valid and may be large. Similarly, for the neighborhood D = 1000 
m, d = 500 m, although eigenvalues were more realistic, the factor patterns 
were difficult to interpret. Large neighborhoods (1000 m and 2000 m) yield 
small Q values when subjected to spatial factor analysis. 

For the neighborhood D = 500 m, d = 250 m, eigenvalues were 3.721, 
1.560, 0.590, 0.503, 0.281, 0.231, 0.114, and Q = 0.608, which is a predic- 
tion of spatial relationships. R 2 values were 0.717, 0.704, 1.306, 0.425, 0.578, 
0.341, and 0.770. Only two components of U are interpretable (Q > 0) and 
are 

C# Q 1 2 3 4 5 6 7 

R 2 = 1 0.176 0.001 0.471 0.001 0.019 0.216 0.109 0.234 
2 0.263 0.583 0.005 0.881 0.323 0.187 0.001 0.400 
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The corresponding amplitude vectors for these two components are 

T~ = ( - 0 . 0 5 8 6  -1 .5817  0.0392 0.2925 -1 .0702 -0 .8306  1.1066) 

T~ = (1.2392 -0.14.04 -1 .2929  -1 .0987 -0 .9049 

-0 .0678 1.3157) 

The value of Q for the second component suggests that it is more signifi- 
cant. The amplitude vector of the second component suggests that the positive 
trend vector coefficients represent felsic volcanic rocks of which the positive 
scores are represented by variables K and Si, and the negative scores are rep- 
resented by variable Fe, Mg, Ca, A1, and Na. Note that the amplitude vector 
tends to indicate which variables are associated with each other by their sign, 
whereas the multiple correlation coefficients indicate by their magnitude which 
variable dominates in the resulting spatial factor pattern. 

Spatial factor 2 (Fig. 8a) (when compared to Figs. 2 and 4a) outlines the 
felsic and mafic volcanic rocks. However, the felsic rock pattern in the north- 
west and north central part of the map area is not the same (Figs. 8a and 4a), 
which is due probably to relatively thin volcanic units (much less than 500 m 
thick). The existence of these units cannot be detected in the auto- and cross- 
correlation functions. 

Factor 1 indicates that (A1, Ca, and Na) and (Si) are the most significant 
variables associated with negative factor scores and that K, Mg, and Fe are 
associated with positive factor scores. The resulting spatial factor map (not 
shown) indicates that negative scores are associated with compositional varia- 
tion of volcanics and positive scores are associated with K alteration. 

The spatial factor analysis was applied to the nine-variable set of data with 
the following neighborhoods, D = 2000 m, d = 1000 m; D = 2000 m, d = 
500 m; and D = 1000 m, d = 500 m. 

From results of spatial factor analysis applied to the seven- and four-vari- 
able sets of data, similar results can be expected to be obtained and factors 
probably will be a combination of the other two applications. For D = 2000 
m, d = 1000 m, little information of the compositional variation was expected 
but carbonate alteration patterns should be detected. In this analysis 

Q = 0.2623 

and R 2 coefficients were 

1 2 3 4 5 6 7 8 9 

R 2 =  0.105 0.267 0.141 0.117 0.159 0.024 0.105 0.592 0.639 

From these coefficients, clearly CO2 and Li dominate the spatial factors. 
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The following components were significant in the analysis 

C# Q 1 2 3 4 5 6 7 8 9 

R z 

1 0.024 0.032 0.018 0.028 0.051 0.019 0.011 
2 0.055 0.000 0.007 0.028 0.007 0.000 0.002 
4 0.010 0.000 0.023 0.002 0.006 0.015 0.000 
5 0.019 0.053 0.005 0.050 0.025 0.018 0.000 

0.000 0.059 0.012 
0.022 0.112 0.226 
0.000 0.012 0.025 
0.056 0.001 0.004 

with amplitude vectors 

T ' I  = (0.571, 0.522, 0.528, 0.777, 0.528, 0.507, -0 .003,  

-1.064, -0.503) 

T'2 = ( -0 .007 ,  -0 .295,  0.481, 0.259, -0 .046,  0.186, 0.562, 

- 1.341, - 1.999) 

T'4 = ( -0 .003 ,  -0 .587,  0.140, 0.280, -0 .474,  -0 .064,  

-0 .061,  0.501, 0.753) 

T'5 = ( -0 .513 ,  0.184, 0.496, 0.375, 0.353, 0.009, -0 .694,  0.073, 0. i92) 

The first component appears to be dominated by Mg, Si, Fe, A1, Ca, and 
Na for positive factor scores and by CO2, Li, and K for negative factor scores. 
Positive scores reflect compositional variation of the volcanics combined with 
zones of alteration associated with CO2, Li, and K enrichment. 

The second component has the largest Q value and R 2 coefficients; together 
with the amplitude vector coefficients, this indicates that Li and CO2 dominate 
this spatial factor also. The spatial plot of factor 2 (Fig. 8b) indicates Li and 
CO2 pattems are not clearly developed. In fact, the pattern is similar locally to 
the Ca pattern (Fig. 4b), although the R 2 coefficient for Ca in the second com- 
ponent is equal to zero. This pattern also is similar to the third factor of the 
correspondence analysis applied to nine variables. The third factor in corre- 
spondence analysis is dominated by CO2 and Ca together, which may have good 
spatial cross-correlation and result in the pattern observed in the spatial factor 
analysis. The reason for this is difficult to interpret. The poor result may be a 
combination of a small Q value (Q = 0.055), which suggests that the factor is 
not strong. Contrary to this, the first component, which has only half the pre- 

Fig. 8. (a) Spatial factor map of the second component of the U transition matrix (S i -AI -Fe-Mg-  
Na-K) evaluated from auto- and cross-correlation functions in the 500 m neighborhood. (b) Spatial 
factor map of the second component of the U transition matrix (S i -AI -Fe -Mg-Ca-Na-K-CO2-  
Li) evaluated from auto- and cross-correlation functions in the 2000 m neighborhood~ (c) Spatial 
factor map of the third component of  the U transition matrix (S i -A1-Fe-Mg-Ca-Na-K-CO2-Li )  
evaluated from auto- and cross-correlation functions in the 1000 m neighborhood. 
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dictive power,  produces the primary composit ional  variation and alteration pat- 
terns. Another  reason why the pattern does not appear  could be the lack of  
precision o f  the R 0 and R1 matrices at d = 1000 m for D = 2000 m. Whereas 
these matrices could be est imated with sufficient precision in the four-variable 
case, they cannot be in the seven-variable case. Results for the nine-variable 
case are only partly interpretable for this neighborhood. 

The fourth and fifth components  have small Q values and their patterns do 
not appear to have any significant meaning. For  the case of  D = 2000 m, d = 
500 m, Q = 0.446 and 

1 2 3 4 5 6 7 8 9 

R 2 = 0.256 0.515 0 . 2 8 2  0.254 0.374 0 . 1 7 1  0.314 0 . 7 9 5  0.814 

Q 1 2 3 4 5 6 7 8 9 

R 2 

1 0.052 0.001 0.010 0.020 0.030 0.003 0.003 0.000 0.145 0.178 
2 0.023 0.001 0.045 0.006 0.002 0.019 0.035 0.021 0.013 0.035 
4 0.045 0.101 0.011 0.046 0.043 0.015 0.018 0.175 0.003 0.023 
5 0.015 0.017 0.002 0.042 0.004 0.058 0.008 0.017 0.001 0.008 

The corresponding ampli tude vectors are 

T[ = ( - 0 . 1 4 0 ,  0.449, - 0 . 5 3 0 ,  - 0 . 7 1 2 ,  - 0 . 2 4 2 ,  - 0 . 3 3 0 ,  0.075, 

1.990, 2.320) 

T~ = (0.229,  - 1 . 9 5 4 ,  0.595, - 0 . 3 8 3 ,  - 1 . 2 3 0 ,  - 2 . 1 7 2 ,  1.454, 

1.212, 2.048) 

T,~ = ( - 0 . 9 3 9 ,  0.370, 0.630, 0.657, 0.433, 0.613, - 1 . 6 2 9 ,  0.207, 0.656) 

T~ = ( - 0 . 5 3 5 ,  0.237, 0.833, 0.261, 1.176, - 0 . 5 6 1 ,  - 0 . 7 0 8 ,  

- 0 . 1 7 5 ,  - 0 . 5 1 7 )  

The first component  has the largest Q value; however,  the spatial pattern 

is similar to that of  D = 2000 m, d = 1000 m of  the second factor. Negative 
scores for CO2 and Li show the zones of  alteration throughout the area. Positive 
scores are dominated by Mg-rich zones. The fourth component  is the next larg- 
est component ,  and from both ampli tude vector and R 2 coefficients, K appears 

to be the dominant  variable.  
For  the case of  D = 1000 m and d = 500 m, Q = 0.432 

1 2 3 4 5 6 7 8 9 

R 2 =  0.103 0.488 0.265 0.196 0.202 0.252 0.274 1.158 0.989 
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The most significant components are 

Q 1 2 3 4 5 6 7 8 9 

0.045 0.006 0.093 0.013 0.070 0.007 0.051 0.098 0.013 0.025 
0.069 0.001 0.049 0.002 0.007 0.002 0.111 0.066 0.214 0.138 
0.076 0.002 0.116 0.060 0.016 0.041 0.001 0.003 0.275 0.205 
0.005 0.012 0.002 0.012 0.009 0.006 0.000 0.007 0.000 0.001 

and amplitude vectors are 

T'I = ( - 0 . 2 4 1 ,  1.074, -0 .317 ,  -0 .865 ,  0.307, 0.917, -1 .202,  

0.381, 0.560) 

T~ = (0.081, -0 .698 ,  0.119, -0 .237 ,  -0 .137,  -1 .209,  0.885, 

1.362, 1.1720) 

T~ = ( - 0 . 1 5 8 ,  -1 .281 ,  0.726, 0.443, -0 .810,  -0 .124,  -0 .238,  

1.841, 1.7040) 

T~ = ( 1.342, -0 .565 ,  - 1.247, - 1.226, - 1.173, 0.185, 1.277, 

0.2356, -0 .4878)  

The third component is most significant, with the largest Q value. R 2 and 
amplitude vector coefficients indicate that CO 2 and Li are the most significant 
variables. A spatial plot of the third factor (Fig. 8c) clearly shows that the CO2- 
Li enriched zones are indicated in the pattern. The negative factor score pattern 
is associated with the zone of Ca enrichment around the CO2-Li zone. The fifth 
component is dominated by Si and K for positive factor scores and a combi- 
nation of Fe, Mg, and Ca for the negative factor scores; the spatial pattern is 
similar to the Si map (Fig. 4a). The second component appears to be a com- 
bination of CO2 and Ca together, as defined in the correspondence analysis. 
The first component is a combination of Si, Fe, Mg, and K for negative factor 
scores and A1, Ca, Na, CO 2, and Li for positive factor scores, outlining both 
compositional variation and alteration zones. 

Results for the nine-variable subsystem at d = 500 m, D = 1000 m are 
similar to those previously described for the four-variable subsystem at d = 500 
m, D = 1000 m, as well as d = 1000 m, D = 2000 m in that the dominant 
trend factor is controlled primarily by CO2 and Li representing the carbonate 
alteration. 
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CONCLUDING REMARKS 

Correspondence analysis gives useful results for the Ben Nevis area in- 
cluding a carbonate alteration factor, which is characterized mainly by CO2. 
The first factor emerging in correspondence analysis, as well as in other types 
of factor analysis, is the compositional trend of volcanics ranging from basalts 
to rhyolites. This lithologic trend is described by SiO2 and most other chemical 
constituents. 

Spatial variation of constituents was studied by fitting parabolas to auto- 
and cross-correlation functions for overlapping neighborhoods. This suggests 
the existence of exponential-type auto- and cross-correlation functions with dis- 
continuous first derivative at the origin for most chemical constituents. How- 
ever, CO2 and Li have Gaussian-type auto-correlation functions with continu- 
ous first derivative at the origin. Their cross-correlation function suggests the 
existence of a local minimum at the origin. The latter pattern is to a lesser extent 
exhibited by cross-correlation of these two elements with S and Zn. Spatial 
correlation patterns of constituents that resulted primarily from hydrothermal 
alteration processes may be concluded to differ from those of other chemical 
constituents. A method of spatial factor analysis was applied to three subsys- 
tems which include variables that describe compositional variation, variables 
that describe alteration, and a combination of both sets of variables. 

Primarily because of instability of estimated eigenvalues, great care is re- 
quired in interpreting the results. Nevertheless, results of the spatial factor anal- 
ysis can be interpreted when auto- and cross-correlation functions represent 
meaningful relationships between variables at a given neighborhood size. 

For variables that represent alteration, the 2000 m and 1000 m neighbor- 
hoods define these zones. The pattern of a combination of CO2-S-Li-Zn en- 
richment (Fig. 7b) is significant in terms of mineralization and choice of explo- 
ration targets. For variables that represent compositional variation, larger 
neighborhoods do not describe compositional variation well or, in one case, not 
at all. The degree of anisotropy has an effect on the ability to determine rela- 
tionships between variables in spatial factor analysis; this was shown by thin 
units of felsic volcanic rocks not being delineated in the analysis, in the case 
o f D  = 500m,  d = 250m.  

Of particular use are values of Q for the U transition matrix that indicate 
the ability of U to account for spatial variation in the data. Also, Qm values 
estimate the relative significance of components of U and enable an assessment 
of the most significant factors. Multiple correlation coefficients describe the 
relative significance of variables for a given component; when used in conjunc- 
tion with coefficients of the amplitude vector T' ,  spatial patterns can be inter- 
preted and related to the geology of the area. 

Spatial factor analysis as used in this paper is suitable for delineation of 
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hydrothermal alteration patterns and other geological patterns that are charac- 
terized by gradational variation in space. 

APPENDIX A 

Derivation of auto- and cross-correlation functions is based on the equation 

xi = F ( d i j ) x j  + Yi (A1) 

where xi and xj denote values of a random variable X with zero mean measured 
at two different points in the plane labeled i and j .  Both i and j go from 1 to N, 
where N denotes total number of observations. F(di j  ) is a quadratic function of 
distance dq between these two points. The residual yi is the realization of a 
random variable Yi at point i. It satisfies E(Y/) = 0, and 11, is assumed to be 
independent of  Xj. Under these conditions 

F(diy)  = E(XiX j ) / E ( X  2 )  = O0 (A2) 

where E denotes expected value and p/j is the auto-correlation coefficient for 
two points that are distance d o apart. Suppose that X i is replaced by Z~ = X i / a ,  
where a is the standard deviation of the variable considered. Let a be replaced 
by s representing the standard deviation estimated from N values of xi,  then 
values of zi satisfy zi = x i / s .  This rescaling does not change results for auto- 
correlation, but the model now can be used also for estimating the spatial cross- 
correlation coefficient of two standardized random variables Zli and Z2j with 
values zli and z2j. In practice 

FD(dij ) = a + b dij + c d 2 (A3) 

is estimated by ordinary least squares after successively pairing each point la- 
beled i (i = 1, 2 . . . .  , N)  with the Ni points ( j )  located within a circular 
neighborhood around i with radius D. 

In cross-correlation, either values zli or zzi can be selected at the centers 
of neighborhoods. Consequently, two parabolas can be fitted in that situation. 
The expected parameters a, b, and c of these two parabolas are equal to one 
another. For this reason, the two fitted parabolas can be averaged in practice. 
Jointly, the fitted parabolas for different values of D provide an approximation 
of an auto- or cross-correlation function. By means of this method, Z i may be 
divided into "s ignal"  Si and "noise"  iV,- components with 

E ( Z ~ )  = E(S2i)  + E(N2i)  = 1 

E ( Z i Z j )  = E ( S i S j )  = E(ZgS j )  = E ( S i Z j )  if i :/: j (A4) 
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with Z i = Si + Ni and E (  S~ ) = a. Corresponding equations for a pair of stan- 
dardized variables Z 1 and Z 2 are 

E(ZIzZ2~) = E(S, iS2i) + E(NIiN2i) = P12 

E(ZIiZ2j) = E(SIiS2j) "~ E(ZIiSzj) = E(S, iZ2j) if i 4= j (A5) 

where P12 represents the correlation coefficient of X I and X2, and E(SIiSzi ) = 
a 4= P12 allows for the possibility that the noise of X I is correlated with the 
noise of X 2. 

A basic property of the auto-correlation function is that it is symmetric 
about its origin. In this paper, this property is assumed to hold true for the cross- 
correlation function as well. 

The parabolas (Fig. 6) and coefficients (Table 2) provide approximations 
of unknown auto- and cross-correlation functions. Locally these estimates vi- 
olate basic properties of such functions. For example, an autocorrelation func- 
tion has its maximum value at the origin. This is a consequence of the so-called 
Schwarz-Cauchy inequality. Another consequence of this inequality is that the 
absolute value of a cross-correlation coefficient is not greater than the geometric 
mean of the autocorrelation coefficients of the two variables considered, The 
Schwarz-Cauchy inequality is not everywhere satisfied by the parabolas (Fig. 
6). 

APPENDIX B 

Matrices R0j and RIj should be positive-definite (Joumel and Huijbregts, 
1978, p. 326). A necessary and sufficient condition that a symmetric matrix is 
positive-definite is that all its eigenvalues are greater than zero (Bellman, 1960, 
p. 54). As illustrated by the example in the text, the condition of positive- 
definiteness is not necessarily satisfied if the auto- and cross-correlation coef- 
ficients are taken from best-fitting parabolas as in this paper. 

If Roj or RIj have one or more small negative eigenvalues, these can be 
replaced by small positive eigenvalues with the same eigenvectors, provided 
that the resulting changes of the elements of Roj or R U are small. In this ad- 
justment algorithm, all eigenvalues of a symmetric matrix Rij (i = 0 or 1 ) are 
checked for being positive. A negative eigenvalue is replaced by a positive 
number equal to 0.01 × trace ( R  0 ). This will change the value of Tr (Rzj). If 
another eigenvalue is negative, it will be replaced in the same way using 1% 
of the modified trace. After adjustment, all eigenvalues of the modified matrix 
Rij are greater than zero. This implies that Rij has become positive-definite. 

Use of this technique in our experiments indicated that adjustments to the 
Roj and R1j matrices were small. Adjustments to the matrix elements were typ- 
ically +_0.01, which averages to about a 3 % change in the values and indicates 
that the fundamental relationships between the variables are unchanged. 
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LIST OF SYMBOLS 

Scalar factor that minimizes the discrepancy between and Ui. 

Radius of circular neighborhood used for estimating auto- and cross- 
correlation coefficients. 

Distance for which transition matrix U is estimated. 

Distance between observed values i and j .  

Expected value. 

Row vector of residuals in the standardized model. 

Quadratic function of distance dij F(  dij ) = a + bdij + cd~j 

Diagonal matrix of the eigenvalues of U. 

Eigenvalue of the matrix U; ith diagonal element of L. 

Number of  observations. 

Number of variables. 

Total predictive power of U. 

Correlation matrix of the variables. 

Variance-covariance signal matrix of the standardized variables at 
origin; j is the index related to d and D (e.g., j = 1 for d = 500 m, 
D = 1000 m). 

Matrix of auto- and cross-correlation coefficients evaluated at a given 
distance within the neighborhood. 

Multiple correlation coefficient squared for the ruth variable. 

Column vector i of the signal values. 

Residual variance for variable k. 

Amplitude vector corresponding to Vi; ith row of T = V -~. 

Total variation in the system. 

Nonsymmetric transition matrix formed by post-multiplying Rol I by 

Rij. 

Component i of the matrix U, corresponding to the ith eigenvector 

Component U,. multiplied by ci. 

Sum of components Ui + Uj. 

Eigenvector of the matrix U; ith column of V with U'  V = VL. 

Weighting factor; equal to the ratio of two eigenvalues. 

Random variable at point i. 

Value of random variable at point i. 

Residual of xi. 
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z~ 

Zi 

Row vector i for the standardized variables. 

Standardized value of variable. 
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