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The Origins of Kriging 1 
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In this article, kriging is equated with spatial optimal linear prediction, where the unknown ran- 
dom-process mean is estimated with the best linear unbiased estimator. This allows early appear- 
ances of  (spatial) prediction techniques to be assessed in terms of  how close they came to kriging. 
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I N T R O D U C T I O N  

A rapidly developing subject such as geostatistics often does not take the time 
to examine its origins. Such an examination can prove enriching, since nuggets 
of knowledge hitherto passed over can become apparent. 

The purpose of this article is to discuss the origins of kriging, not only 
within geostatistics but also within other scientific disciplines. I hope that read- 
ers of this article will inform me of any omissions, remembering that I have 
restricted myself here to "public knowledge" obtained from published books 
and papers. 

The use of the word "kriging" in spatial statistics has come to be synon- 
ymous with "optimally predicting" or "optimal prediction" in space, using 
observations taken at known nearby locations. I shall attempt to document how 
that word arose, and where else the same ideas might have appeared. Hence, I 
shall restrict attention to what is now known as simple kriging and ordinary 
kriging, and shall avoid the multitude of other "krigings" that have appeared 
since the mid 1960s. 

Ord (1983), in an entry of the Encyclopedia of Statistical Sciences, de- 
scribes kriging as "a  method of interpolation for random spatial processes," 
and presents predictors that are linear in the observations, although he mentions 
nonlinear possibilities. According to Hemyari and Nofziger (1987), in an article 
for soil scientists, "Kriging is a form of weighted averaging in which the weights 
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are chosen such that the error associated with the [predictor] is less than for any 
other linear sum . . . .  The weights depend upon the location of the points used 
in the [prediction] process and upon the [covariation] . . .  reflected in the 
semivariogram. ' ' 

Matheron (1963b) defines kriging as follows: " I t  consists [of predicting] 
the grade of a panel by computing the weighted average of available sam- 
ples . . . .  The suitable weights ai • • • are determined by . . . .  ~ ai = 1 . . . [and 
the prediction] variance . . .  should take the smallest possible value." Notice 
that the grade of the panel is obtained by averaging over a volume (or support) 
that is, in general, different from that of the samples. 

Krige (1978, p. 24) has his own perception of the word, as "the name 
g i v e n . . ,  by Matheron to: the multiple regression procedure for arriving at the 
best  l inear unbiased [predictor] or best linear weighted  moving average [pre- 
dictor] of the ore grade of an ore block (of any size) by assigning an optimum 
set of weights to all the available and relevant data inside and outside the ore 
block" (emphases are Krige's). It is without doubt that Matheron (1963b) 
brought the word "kr iging" into Anglo-Saxon mining terminology, but inter- 
estingly the original French term "kr igeage,"  was coined by Pierre Carlier. 
(G. Matheron states this in a letter to me dated April 12, 1989.) Apparently, it 
was first used in the late 1950s at the French Commissar ia t  gt l 'Energie  

A tomique  (see the Preface to Matheron, 1962, written by F. Blondel). 
Clearly, kriging was originally a linear predictor, and it is in this context 

that it will be used here. In more recent developments in geostatistics, methods 
of optimal nonlinear spatial prediction have become part of the "kriging fam- 
i ly." 

The organization of this article is as follows. The next section looks at 
various versions of kriging as assumptions about the mean function change. 
The original formulation of kriging, now known as ordinary kriging (e.g., Jour- 
nel and Huijbregts, 1978, p. 563), is seen to consist of  three key components, 
and the definitions quoted above should be assessed in this light. This also 
permits a guided review of the origins of kriging in mining, in meteorology, in 
statistics, and in other disciplines. Finally, a historical map of kriging (up to 
1963) is given, which attempts to summarize and compare the contributions of 
various individuals. 

BEST LINEAR UNBIASED PREDICTION (BLUP) AND KRIGING 

Suppose that data Z -- (Z(s l )  . . . . .  Z ( s ) ) '  can be thought of as obser- 
vations from a random (or stochastic) process 

{z(s):  s D}; D c (11 

at known locations sl . . . . .  sn. Assume furthermore that 

Z(s)  = /~ + 6(s);  s ~ D (2) 
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where 6 ( ' )  is a zero-mean stochastic process with known covariance function, 

C(s ,  u )  = c o v ( Z ( s ) ,  Z ( u ) ) ;  s, u ~ D 

It is desired to predict (or krige) Z(so)  at a known location So, based on 
data Z; notice that this is not a filtering or state-estimation problem where the 
goal is to predict S(so),  a noiseless version of  Z(so) .  Should some of  the data 
be defined on a larger support (e .g . ,  I~ Z ( s )  ds/~B~ ds instead of Z(s i ) ) ,  the 
equations that follow require only slight modification, and the conclusions are 
unchanged. For simplicity, kriging will be presented in terms of  spatial predic- 
tion from data all with point support. 

The calculations that follow are necessarily brief. Details of  the algebra 
can be found in Cressie (1991, Ch. 3); although it is not claimed that any of 
these calculations are new, I have not seen them brought together and inter- 
preted in this way before. 

Simple Kriging 

Assume /x is known. The simple kriging predictor (e.g., Journel and 
Huijbregts, 1978, p. 561) can be obtained as the linear predictor, 

t2 

Z liZ(si) 4- k 
i = 1  

of Z(s0)  that minimizes the mean-squared prediction error: ( )2 
e Z ( s o )  - Z l , z ( s , )  - ~ ( 3 )  

i = l  

It can be shown that minimizing Eq. (3) with respect to I -= (11 . . . . .  1,)' and 
k yields optimal values, 

l' = c ' C  1; k = (1 - e ' C - ' l ) / x  (4)  

where 

- (C(so,  s, )  . . . . .  C(so, s~)) '  ( 5 )  

c - ( c ( ~ ,  s~)) (6) 

the n × n matrix whose ( i , j )  th element is C(si, sj), and 1 is an n × 1 vector 
of  Is .  

Thus the optimal predictor in the case where # is known is, 

Z*(so) -= c ' C - l Z  + (1 - c ' C - q ) ~  (7)  

the simple kriging predictor. The mean-squared prediction error is, 

e ( Z ( s o )  - Z*(so ) )  2 = C(so, So) - c ' C - l c  (8)  
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The optimal predictor (7) was derived in a temporal setting by Wold (1938, 
p. 77), Kolmogorov (1941a), and Wiener (1949, Ch. II), and later by others in 
mining, meteorology, statistics, etc. (see below for more details). 

Ordinary Kriging 

Assume ~ is unknown. Then Eq. (7) is no longer a predictor. There are at 
least two possible approaches to take. 

First, one could restrict the class of linear predictors to the so-called ho- 
mogeneous linear predictors 

n 

Z x,Z(s,) 
i=1 

A further restriction of uniform unbiasedness yields the condition 

n 

i=1 

Thus, one could look for the best linear unbiased predictor (blup), obtained by 
min imiz ing  

e x,z(si 
i= 

over Xl . . . . .  Xn, subject to 

X i = I  
i = 1  

By the method of Lagrange multipliers, the optimal values are 

k' = (c + (1 - c ' C - l l ) ( I ' C - ' I ) - ' I ) ' C - '  

(9) 

(10) 

(11) 

where c and C are given by (5) and (6). Thus, the optimal linear predictor of 
Z(s0) in the case where/~ is unknown is, 

Z(so) = e ' C - ' Z  + (1 - e ' C - ' I ) ( l ' C - ' l )  -1 ( I ' C - ' Z )  (12) 

the ordinary kriging predictor. The mean-squared prediction error is, 

E(Z(s0) - Z(so)) 2 = C(so, So) - c ' C - ' c  + (1 - c ' C - ' l )  2 ( I ' C - ' I ) - '  

(13) 

A second approach, more ad hoc, is io make (7) a (linear) predictor by 
substituting in a (linear) estimator of/~. The obvious choice is the best linear 
unbiased estimator (blue), 

/~ = ( I ' C - ' I ) - l l ' c - ' z  14) 



Origins of Kriging 243 

Upon substituting 12 for/z in (7), it is clear that the blup (12) is obtained (Gold- 
berger, 1962). Thus, it appears that optimal linear estimation of mean param- 
eters yields optimal linear prediction; these ideas are made more precise in 
Cressie (1991, Section 3.4e). And, with reference to inference about the un- 
known random variable Z(so), it should also be clear now why I have used the 
word "prediction" and avoided using the word "estimation." 

For those who do not recognize Eqs. (12) and (13) as the ordinary kriging 
predictor and the kriging variance, respectively, it is straightforward to show 
that minimizing (3) subject to (10) equally yields, 

Z(so) = y ' r - ' Z  + (1 - y ' I ' - ' l ) ( 1 T - ' l )  -1 ( I ' F - 1 Z )  

(15) 
E(Z(so) - Z(so)) z = y ' F - ' y  - (1 - y ' r - l l )  2 ( l ' r - I 1 )  - '  (16) 

where y = (3'(So, sl) . . . . .  3~(So, sn))', F is an n × n matrix whose (i, j)th 
element is 3'(si, sj), and 

2"r(s/, sj) -= C(s,, s,) + C(sj, sj) - 2C(s,, sj) (17) 

is called the variogram ['y (si, sj) is called the semivariogram]. In contrast, the 
simple kriging predictor (7) has no analogous expression in terms of just the 
variogram. 

There are versions of the kriging equations that involve spatial prediction 
of an average (or regularization) of the process, Z(B)  = Is Z(s)  d s / [B  1, 
where B C D and ]B[ = Is ds. Inference on the average value Z(B) from the 
data {Z(sj)  . . . . .  Z(s~) } has a change-of-support aspect to it, in that the 
predictand Z(B) is defined on the support B and the data have point support. 

In this case, the optimal predictor Z(B) and its mean-squared prediction 
error are given by Eqs. (12) and (13), respectively, with e replaced by c (B)  = 
(C(B, sl) . . . . .  C(B, s~))', and C(so, So) replaced by C(B, B). Here C(B, 
s) ==- ~S C(u,  s) du/lBl,  and C(B, B) = ~s~s C(u,  v) du dv/[B] 2. Similar 
expressions for these kriging equations in terms of the variogram can be found, 
for example, in Journel and Huijbregts (1978, p. 306). 

The result given above, that ordinary kriging is just simple kriging using 
a blue, can be traced back to Goldberger (1962). However, Goldberger couched 
his results in a multivariate-analysis setting, and did not write about their po- 
tential for spatial prediction. To be more specific, kriging is concerned with 
prediction of one part of a stochastic process from observations on other parts. 
Thus, although Goldberger's treatment is in a sense more general (he considered 
linear prediction of the variable Y from other variables Z1 . . . . .  Z, in a general- 
linear-model setting), he needs to specify covariances not only between the data 
but also between the data and the predictand. In a spatial (and temporal) setting 
one needs only knowledge of the random process' covariance function or vari- 
ogram to perform kriging via (12) or (15). 
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As a consequence of the development just given, I propose the following 
three key components of (ordinary) kriging: 

Component 1: Use of covariances c, C in (12) [or of variograms y, I ~ in 
Eq. (15)] rather than some other weights w, W. 

Component 2: Use of the blue /2 given by Eq. (14) in the predictor (7), 
rather than assuming/x known. 

Component 3: Use of spatial locations { So, sl . . . . .  sn } to define covari- 
ances (or semivariograms) of the random process Z, rather 
than using covariances from a general multivariate-analysis 
setting. 

In other words, prediction based on (ordinary) kriging is equivalent to spatial 
blup. The predictor minimizes the mean-squared prediction error over all linear 
unbiased predictors, for a given covariance function C ( . ,  • ). 

SPATIAL BLUP (KRIGING) IN APPLICATIONS-ORIENTED 
AREAS 

The need to obtain better predictions from observed data can be found in 
all scientific disciplines. Those that have embraced statistical notions of random 
variation are able to do this by exploiting the statistical dependence in the data 
and the random variable to be predicted. It is not surprising then that best linear 
unbiased prediction (blup) has often been developed independently in different 
subject-matter areas, to solve the particular problems at hand. This section dis- 
cusses the independent development of blup in a spatial setting, in various dis- 
ciplines. All components of the spatial blup were present in mining and me- 
teorology in the early 1960s, but to my knowledge its development in other 
disciplines took longer. 

Mining 

Forty years ago, this discipline was using only the most rudimentary tools 
of statistics. The statistical component of the decision to establish a mine was 
typically based on biased sampling prompted by surface exposure of the ore 
deposit. This might result in a hundred or so assay values. Clearly, the sample 
mean of the assays multiplied by the estimated ore-body volume, is not a very 
good estimate of total recoverable ore. Nor does the sample standard deviation 
give a very good picture of local (i.e., small-scale spatial) variability throughout 
the ore body. And it is this local variability that makes or breaks a mining 
venture; concentrations of high-grade ore are easier and more profitable to mine, 
the ore body. And it is this local variability that makes or breaks a mining 
venture; concentrations of high-grade ore are easier and more profitable to mine, 
while regions of low-grade ore should be passed by. 
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In the 1940s, the gold fields of South Africa were using precisely the sam- 
ple mean of nearby core-sample assays to estimate the average grade in a pro- 
spective mining block. Those estimates were then used to mine selectively. In 
the early 1950s, D. G. Krige made a great contribution to the subject by noting 
three fundamental flaws in this technique. First, the gold-assay data are log- 
normal, necessitating them to be transformed, and the block-grade estimate to 
be back-transformed. Second, the variability of block grade is considerably less 
than the variability of (averaged) core-sample grade (i.e., there is an effect due 
to the change of support). Third, the block grade and the core-sample grade are 
correlated, a fact that should be exploited for better prediction. Krige (1951) 
gives a nice discussion of how regression can improve prediction, in a mining 
context. At that time, mining engineers were not only failing to regress toward 
the mean, but by not recognizing the difference in variation between blocks and 
core samples their predictors actually progressed away from the mean in the 
wrong direction. 

Although this contribution of Krige's, upon which he embellished in later 
articles in the 1950s is outstanding in its treatment of change of support, I shall 
discuss how spatial blup (kriging) did not actually appear until Matheron's con- 
tributions in the early 1960s. Indeed Krige said in his 1951 Masters Thesis from 
the University of the Witwatersrand, "Weighting [of samples around the entire 
periphery of the block] based on the so-called 'distance or area of influence of 
a sample' cannot be justified scientifically and will not cancel any bias due to 
the disproportionate location of sample sections round the periphery." A shorter 
version of this is found in Krige (1951, p. 125). 

From the perspective of the 1980s, Krige was taking both sides of the same 
argument. By only considering samples on the periphery, he was saying that 
samples at a greater distance should be given zero weight. Yet of those samples 
he chose, he proposed that they should all be given equal weight, regardless of 
their relative locations to the block. In a letter to me dated April 12, 1989, D. 
G. Krige embellished on the statement of his Masters Thesis: "This practice 
[of weighting by distance or area of influence] was therefore equivalent in a 
sense to the now discredited polygonal weighting of data and it was this type 
of weighting I objected to . . . .  " He also commented that the equal weights he 
was proposing would not be far from the optimal (kriging) weights, in the cir- 
cumstances for which he was using them. 

G. Matheron (1963b, p. 1265), in his development of spatial blup, says 
that in the presence of a large nugget effect his predictor is "not different from 
those [predictors] proposed formerly by D. G. Krige himself, in connection 
with the gold deposit of the Rand, in which the nugget effect is probably very 
strong." It appears that Matheron saw Krige's statement about equal weights 
and reasoned (wrongly) that this recommendation was a practical one to be used 
in the gold fields of South Africa; the importance of Krige's taking only the 
closest samples was missed by him. In fact, as will be seen below, the nugget 
effect on the Rand is rather small, about 20%. 
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By the 1960s, Krige saw the value of using data from not only the nearest 
neighbors, but also the second nearest neighbors, and third, etc. Krige (1962a, 
p. 362) actually contains the beginnings of blup, there in the context of an 
advancing mining face. An unweighted average of (log-transformed) samples 
of the nearest face and an unweighted average of (log-transformed) samples of 
the second-nearest face were used to predict the next block grade using multi- 
ple-regression techniques. Although the unweighted averaging of samples is not 
strictly optimal, another source of nonoptimality arises when Krige estimates 
the unknown means, not with generalized least-squares estimators (shown above 
to be optimum for squared error loss) but with ordinary least-squares estimators. 
In the problems studied by Krige these means were based on masses of data, 
making the practical difference between the two types of estimates negligible. 

Transforming the data and back-transforming the predictor present special 
problems that will not be discussed in this article. Apart from these considera- 
tions, Krige's predictions of block ore grades were made with large amounts of 
data, strong positive correlation (0.8) between faces at small distances (several 
feet), and almost-zero correlation at 200 feet (see Krige, 1962b, p. 366). Thus, 
in the problems studied by Krige, use of nonoptimal weights in Eq. (12) is not 
likely to affect the results very much. 

Faced with a large (in the early 1960s) computational burden of inverting 
n × n matrices (where n is the number of faces used in the prediction), and 
wondering how to incorporate not just nearby sample values but also recovery- 
grade values from nearby recently mined blocks, Krige and Ueckermann (1963, 
p. 442) proposed "an engineering approach to the principles of regression" by 
predicting using a two-dimensional weighted moving average of (log-trans- 
formed) values within some predetermined radius. The weights were chosen in 
an ad hoc way (Krige, 1966) and are certainly not optimal, even for the case 
in which means are assumed known. Krige and Ueckemann (1963) showed that 
for the problem they were considering, the predictions from the moving average 
predictor were almost identical to the predictor based on multivariate regres- 
sion. However, computing prediction standard errors using Krige's "engineer- 
ing approach" is not possible. 

In the early 1960s, the important spatial component (Component 3) was 
still missing from Krige's work [i.e., the vector c in (12), or 7 in (15) was 
obtained independently from the matrices C or I']. Matheron's fundamental 
contribution to this area was to add Component 3, yet still retain the change- 
of-support aspect introduced by Krige. 

In a two-volume work of 504 pages (in French), Matheron (1962, 1963a) 
published his Treatise of Applied Geostatistics, making available to the profes- 
sion a comprehensive theory to handle the spatial aspects of mining problems. 
In particular, Volume II (Matheron, 1963a) deals entirely with kriging, but 
there is also some discussion of it in Volume I (Matheron, 1962, Ch. VIII). A 



Origins of Kriging 247 

very much abbreviated version (in English) appeared in 1963 (Matheron, 
1963b), its goal being to call attention to the two-volume treatise. 

The spatial blup (kriging) in mining truly belongs to Matheron (1962, Ch. 
VIII), who derives the equations for the optimal coefficients [see Eq. (12) or 
(15)], and applies them to a particular stochastic model he calls the "scheme 
of de Wijs." Kriging was not without some opposition from geologists and 
mining engineers, however, most notably E. H. T. Whitten in the U.S. (who 
preferred polynomial interpolation); see Whitten (1966) and a rejoinder by 
Matheron (1967). 

Meteorology 

While Matheron was developing a theory of spatial blup in France, the 
meteorologist L. S. Gandin in the Soviet Union was doing remarkably similar 
work. His book of 238 pages (Gandin, 1963), translated into English in 1965, 
is notable for its depth of treatment of spatial prediction and design, for its 
clarity of exposition, and for its attractive blend of both theory and applications. 
There the variogram is called a homogeneous structure function (Ch. 2, Sec. 
1), simple kriging is called optimum interpolation (Ch. 3, Sec. 2), ordinary 
kriging is called optimum interpolation with normalization of weighting fuctors 
(Ch. 3, Sec. 5), and simple cokriging is called optimum matching offlelds (Ch. 
5, Sec. 2). 

Meteorologists are not only interested in interpolation; indexes for the cir- 
culation of the atmosphere, total currents, and snow-cover depth are all average 
characteristics of meteorological fields. Gandin (1963, Ch. 7, Sec. 3) gives the 
version of Eq. (12) for optimally predicting Z (B) = IB Z (s) ds / I B I, and hence 
also addresses the change-of-support aspect of spatial blup. 

Statistics 

Yaglom (1962, Part 2) develops in detail the theory of optimal linear ex- 
trapolation and filtering of time-stationary random functions with known mean, 
expanding on the earlier work of Wold (1938), Kolmogorov (1941a), and Wie- 
ner (1949). However, as the following discussion shows, blup does not nec- 
essarily need a temporal (or spatial) setting. 

Suppose the data Z - ( Z  1 . . . . .  In) ¢ can be written as 

Z = ~1 + ~ (18) 

where/x is an unknown scalar, 1 is an n x 1 vector of ls, and g is a zero-mean 
error vector with var(6)  = P~zz, an n x n positive-definite matrix. Furthermore, 
suppose that the random variable Y can be written as 

Y = > + ~ (19) 
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where/~ is the same unknown scalar as in Eq. (18), and w is a zero mean error 
such that 

va r ( ( f 'w) ' )  = I ~  "azr] (20) 

where a 2 > 0. 
The problem is to find an optimal predictor of Y (i.e., a predictor with 

minimum mean-squared prediction error) that is linear in the data (i.e., I? = 
k 'Z)  and is unbiased [i.e., E(I?) = E ( Y )  = /z, for all /~ ~ ( - o %  oo)]. A 
special case of a result due to Goldberger (1962), yields 

I ? = k 'Z (21) 

where k' is given by Eq. (11) with t~zy replacing c, and Ezz replacing C. The 
same replacement in Eq. (13), along with a~ replacing C(so, So), yields the 
minimum mean-squared prediction error. 

Goldberger's model is more general in that the constant mean effects in 
Eqs. (18) and (19) are generalized to XI~ and Xo[3, respectively, expressing 
mean effects that are linear in thep parameters [I - (/31 . . . . .  /3p)'. Put into a 
spatial setting, his results would give the universal kriging predictor (e.g., Jour- 
nel and Huijbregts, t978, p. 318). 

Notice that, to compute the optimal k in Eq. (21), knowledge of both ~zr 
and Ezz is needed. In a spatial setting these would be immediate from the co- 
variance function C(s, u). So, although Eq. (21) is a blup, it is not a spatial 
blup. 

Whittle (1963) also assumes a general linear model, but in a temporal set- 
ting; thus he obtains the (universal) kriging predictor of Y - Zn +L from the 
time series data { Z1 . . . . .  Zn }. Interestingly, his criterion is different from the 
usual one. In the context of the simpler model (18), (19), he looks for a pre- 
dictor 1~ = k 'Z  that minimizes 

max E ( Y  - k 'Z)  2 (22) 

It is a consequence of the mathematics that 

n 

~ ~ki= 1 
i = 1  

and hence the optimal predictor according to the minimax criterion (22) is also 
the blup (21). 

Other  Discipl ines  

Perhaps one might have expected the spatial blup to have occurred infor- 
estry, given the highly original and important publication of Matern (1960). In 
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144 pages, B. Matern developed the framework for modeling spatial processes 
(whose index varies continuously over a spatial domain), and applied these 
ideas to spatial sampling. However, throughout his book he always uses 

n 

2 = Z z ( s i ) /n  
i = l  

as his predictor. Although Z is linear and unbiased, it is not optimal unless the 
spatial correlation is white noise. 

Within physics, the theory of turbulence attracted contributions from A. 
N. Kolmogorov in the 1940s; in some of that work (e.g., Kolmogorov, 1941b) 
he assumed the existence of a variogram (in four dimensions, space and time) 
to characterize the local structure of turbulence. [Stochastic processes possess- 
ing a variogram were later called locally homogeneous by Yaglom (1957, p. 
284), where the variogram was called a structure function.] However, when 
Kolmogorov wrote about optimum prediction, he considered an equally spaced 
time series, and assumed the mean was known (Kolmogorov, 1941a). His in- 
terest was more in the limits of mean-squared prediction errors for extrapolation 
and interpolation, and he references Wold's (1938, p. 77) solution to the opti- 
mal prediction of time series with known mean (simple kriging). 

During World War II, N. Wiener developed similar (simple) kriging equa- 
tions to Kolmogorov, also in a temporal setting. The purpose was to predict 
enemy aircraft movements from known radar measurements, and hence the data 
were { Z(t):  t _< t* }, rather than { ZI . . . . .  Zn }. The theory was later published 
in Wiener (1949). Thompson (1956) has an extension of Wiener's approach, to 
a spatial setting. None of their results adapt well to the sparse, irregular data 
configurations often found in mining and geology applications. 

A similar development to that described for the statistics discipline oc- 
curred in plant and animal breeding. Here, a multivariate-analysis approach 
was taken to predict the genotypic value of a plant or an animal from measured 
characteristics (e.g., for wheat-selection, these might be yield of grain, baking 
quality of flour, etc.). Using the sample mean to estimate the unknown means, 
Fairfield Smith (1936), in plant breeding, considered best linear prediction based 
on the covariance structure of the mean-corrected data and the cross-covariance 
between the mean-corrected data and the predictand. Apart from the mean cor- 
rections, the predictor was essentially simple kriging given by Eq. (7). In ani- 
mal breeding, similar results were derived by Hazel (1943). Henderson (1963) 
extended these results by considering efficient mean corrections that led to the 
blup (21) and its multiparameter version. 

Geodesists, interested in drawing spatial maps, have also modeled their 
measurements as coming from a random process. This began with Gauss (1809), 
who assumed independent errors and developed the method of least squares to 
deal with them (actually, the method of least squares appeared earlier, in Le- 
gendre, 1805, but without a probabilistic justification). Dependent-error models 
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came much later; Moritz (1963), assuming known mean and stationary covari- 
ances in Eqs. (5) and (6), developed the simple kriging equations (7). 

C O N C L U S I O N S  

It is clear that many researchers in many disciplines have contributed to 
the problem of  optimal spatial prediction. The previous section proposes that 
both G. Matheron and L. S. Gandin were the first to publish a definitive de- 
velopment of  spatial blup (kriging). D. G. Krige's contributions in mining en- 
gineering were considerable but he did not discover kriging, illustrating once 
again Stigler's Law of  Eponymy (Stigler, 1980). The other researchers men- 
tioned above all came close in their own way, but did not show each of  the 
three key components. To summarize the important contributions, Table 1 shows 
a historical map of  kriging, giving an index for each of  the components defined 
earlier. 

An index of  " 1 "  for Component 1 means that all possible covariances 
were used to define weights ( " 1 / 2 "  means only some covariances were used; 
" 0 "  means some other weights were used). An index of  " 1 "  for Component 
2 means that the weighted least-squares estimator of  # was used ( "  1 / 2 "  means 
some other estimator was used; " 0 "  means Iz was assumed known). An index 
of  " 1 "  for Component 3 means that prediction was performed in a spatial set- 
ting ( " 1 / 2 "  means a temporal setting was used; " 0 "  means that neither a 
spatial nor a temporal setting was considered). 

I have received suggestions from colleagues to add further embellishments 
to the discussion above; these include kriging's practical implementation (from 

Table 1. Historical Map of Researchers' Contributions to Spatial Blup (Kriging) ~ 

Researcher 1938 1941-1949 1951 1956 1962 1963 

Wold (1, 0, 1/2) 
Kolmogorov ( 1, 0, 1/2) 
Wiener (1, 0, 1/2) 
Krige (1/2, 1/2, 0) (1, 1/2, 0) 
Thompson ( 1, 0, 1 ) 
Goldberger (1, 1, 0) 
Matheron ( 1, 1, 1) 
Gandin (1, 1, 1) 
Whittle (1, 1, 1/2) 
Moritz (1, 0, 1) 
Henderson (1, 1, 0) 

OEntries (x~, x2, x3) denote indices on the three key components (see text); briefly, x~ = 1 corre- 
sponds to optimal weights (known mean/~), x2 = 1 corresponds to optimal estimation of/z, and 
x 3 = 1 corresponds to a spatial setting. 
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variogram estimation to the use of  moving neighborhoods),  its connection with 
splines, its interpretation as a projection, and its change-of-support  properties.  
Change-of-support  here refers to predicting parts of  the process whose support 
is different from that of  the data. This was Kr ige ' s  (1951) original goal,  namely 
to convince mining engineers to use mult iple regression to obtain more accurate 
and precise predictors of  mining blocks from assay values. Wold ,  Kolmogorov,  
Wiener,  and Whit t le  did not consider  this problem, although both Matheron and 
Gandin did. In writing this article, I have considered the choice of  optimal 
weights in Eq. (12) or (15) as defining kriging; however,  its role in dealing with 
change-of-support  is seen as more important by G. Matheron (in a letter to me 
dated Apri l  12, 1989). 

Why is the term " k r i g i n g "  used to describe spatial optimal l inear predic- 

tion? Because Matheron (1963b) chose to honor D. G. Kr ige ' s  contributions to 
related areas of  mining. The third main section of  this article gives the details, 
and shows that G. Matheron and L. S. Gandin independently developed ordi- 
nary kriging, as we know it today. 
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