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3. The approach elucidated for elastic highly-elastic materials can be extended to 
other models of a deformable body, particularly in application to the most generally used 
structural materials (composites, plastics, etc.) [19]. Such an extension is based on the 
utilization of a general approach [19] in application to different models of materials. 
The researches performed for the structural materials mentioned [16, 19, 20, 23-25, 27, 28, 
31, 37-39, 50, 51, 53, 56, 61, 70] refer to the first group of papers* (see Sec. I). Since 
the majority of structural materials are comparatively stiffand do not sustain significant 
deformations, the second modification of the theory of small subcritical deformations [19], 
when the subcritical state is defined within the framework of geometrically linear theory, 
is used in the investigations. 

3.1. Composite Materials (Continual Model) 

Formulation of the problems in application to the continual model of a composite mate- 
rial is given in [16, 19]. Following [19], we will consider the case when the minimal crack 
dimensions in the composite are substantially greater than the dimensions of its structural 
elements, i.e., macrocracks are considered. Fracture processes in which the properties of 
a piecewise-homogeneous medium appear (of the type of fracture on the interfacial boundary 
of media, etc.) are not examined here. Under the assumptions mentioned, a composite material 
can be modelled by an orthotropic (in particular, transversally isotropic) medium with the 
cited characteristics. Such an approach permits investigation of laminated composites be- 
cause of existing initial stresses of a different nature acting along the cracks as a frac- 
ture problem for a material with plane cracks in pianform under the effect of forces parallel 
to the plane of the crack. 

A three-dimensional linearized theory of the stability of deformable bodies under small 
subcritieal deformations [19] is used in the investigations since the majority of structural 
materials do not sustain large deformations. The second modification of the theory of small 
subcritical deformations, when the subcritical state is determined by a geometrically linear 
theory, is used. In this connection, no difference can be made between the coordinates of the 
undeformed and deformed states when using linearized equations for the stress tensor and dis- 
placement vector perturbations, as well as between the tensor components evaluated in the 
coordinates of the mentioned states. Consequently, by using the results of [19] it is exped- 
ient to use the coordinates of the initial strain state yj = ljxj (j = i, 2, 3). 

Let us note that as a rule the case of unequal roots of the characteristic equation is 
realized for composite materials. One of the fundamental features of composite materials, 
the reduced shear stiffness, should be taken into account in performing investigations. 

The elastic relationships for a physically linear orthotropic body are 

*The present paper continues the survey [A. N. Guz' and V. M. Nazarenko, " Fracture mechanics 
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Mekh., 25, No. 9, 3-32 (1989)] of investigations of questions for fracture under compression 
along cracks as applied to extensively utilized structural materials, composites with elas- 
tic components and elastic-plastic bodies. In the interest of convenience in the exposition, 
a single system of numbering the sections and formulas, figures, tables, as well as the bib- 
liographic references is used (the references in this paper are given in conformity with the 
bibliographic listing in the above-mentioned citation). 
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where Ai j are elasticity coefficients, aij are pliability coefficients (Aij , aij are the re- 
duced characteristics of the continual model of the composite). 
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(3.1.3) 

Cracks in an Infinite Composite Material Arranged in One Plane. Plane (under uniaxial 
compression) and spatial (under biaxial uniform compression) problems on the compression of 
a composite along a finite number of cracks disposed in one plane are investigated in the 
papers [16, 19]. The initial stage of fracture is in the nature of a surface instability 
and is determined by loads corresponding to a surface instability of a half-space. 

The equation to determine the critical load in the case of plane problems has the form 
[16, 19] (the cracks are in the plane Y2 = const) 

x~ [ A~ A. __ 2 A ~  
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i), the critical Taking account of the reduced shear stiffness of the material (s 
load can be determined approximately from (3.1.4) 

(a?2)* G13 G,~ A,,A;o 
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(3.1.5) 

or in the engineering constants of an orthotropic body for the reduced characteristics of 
the composite 

E1E2 (1--vasv~O(1--v~3vs2) �9 (3.1.6) 

The equation to determine the critical load in the case of spatial (uniform biaxial 
compression) problems has the form [19] (the composites with reduced characteristics of a 
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transversally-isotropic body, cracks disposed in the plane of isotropy) 

L t k-xj -i- A1 ' A~-T -s__ + 
[(A33 A~3)/A~3 A3~ e A~a ~] § [s( A~3 A~a)~] = 0, 

+ x All  \ dl, + 2 --ZC,,j j  

.~--sTtiAll, 8--GI3,'AII. 

Taking account  of  the  reduced shear  s t i f f n e s s  of  the  compos i te  m a t e r i a l  r e l a t i v e  to  
the  shear  of  p l anes  p a r a l l e l  to the  p lane  of  i s o t r o p y  y~ = 0 in which the  c racks  a re  a r ranged  
(E >> G' ,  E >> E ' ) ,  we de te rmine  the  c r i t i c a l  va lue  of  the  load ( in  eng i nee r i ng  c o n s t a n t s )  
as follows 

(s~l)* ~ - -G ' [1  (G')2EE' ( 1 - - v ~ ) ( 1 -  v'v")]. (3.1.8) 

Let us note that the approximate formula (3.1.8) is sufficiently efficient even for 
comparatively small values of E/G'. Thus, the exact solution of (3.17) and approximate 
[formula (3.1.8)] critical values of the dimensionless compressive stress (o11~ (E is 
the elastic modulus in the isotropy plane) are given in Table 4 [27] for a laminar composite 
with isotropic layers with Young's moduli E (I) and E (2) and Poisson ratios v (1) = v (2) = 0.3, 
respectively, for a bulk concentration c I = 0.3 of a material with modulus E (1). 

Surface Lamination of Composites under Compression alon Z Near-Surface Macrocracks. 
Problems on the biaxial uniform compression of a composite along a near-surface circular 
crack in an axisymmetric formulation are investigated in detail in [27, 50, 51, 53] within 
the framework of the continual model of a composite (see above). Using the Hankel transform 
apparatus, the problems are reduced to a system of dual integral equations and then by appli- 
cation of the Uflyand method [72] to a system of integral equations with an additional condi- 
tion (2.2.12) (for the case of unequal roots of the characteristic equation). The quantities 
nl0, n20, s s176 m10, m20, k I, k 2, k are determined in terms of the reduced composite 
characteristics with simplifications characteristic for the second modification of the theory 
of small subcritical deformation [19] taken into account. Numerical investigations are per- 
formed for composites with reduced characteristics of a transversally-isotropic medium. 

Laminar Composite with Isotropic Layers. A transversally-isotropic medium is in the 
macrovolumes [44]. A macrocrack is in the plane of isotropy parallel to the layer of inter- 
facial surfaces as well as the free surface. The dependences of the critical dimensionless 
compressive stresses o, ~ (compressions Oil ~ referred, respectively, to the critical compres- 
sive stress for a surface instability (~11~ * and the reduced elastic modulus E in the plane 
of isotropy) on the ratio between the elastic moduli of the isotropic layers with identical 
Poisson ratios are presented in Fig. 24. The curves i are constructed for values of the rela- 
tive distance from the lamination to the boundary surface ~ = ha -l = 1/8, and curves 2 for 

= 1/4. The critical comEression o(~) grows (decreases) monotonically as the ratio between 
the layer elastic moduli E(1)/E (h) grows. -Compared with the case of an isolated crack in ~ 

0 an infinite material [19], the critical compressive stress all can diminish by more than one 
-order for the considered values of ~, depending on the relationships of the elastic charac- 
teristics. 

According to the approximate approach, the critical load corresponds in this case to 
the Euler critical load for a circular slab (slab radius equal to the lamination radius and 
the thickness to the distance from the lamination to the free surface) under clamping condi- 
tions from stiff framing to simple support. The dashed lines 3 and 5 in Fig. 24b correspond 
to the dimensionless Euler compressive stress ~EI = a0*/E for simple support for the values - 
8 = i/8 and i/4 and the dash-dot lines 4 and 6 to stiff clamping for the same values of $. 
The Euler critical compressive stress for stiff framing or simple support yields a substan- 
tial error as compared with the critical compressive stress value obtained in [27] (for cer- 
tain relationships between the composite elastic characteristics, the mentioned values can 
differ by more than twice). 

The dependence of the relative critical shortening ~i = (i - i l) on v for a laminar 
composite with identical Poisson ratios v (1) = v(2) = v is represented in Fig. 25 [50] for 
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TABLE 4 
E(1)IE(2) I giG' .valueEXact [ mateAppr~ 

1 
4 
7 

lO 
13 
16 
19 
22 
25 
28 
31 

2,600 --0,3308 --0,3375 
3,828 --0,2386 --0,2408 
5,408 --0,1743 --0,1751 
7,023 --0,1364 --0,1367 
8,648 --0, II17 --0,1119 

10,278 --0,0946 --0,0947 
11,911 --0,0820 --0,0820 
13,545 --0,0723 --0,0724 
15,180 --0,0647 --0,0647 
16,8t5 --0,0585 --0,0585 
18,452 --0,0534 --0,0534 

81.I02 

1,2 

f,0 

i , I 
~ = h a - = I / 8  

-..,. 

o, f5 o,2s 
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TABLE 5 

~.~-ha - I  ]/8 1/4 
t 

071/.6" N 
I 

2 0,008 --0,0114 0,024 --0,0346 
3 0,009 --0,0127 0,025 --0,0351 
4 0,006 --0,0092 0,023 --0,0337 
5 0,006 --0,0092 0,023 --0,0337 
6 0,006 --0,0092 0,023 --0,0337 

the ratio E(1)/E (:) = 3 between the layer elastic moduli and concentration c I = 0.3 of the 
layers with modulus E(:). 

The results for a specific laminar composite, aluminoboron silicate glass with an epoxy- 
maleic resin, are represented in Fig. 26: the dependence of o, ~ on the glass concentration 
c z. Curves 1 and 2 correspond to the values ~ = i/8 and i/4. The critical compressive 
stress depends substantially on the glass concentration (for ~ = 1/8 and the a, @ differ three- 
fold for c I = 0 and c: = 0.5) [27]. 

Composites with Stochasti c Bondin~ in the Plane y~ = const by Short Ellipsoidal Fibers. 
A transversally-isotropic medium with isotropy plane Y3 = const is in the macrovolumes [44]. 
The dependences E I = sz($) and ~ = 8(~) of the relative critical shortening and the critical 
dimensionless compressive stress on the relative distance $ from the macrocrack to the free 
boundary are presented in Fig. 27 for a carbon plastic bonded by carbon fibers for a c I = 0.7 
fiber concentration and a ratio i0 between the longitudinal and transverse fiber dimensions 
[50]. The macrocharacteristics of the carbon plastic are taken from [43], and E:, @ tend 
asymptotically to the values 0.085 and -0.097 as ~ + ~, corresponding to the case of an iso- 
lated crack in an infinite material. For $ e 4 the critical compressive stress differs from 
that for the isolated crack in an infinite material by less than 5%. The dimensionless Euler 
critical compressive stress ~ = a0*/E calculated within the framework of the approximate 
approach for stiff clamping or simple support yields a substantial error even for compara- 
tively small values of ~ (thus, for stiff clamping for B = 0.25, 8El = -0.078, a = -0.032, 
i.e., these values differ by approximately 2.5 times). 
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Computations for a composite with reduced characteristics of the transversally-isotrop- 
ic medium ~ = 0.3, v' = 0.2, G'/E = 0.i, E'/E = 0.5 are given in Table 5 [51]. Here, N is 

the number of coordinate functions being used. 
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Composite Lamination under Compression alon~ Two Interior Parallel Circular Macro- 
cracks. Biaxial uniform compression of a composite along two coaxial circular parallel 
cracks is examined in [23, 24, 37]. By using the zeroth order Hankel transforms and 
the method of [72], axisymmetric problems are reduced, separately for the bending and symmet- 
ric buckling modes, to eigenvalue problems for systems of integral equations with the addi- 
tional condition (2.2.12) with the kernels (2.2.22) (taking account of simplifications util- 
ized for the second modification of the theory of small subcritical deformations). Numeri- 
cal investigations are performed for composites with reduced characteristics of the transver- 
sally-isotropic medium for the same modifications for which the investigation of the near- 
surface lamination of composites was performed. 

Laminar Composite with Isotropic Layer. Dependences ~f the dimensionless critical 
parameters a, 8, a: on the stiffness characteristics and component concentrations of the lam- 
inar composite are shown in Figs. 28-30. The dependences i, 2, 3 are obtained for interior 
lamination with values ~ = ha -i (2h is the distance between the cracks, and a is their rad- 
ius) equal to 1/16, 1/8, 1/4; the dependences 4, 5, 6 are for near-surface lamination for re- 
lative distances ~ = ha -lequal to i/8, 1/4, 1/2 between the lamination and the free surface 
(h is the distace from the crack to the boundary and a is the crack radius). 

The dependences of o, 8 on the ratio E(1)/E (2) e i between the layer elastic moduli are 
displayed in Figs. 28a and b (for laver Poisson ratios v(z) = v(=) = 0.3 and concentration 
c I = 0.3 for layers with modulus E(1)). 

For a composite with the layer Poisson ratios v(1) = v(2) = ~, the dependences sl = 
g:(~) are presented in Fig. 29 (for E(1)/E (2) = 3 and c I = 0.3). 

The dependences of o and 8 on the glass concentration c I are illustrated in Figs. 30a 
and b for the alumino-boron silicate glass-epoxy-maleic resin composite. 

The change in the error when using approximate computational schemes ~ = I 8 - 8El I/ 
I 8 1"100% with the change in the ratio E(1)/E (2) (for stiff clamping) is shown in Fig. 31 
for ~ = 1/8. 

Composite with Stochastic Bonding by Short Ellipsoidal Fibers in the y~ = const Plane. 
The dependences of gl, 8 on ~ are represented in Fig. 32 for a carbon plastic bonded by fin- 
ite carbon fibers (the fiber concentration is c I = 0.7 and the ratio between the longitudinal 
and transverse fiber dimensions is i0). The dependence of the error 6, calculated in the same 
manner as in the case of a composite with isotropic layers, on the quantity $ is shown in 
Fig. 33. 

Taking account of mutual crack interaction and the mutual influence of the cracks and 
the free boundary results in a substantial reduction in the critical compressive stresses, as 
compared with those obtained for an infinite composite material with an isolated crack. The 
critical compressive stresses obtained for interior laminations are above the critical stresses 
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for near-surface lamination. In the cases considered of changes in the stiffiness proper- 
ties of the materials and the geometric parameters ($) this difference is up to 35%. The 
values obtained from the critical loads differ substantially from the values given by the 
approximate computational schemes, for instance, the Euler critical compressive stress for 
a circular slab calculated by interior laminations or near-surface lamination and a free 
boundary, yield errors of 18-66%, 52-210%, 150-770% for B equal to 0.0625, 0.125, 0.25, re- 
spectivly (interior lamination), 25-96%, 60-240%, 175-810% for ~ values of 0.125, 0.25, 0.5 
(near-surface lamination) under stiff clamping conditions, depending on the ratio between 
the elastic moduli of the isotropic layers of the laminar composite. 

Composite Compression along Periodically Arranged Parallel Laminations. The mentioned 
axisymmetric problem (for biaxial uniform compression) is examined in [31]. Applying the 
Hankel transform and the method of [73], the problem is reduced to eigenvalue problems for 
a homogeneous integral equation, (2.2.25), (2.2.27) or (2.2.25), (2.2.28), separately for the 
bending and symmetric buckling modes (simplifications are made in application to the second 
modification of the theory of small subcritical deformations). The numerical investigation 
is by the Bubnov-Galerkin method. Considered as an example is a laminar composite with iso- 
tropic layers, alumino-boron-glass in a composition with epoxy-maleic resin [44]. Lamina- 
tions of radius a are in the isotropy planes parallel to the layer interfacial boundaries 
separated by a distance 2h from each other. 

Dependences of the critical dimensionless compressive stresses o, 6 (see above) on the 
glass concentration c: are represented in Figs. 34a and b, respectively, for values of $ = 
h a-Z equal to 0.0625, 0.125, 0.15, 0.20, 0.25 (curves i, 2, 3, 4, 5). Dependences of o, 6 
on the relative half-distance between the cracks $ for several values of the bulk concentra- 
tion c I (0, 0.3, 0.6, 0.9) of the glass (curves i, 2, 3, 4) are represented in Figs. 35aandb. 

Comparison of the critical values 6 for the case of a periodic arrangement of macro- 
cracks with the cases of two interior parallel macrocracks and a near-surface macrocrack (see 
above) as well as values of 6 obtained within the framework of approximate computational 
schemes of the stiffly clamped (simply supported) plate type, is given in Fig. 36 for a suf- 
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ficiently small value of the relative half-distance between the cracks $ = 0.0625, 0.125. 
The comparison was made for identical relative distances between the cracks (a periodic sys- 
tem of cracks, two parallel cracks) or between the crack and the free surface of the material 
(near-surface crack). Curves i, 2, 3 correspond to a periodic system of cracks, two parallel 
cracks, and a near-surface crack. The lines 4 and 5 yield critical values calculated within 
the framework of approximate computational schemes for stiff clamping and simple support. 
The curves denoted by numbers without primes correspond to the value ~ = 0.0625 and with the 
primes to 8 = 0.125. 

Analysis of the results of investigations that are represented graphically in 'Figs. 34- 
36 permits making the following deductions. Taking account of the macrocrack mutual influence 
results in a substantial reduction (by an order) in the critical compressive stresses corre- 
sponding to the beginning of fracture in comparison to their values in the case of an isolated 
crack in an infinite material [19]. Application of approximate computational schemes of the 
stiffly clamped (simply supported) plate type can result in substantial error even for com- 
paratively extensive macrocracks (for a ratio of i/8, 1/16 for the thickness of the connector 
between the cracks to their diameter). Thus, depending on the bulk concentration of glass c l 
the difference in the magnitudes of ~ as compared with quantities obtained within the frame- 
work of the most frequently utilized approximate scheme of the stiffly clamped plate type is 
170-230%, 8 : 0.0625; 200-370%, ~ : 0.125 for a periodic system of cracks, 35-120%, ~ = 
0.0625; 60-215%, 8 = 0.125 for a near-surface crack, 17-67%, 8 = 0.0625; 45-190%, ~ = 0.125 
for two interior parallel cracks. 

All the results presented in Figs. 34-36 for a periodic system of cracks are obtained 
for the bending buckling mode (for the symmetric mode the critical loads turned out to be 
higher and, consequently, are not presented). The critical loads found characterize the be- 
ginning of fracture of a composite with periodically arranged parallel macrocracks under com- 
pression along the cracks. In the case under consideration when the bending buckling mode 
is realized, the critical loads obtained will also evidently characterize the subsequent to- 
tal fracture of the material in the whole domain occupied by the cracks since a phenomenon 
occurs here that is to a definite degree analogous to the appearance of a plastic hinge over 
the whole thickness of the material in the beam bending case. A different situation is ob- 
tained in the case of the near-surface crack or a finite number of interior (particularly, 
two parallel) cracks when local buckling results just in local fracture in the crack domain 
(interlayer between the crack and the free surface, etc.), and the question of fracture of 
the whole material requires further investigation. 

The above elucidation also visibly clarifies the fact that the results for a periodic 
system of macrocracks turn out to be closer to the results obtained within the framework of 
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approximate computational schemes for precisely a simply supported plate than for one stiffly 
clamped in contrast to the results for near-surface cracks or two parallel interior cracks. 

In conclusion, let us note that the critical loads for a periodic system of paral!el 
macrocracks yield a lower bound for the critical loads for a finite number of equidistant 
cracks while the loads for two parallel cracks yield the upper bound. 

3.2. Plastic Materials. The general formulation of problems in application to plastic 
materials is given in [19]. Plastic fracture is understood to be the fracture process for 
which deformation beyond the elastic limit occurs in the whole material prior to fracture. 
The generalized conception of continuing loading formulated for a three-dimensional linear- 
ized theory of elastic-plastic media is used in considering the stability of the deformation 
process. Fracture mechanisms associated with the material microstructure are not considered 
here. The crack dimensions are assumed significantly greater than the dimensions of the 
characteristic microstructures (grains, crystals, etc.) existing in the material, i.e., 
macrocracks are considered. The second modification of the theory of small subcritical de- 
formations when the subcritical state is determined by geometrically linear theory is used 
in the investigations. Coordinates of the initial deformed state yj and components of the 
nonsymmetric stress perturbation tensor Qij referred to unit area of the initial deformed 
state are used. Mainly the case of complex unequal roots of the characteristic equation 
(complex conjugate roots) is realized for plastic materials. Incompressible plastic materi- 
als are examined. 

Macrocracks in an Infinite Plastic Material Arranged in One Plane. Investigations of 
plane (under uniaxial compression) and spatial (under biaxial uniform compression) problems 
for a finite number of cracks in one plane are performed in [19] in application to plastic 
materials. The problems reduce to problems for a half-space for the bending and symmetric 
buckling modes separately. 

Complex potentials, introduced for plane linearized problems [19], as well as methods 
of Riemann-Hilbert problems are used in plane problem investigations. The results are made 
specific in application to the model of an incompressible isotropic elastic-plastic body 
within the framework of the theory of small elastic-plastic deformations. It is established 
that buckling of the equilibrium state of the surface instability type occurs during compres- 
sion along a plane in which an arbitrary number of cracks is disposed for the fracture mech- 
anism taken in the case of plastic fracture. Moreover, the bending and symmetric buckling 
modes yield the identical critical value of the compressive load determined from the equation 

16 8 o 8 ' 2 8 ) + - - ~ - 7  ~- . . x a + T x - ~ +  ~ x e ( 1  ~ = O, ( 3  2 1 )  

where x = o11/Ec, E = Ek/Ec, Ec, E k are the secant and tangent moduli on the "stress intensi- 
ty Ou ~ ~ strain intensity eu ~ diagram. 

The conditions x = o11~ < i, E = Ek/E c < 1 are satisfied for structural materials. 
Consequently, by discarding quantities of order ~, an expression is obtained from (3.2.1) 
to determine the minimal negative roots in absolute value that corresponds to the critical 
load [19] 

x*~ g8  I - - T 8  , (3 .2 .2)  

or 

( ~ 1 ) * ~ - - - - ~  El, 1 2 ~ " ( 3 . 2 . 3 )  

In the case of biaxial uniform compression, the critical loads are determined as the 
least negative root, in absolute value, for the equation 

I ' 88) (I+~) , -~-(1+8~) ~ 0, x 3 + i x  2 ( l + 3 ~ ) T x - ~ - ( l ~ -  = 

3.z.4) 
x = o~,/E~, 8 = EffEc. 

Expanding the solution of (3.2.4) in a series in e and keeping terms up to ~2 incluslve, we 
obtain the approximate formula 
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TABLE 6 

e I 0,I ] 0,2 I 0,3 0,4 0,5[ 0,6 0,7 I 0,8 I 0,9 1,0 

X r --0,176 --0,204 --0,228 --0,247 --0,263 --0,275 --0,285 --0,293 --0,299 --0,304 
i 

x n --0,176 --0,204 --0,227 --0,246 --0,260 --0,268 --0,272 --0,271 --0,266 --0,255 

x* ~ - -  0,143 - -  0,3548 + 0,242s ~ ( 3 . 2 . 5 )  

The exact solution XT* of (3.2.4) and the approximate solution x a * [on the basis of 
(3.2.5)] are presented in Table 6 for different values of ~. Comparison shows that the ap- 
proximate formula (3.2.5) describes the solution well for small values for ~ and yields a 
reduced value of x* for g close to one (for e ~ 0.7 the difference between the exact and ap- 
proximate values is less than 5%). 

Fracture of Plastic Materials under Compression along Near-Surface Macrocracks. Axi- 
symmetric problems of plastic material fracture under biaxial uniform compression along cir- 
cular near-surface macrocracks were investigated in [28, 56, 61]. The investigations were 
performed on the basis of using a generalization of apparatus developed earlier for real un- 
equal roots and real function to the case of complex-conjugate roots of the characteristic 
equation and complex-valued potential functions ~i, i = i, 2, respectively, in whose terms 
the stress tensor and displacement vector perturbation components are represented in the axi- 
symmetric case [19, 28] 

a 
uy = ~ - R e  (~1 + r etc. 

( 3 . 2 . 6 )  

Q33=c~Qe  ( l + m l ) l  1 + ( l §  0z~ J e t c . ,  

Here  a/aN and a / a s  a r e  d e r i v a t i v e s  a l o n g  t h e  normal  and t h e  t a n g e n t  in  an a r b i t r a r y  c y l i n d r i -  
c a l  c o o r d i n a t e  s y s t e m ,  t h e  complex  q u a n t i t i e s  mj ,  ~i  ( j  ~ 1, 2) a r e  d e t e r m i n e d  in  t e rms  o f  
t h e  components  o f  t h e  t e n s o r  ~, which  a r e  d e t e r m i n e d ,  in  t u r n ,  by t h e  c h o i c e  o f  t h e  t h e o r y  
of plasticity. The complex variables z i 

z ~ = w i y 3 ,  ~ ' ~ = n 7 1 / ~ ,  Rew ~>O  ( i = 1 , 2 ) ,  ( 3 . 2 . 7 )  

a r e  i n t r o d u c e d  in  t h e  r e p r e s e n t a t i o n s  ( 3 . 2 . 6 ) ,  where  n i a r e  r o o t s  o f  t h e  c h a r a c t e r i s t i c  equa -  
t i o n .  The f u n c t i o n s  ~ i  a r e  h e r e  a n a l y t i c  in  z i and t h e y  s a t i s f y  t h e  e q u a t i o n s  

q - - ~  q- %=0. ( 3 . 2 . 8 )  

The r e p r e s e n t a t i o n  o f  t h e  p o t e n t i a l  f u n c t i o n s  ~ i  in  t h e  form o f  i n t e g r a l  e x p a n s i o n s  in  p a r -  
t i c u l a r  complex-valued solutions of (3.2.8) (in the form of the Hankel transform in the radi- 
al coordinate) is used in solving the problems. 

Each of the boundary conditions or the continuity conditions can be represented as 

Re~ F(A(K),B(%) . . . . .  X , r ) d % = O  (rE1) ,  ( 3 . 2 . 9 )  
0 

where F is a certain complex-valued function, I is a finite or infinite interval, A(X), B(X), 
... a r e  unknown f u n c t i o n s  o f  t h e  r e a l  v a r i a b l e  X i n t r o d u c e d  in  t h e  i n t e g r a l  r e p r e s e n t a t i o n  
for ~:i" Considering the functions A(~), B(~), ... complex-valued, we require compliance with 

~ F ( A ( I ) , B ( I )  . . . . .  k , r ) d % = O  (rE/) ,  ( 3 . 2 . 1 0 )  
0 

instead of (3.2.9), from which (3.2.9) will also follow. 
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Together with the formal agreement between the representations of the functions ~i 
in the form of Hankel integral transforms in the radius and the representations for the case 
of real unequal roots of the characteristic equation, the latter considerations afford the 

possibility of using the formalism developed for the real roots to obtain a system of resolv- 
ing integral equations. The kernels and the desired functions of the system of integral 
equations being obtained are here complex-valued functions of real variables. In dimension- 
less form the resolvin~ system of equations with an additional condition has the form [28, 56] 

l 2sl i 
f (~)+-~0s~ fM~(~ 'n )  f ( ~ ) d n - - ~ T 0 ,  N~(~,n) g ( ~ ) d ~ = 0 ,  ( 3 . 2 . 1 1 )  

i 2s2 i N2 (~' ~l)f ( ~ ) d ~ -  const = 0, 
0 0 

l 

N~(~, n) = ~ ( ~  + D - -  R~(: +~)  + R~(n-- ~)--R~(: - -  ~); 

{ 1 1 R~ (~) = 2s -~ 2S~fo (p~ + P~, ~) -- -5 % + s~) [ s~sF~ fo (2p~, ~) + K0 (2p~, ~)1 ; 

{ 1 } 
s~ (0 = s--~ (s~ + s~) K1 ( ~  + ~, ;) - W [K~ (~p. ;) + K~ (~p~, ;)] ; 

{ ' (Sl + s~)ls,sF'Ko (2p~, ~ ) +  Ko (2p. ~)1}" S~ (~) = 2s -~ 2s~Ko (p~ + P2, ~) - -  ~ 

{ R~ (~) = s -~ (s~ + s~) K-~ (~x + ~ ,  ~) - -  ~ [K-,  (2~, ;) §  (2~, ~)]; 

K0 (p, ~) -- p (~e + p~)-~; f - ~  (p, $) = - -  (2P) -~ In (~e + p~); 

K1 @, ;) = ~ @~ - -  ;~) (~  + p~)-~ ( ~  ~ = 0, ~ = ha -~, ~ = ~ # ,  

R e ~ > 0 ,  i = 1 , 2 ;  s~=l~w~, s~=l~w~, s=s~--s~) .  

The Bubnov-Ga le rk in  method i s  used  f o r  a n u m e r i c a l  i n v e s t i g a t i o n  of  t he  e i g e n v a t u e  
problem ( 3 . 2 . 1 1 ) .  S e l e c t e d  as  c o o r d i n a t e  f u n c t i o n s  i s  t h e  sys t em of  r e a l  power- law f u n c t i o n s  
1, x, x ~, . . . ,  t h a t  c o r r e s p o n d s  to  t he  e x p a n s i o n  of  r e a l  and i m a g i n a r y  p a r t s  o f  t he  d e s i r e d  
f u n c t i o n s  in  t he  men t ioned  c o o r d i n a t e  sys t em.  The c o e f f i c i e n t s  in  t he  e x p a n s i o n s  of  t h e  un- 
known c o m p l e x - v a l u e s  f u n c t i o n s  in  t h e  men t ioned  c o o r d i n a t e  sys t em a re  complex.  

The i n v e s t i g a t i o n s  were pe r fo rmed  f o r  t h e  most u t i l i z e d  s p a t i a l  t h e o r i e s  of  p l a s t i c i t y  
d e f o r m a t i o n  t h e o r y  [28,  56] ,  and f low t h e o r y  [61] .  

De fo rma t ion  t h e o r y  w i t h  a power law 

0 0 k 
o. = A (e,,) (3.2_.12) 

is the relation between the stress and strain intensity. For the law (3.2.12) 

E~/Ec = k, o~/E~ = 2~1. (3 .2 .  t 3) 

Dependences o f  t h e  r e l a t i v e  c r i t i c a l  s h o r t e n i n g  e z = 1 - i 1 and the  c r i t i c a l  d i m e n s i o n l e s s  
compress ive  s t r e s s  a = a l l ~  on the  q u a n t i t y  k [ see  ( 3 . 2 . 1 2 ) ]  a r e  r e p r e s e n t e d  in  F ig .  37 
for different values of ~ = ha -l. Let us note that e I = --ell ~ for small subcritical defor- 
mations. The same dependences are represented in Fig. 38 in a form normalized to the critical 
values of the surface instability el* and a*. A graph of the dependences sl and o on the re- 
lative distance from the crack to the free surface B = ha -i is given in Figs. 39 and 40 for 
pure aluminum (k ~ 0.23; ~* = -0.212; el* = -0.106) for different ranges of variation of B. 

As follows from the results presented, the critical values of the parameters e~, a 
in the range of variation of 8 of order 0.1-0.25 are an order and more below the values cor- 
responding to the case of an isolated crack in an infinite material [19]. As $ + ~ the crit- 
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ical values of ~i, o tend to the values st*, a*. Let us also note that material fracture 
within the framework of deformation theory with the law (3.2.12) occurs for lower loads than 
for an elastic material (the case k = 1 corresponds to an elastic incompressible material) 
for the considered values of ~. Let us note the sufficiently essential dependence of the 
critical values of o, ~: on the parameter k. 

Flow theory with the associated flow law with loading functions describes translation- 
al hardening 

^ ^ 

f (o, ~p) = (~u -- cs~L) (~ -- c~) -- 2~ ~ = 0 (3.2.14) 
0 pu ~! 

�9 A 

(c, k are material constants determined by test, oij ~ are stress deviator components, and 
gijP ~ are plastic deformations). 

The numerical investigation was performed for specific mountain rocks taking into ac- 
count that such problems are sufficiently typical in geomechanics under mountain relief con- 
ditions and tectonic force action. The mountain impact phenomenon can apparently be explained 
Iby the fracture mechanism within the framework of the criterion taken. Results of inves- 
tigations for the relative distance ~ = ha -i = 0.125 between the crack and the boundary of 

0 e0 gllP ~ are the massif are presented in Table 7 for argillite and sandstone: o, gll , all , 
critical values, respectively, of the compressive stress ozl ~ (referred to the elastic modu- 
lus E), the total elastic, and plastic deformations; o*, s* e,e, B.P are the same quanti- 
ties corresponding to a surface instability (and also to the case of an isolated crack in an 
infinte material); OH, e H are the unmeasured compressive stress and deformation correspond- 
ing to passage of the massif into the plastic state. The nature of the convergence of the 
method being used (depending on the number N of coordinate functions) is illustrated by the 
data in Table 8 (the first and second rows), where critical values are presented for the 
total deformations ell ~ for argillite (to third decimal place accuracy). 

The material constants E, c, k are determined for the mountain rocks mentioned on the 
basis of test results on triaxial loading of continuous (without macrocracks) circular cylin- 
drical specimens (realized was a class of states with principle stresses 0 1 = o 2 = Co 3 (C = 
const), longitudinal compression with lateral squeezing)�9 Presented in Table 9 are maximal 
values (in absolute value) of the principle critical stresses and strains Oma x, emax ob- 
tained in the problem under consideration, and the maximal values of the principal stresses 
and strains o~ t, corresponding to the fracture of continuous specimens in the above-men- 
tioned tests for different values of C. Let us note that since the stress-strain states in 
the tests were close to the states under uniaxial compression (C = 0) and biaxial uniform 
compression was realized in the problem under consideration, comparison of the theoretical 
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TABLE 7 

Material I Argillite I Sandstone 

--0,015 --43,015 
s~l --0,010 --0,009 
eO s11 --0,007 --0,007 

-o,oo  -0,002 
~* --0,276 --0,278 
s* --0,226 --0,219 
s, --0,138 --0,139 
s~ --0,088 --0,080 
a H --0,006 --0,009 
s. --0,003 --0,004 

TABLE 8 

N 

~;Oll 
81 

I 2 

--0,189 --0,016 
0,243 0,050 

3 4 I 5 I 6 

--0,015 --0,010 --0,010 --0,010 
0,051 0,045 0,045 0,045 

TABLE 9 

Material amax'108pa I 8max'10--2 
Argillite 3,0 2,0 

Sandstone 4,5 1,9 

I 
test s [ test 2 
Omax.10 Pa I 8max'l~ 

0 1,1 0,6 
0,19 2,2 1,5 
0,316 4,4 2,1 
0 1,4 0,6 
O, 116 4,0 1,4 
0,227 10,2 3,1 

and experimental values in Table 9 in this case is provisional in nature and affords a pos- 
sibility for comparing just the orders of the obtained theoretical and experimental fracture 
loads. 

The data presented in Table 7 and Table 8 (first and second rows) and their compari- 
son with results for an elastic material show the following: for the value ~ = 0.125 consi- 
dered the massif goes over into the plastic state before fracture of the massif can occur 
according to a purely elastic mechanism within the framework of the fracture criterion as- 
sumed. 

Fracture of Plastic Massifs under Compression Along Two Parallel Macrocracks. Plane 
(under uniaxiai compression) and axisymmetric (under biaxial uniform compression) problems 
are examined in [70] and [25, 38, 39]. An approach analogous to that described above is used 
(see the previous section) to obtain resolving systems of integral equations with complex- 
valued kernels and desired functions on the basis of the formalism developed for real func- 
tions. 
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TABLE I0 

Material I 
0,0625 

Argillite 0,1 
0,125 
0,0525 

Sandstone 0, ] 
0,125 

J --0" r [ _++o 
0,0148 0,0107 0,0074 0,0033 
0,0351 0,0270 0,0176 0,0094 
0,0500 0,0393 0,0250 0,0143 
0,0158 O,OlO0 0,0079 0,0021 
0,0358 0,0260 0,0179 0,0081 
0,0509 0,0380 0,0255 0,0125 

The plane problem [70] of compression along two parallel cracks of length 2a and dis- 
tance 2h between cracks is reduced, separately for the bending and symmetric buckling modes, 
to a resolving system of equations of the first kind with a logarithmic singularity of the 
type (2.1.21) (taking into account that the desired functions and kernels are complex-valued 
functions and also the simplifications needed to use the second modification of the theory 
of small subcritical deformations). 

Axisymmetric problems [25, 38, 39] also reduce first to problems for a half-space, se- 
parately for the symmetric and bending buckling modes, and then to a system of Fredholm inte- 
gral equations of the second kind of the type (2.2.12) for complex-valued functions. The 
numerical investigation is performed for deformation theory with a power law relating the 
stress and strain intensities and flow theory with the loading function (3.2.14). 

Deformation Theory. Critical values r = 1 - ~ for 8 = ha -~ = 0.25 (a is the radius 
of coaxial cracks and 2h is the distance between them) are presented in Table 8 (the first 
and third columns) depending on the number N of coordinate functions used for pure aluminum 
(k ~ 0.23). Fig. 41 illustrates the dependences of r and o (see above) on the quantity B 
for pure aluminum (k ~ 0.23; a* = -0.212; r = 0.106). 

The dependences of r a on the magnitude of the exponent k in the law (3.2.12) are re- 
presented in Fig. 42 for the values 8 = 0.0625, 0.125. 

Results of a numerical investigation for flow theory with translational hardening in 
application to mountain rocks (see the previous section) are presented in Table i0. Here 
a = o1~~ is the unmeasured compressive stress, r , ell e~ r ~ are the total, elastic, 
and plastic deformations. 

For a sufficiently small distance between the cracks the critical loads differ substan- 
tially from the load for an isolated crack in an infinite material (an order and more lower). 
Compared with the case of a near-surface crack in a half-space, higher values of the critical 
relative shortenings and stresses are obtained, as agrees with reasoning of a physical nature. 

CONCLUSIONS 

The results elucidated in this paper and in [A. N. Guz' and V. M. Nazarenko, "Fracture 
mechanics of materials under compression along cracks (Survey). Highly-elastic material," 
Prikl. Mekh., 25, No. 9, 3-32 (1989)] of investigations on compression of materials along 
defects of crack type are exact since they are obtained within the framework of rigorous 
three-dimensional linearized formulations. Let us note that the fact that the mentioned re- 
suit are standards for approximate approaches is of independent value. 

The investigations performed whose survey is represented above should be considered 
the beginning of a study of problems of material fracture under compression along cracks in 
a rigorous formulation (within the framework of the linearized mechanics of deformable bodies). 
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