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VIBRATIONS OF AN INFINITE PLATE, IN CONTACT WITH A FLUID, 

WHEN EXCITED ALONG A STRAIGHT LINE BY A MOTOR OF FINITE 

POWER 

T. So Krasnopol'skaya UDC 534.1:539.3 

The study of the energetics of vibrations of elastic structures in contact with a fluid 
and subjected to dynamic forces is a rather complex and multifaceted problem that has been 
solved with the use of several simplifying assumptions. In particular, the force is usually 
assigned in the form of an explicit function of time. Thus, it would be interesting to 
undertake a comprehensive examination of a system consisting of an exciter, an elastic 
structure, and a fluid in the case when the vibrations in the hvdroelastic subsystem in- 
fluence the formation of the exciting force. In this case, the entire combined system will 

be autonomous [3]. 

The present article is devoted to an analysis of the vibrations of an infinite plate. 
One surface of the plate is in contact with an acoustic medium, while an eccentric exciter 
of finite power is placed on the other surface. A distinguishing feature of the approach 
being taken here toward examining the interactions in such a system is the wave form of 
representation of the solution for the hydroelastic subsystem, since its infinite extent 
precludes the use of an expansion in the corresponding natural modes and frequencies. Thus, 
resonance methods of investigation cannot be employed. 

We will examine an elastic plate of thickness h and density P0 (E is the elastic modulus; 
v is the Poissonls ratio). The middle surface of the plate coincides with the plane z = 0 
(Fig. I). Let the half-space z < 0 be filled by a fluid of the density p. The speed of 
sound in the fluid is c. We assume that the vibrations of the plate are excited by a force 
exerted along the straight line x = 0. This force is generated by a rotating shaft with an 
eccentric. The eccentric is located on the shaft in such a way that the "linear" value of 
the vertical component of the force is equal to ma-d2/dt 2 (i - cos 8) (where m is the linear 
mass of the eccentric; a is the eccentricity; O is the angle of roation reckoned from the 
vertical). The shaft is rotated by an electric motor of limited power [3], i.e., the power of 
the motor is commensurate with the required load (which oscillates in the fluid along with 
the plate). If the moment of inertia of the shaft per unit length is eqDal to I and the 
driving moment is equal to M(~), then the equation of motion of the shaft can be written as 
follows with allowance for the effect of the bending vibrations of the plate w(x, t) 

[g O~W(O,t)]sinO, (i) IO = M (O) + ma + ,  Ot ~ 

Fig. I 
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where g is acceleration due to gravity. 

The equations of the bending vibrations of the plate will be represented in the form 
[5] 

d 2 
D O~wOx 4(x' t) = _ _  P~ h O2WOt ~(x' t) ma6 (x) ~ cos 0 + p (x, O, t). ( 2 )  

Here, D=EhS/12(l - v2); 6(x) is the Dirac delta function;p(x, 
the fluid. For the latter, we have the wave equation 

O~p 02p 1 02p 
Ox2 + ' - ~  = c 2 Ot ~ 

0, t) is the sound pressure in 

(3)  

at z < O. 

We will also take into account the boundary condition at z = 0, i.e., the equality of 
the velocities of the plate 8w/at and the fluid v z 

Ow (x, t) ] 
ot = v~ (4) 

z=O 

Using a relation for the acoustic field in the form 3p(x, z, t)/Sz = -0 8Vz/St, we obtain the 
following equation from condition (4) 

02w (x, t) Op (x, z, t) ( 5 )  
- -  O Ot ~ = '  Oz 1,=o" 

System of coupled equations (1)-(3) and (5) describes the complex process of the transfer of 
energy from the electric motor to the acoustic field of the fluid and the oscillating plate. 
Using the Laplace transform for time and the Fourier transform for the coordinate x, we ob- 
tain general expressions for the deflection and pressure in the form 

1 o+ioo ~oo = Ii u (k, s) e~endkds; 

1 o+ioo 0o 
p (x , z , t )  = ~ S ; ~(k's)e'kxezV'k~s2r- 'e ' :dkds" (6)  

a - - i o o  --~o 

Satisfaction of boundary condition (5) makes it possible to establish the relationship 
between the transforms. Specifically 

(k, s) = 
os=u (1~, s) 
/ s~ ( 7 )  

V k2 + c-- ~- 

Substituting (6) into (2) and using Eq. (7), we express the function u(k, s) through the 
transform r of the function ma.d2/dt 2 cos O 

u (k, s) = (D(s) ( 8 )  
,~ (k, s) ' 

where 

f d~ cD (s) = - -  ma ~ cos Oe,~m; 

0 

A (k, s) = Dk 4 + PohS 2 + 9s~ 
V'k ~ + s~c -2 

(9) 
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Thus, we write the solution (6) in the form 

o+ioo oo 

w (x, l) = ~ ~ AO(k,(Sis) etkxeStdkds; 

1 ~ t i [352(I) ($)etkx ezVk~.+s2c_2esfdkds" 
p (x, z, t) = (2~)" i i s ~- 

o - , : -  7 

( i o )  

Here, ~(s) can be established only after finding the law of change in the angle O(t), i.e., 
after solving the equation of rotation of the shaft of the motor (i). With allowance for 
(i0), Eq. (i) is changed to the form 

7i IO =M(~))+ma{g--  ma ~ | l  e-~t--zEcosOdt dkds sinO. ( l l )  (2a) z i A (k, s) [J at 

The equation that is obtained is nonlinear relative to the variable O, making it expe- 
dient to use the Poincare method. Here, we introduce the small positive parameter e = mag/ 
IriS, where fix is the speed of rotation of the shaft on the stationary plate. Here, 

M(Q~) = O. (12) 

We will restrict ourselves to steady-state regimes, when the moment M(O) corresponds to 
the static characteristic of the energy source [3]; let M(O)/I = eMi(O). Thus, for regimes 
close to the steady state, we can write Eq. (ii) in the form 

Here 

= sM, (0) + sf~ sin O 

o-b~ o o  o o  

.f rr,,' ,] �9 -F (2~)= i ~ [d  ~ (l--cos O) e-"d dkds. 

maQ~ 
q ~ .... 

g 

(i3) 

Using the substitution of variables O = f, we seek the solution for the regimes of interest 
to us in the form of expansions 

n = ~o + ~{...}; o = Cot + 8{...}; 

w(x't)=w~ Re[ e-fa~ A(k ,  iao) 

(i~) 

Here, f0 is the velocity associated with the steady-state regimes; Re is the real part. 

Let us take a closer look at the deflection function w0(x, t) 

wo(x,t) f ~ a  Re[e-m,t i eik~ ] : a (T.  " 

In accordance with the radiation conditions [i] 

( k~" _ _  k~)1/2 ~t~2 ~2~1/2 = ~,~ --,,o,,, I kl~> ko; 

/ -  i (ko ~ -  k~);/~ I k I < ~o. 
(15) 
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We then write the Fourier integral in the form 

w.  (x, r = Re  e m . t  I~1<<.~o ~' _ _  k~ - -  i p k ~  

poh (g- ~')Y= 

dk + 

+ ~k~ dk . (16) 

1 4  

Here, we used the notation: k x is the wave number of the free plate k~ = Q ; k0 is 

the acoustic wave number of the fluid k 0 = ~0/c. Meanwhile, only positive values of the 
root, designated as ( )i/2, should be taken in the integrands. Integration is done in (16) 

P 
only for the real values of k, including those where the integrands have singularities. 
The first integral in (16) is a natural integral. The second integral presents a much more 
difficult problem. It has two intervals of integration -~ < k !-k 0 and k 0 ! k < =. Figure 
2a shows the location of its singular points. In fact, they are determined from the equation 

pk~ 
k~--k~= P0h( k=-~2~I/2~01p " In Fig. 2a, the left side of this equation is shown by curves i, while 

the right side is shown by curves 2. The points of intersection of the curves at k = !k 2 
correspond to singularities of the integrand. It follows from Fig. 2a that k 2 is greater 
than k0 and k I. Here, the singularity at the points !k 2 is of the simple pole type. As be- 
fore, the definition of the second integral of (16) at k ~ +k 2 is not clear. To find it 
analytically, we continue the integrand on the complex plane. Here, it must be taken into 
account that the function (k 2 - k20)I/2 will be two-valued, while the points +_k 0 will be 
branch points. Thus, it will be necessary to make cuts through them. In particular, cuts 
can be made along the lines Re(k 2 -- k20)i/2 = 0, while, in accordance with conditions (15), 
integration is performed over the surface with Re(k 2 - k20)i/2 ~ 0. 

We want to take the integral (16) over the real axis k and express it through an inte- 
gral over a closed contour in the complex plane by using the Cauchy theorem. Thus, we need 
to determine all of the singular points k in the complex plane. We designate y = (k 2 - 
k~) I/2. Then the singularities can be found if we find 7 as the root of the equation [7] 

. , .  p~ 
v ~ + ~ g v  ~ + ( g - -  R,)v - -  ~ - o. ( 1 7 )  

obtained from the condition A(k, i~0) = 0. Stewart [8] showed that this equation has either 
one positive root and two pairs of conjugate roots for a frequency ~0 above the coincidence 
frequency ~c = c=(p0h/D)i/2 or one positive real root, two negative real roots, and one pair 
of complex conjugate roots for ~0 below the coincidence frequency. Since Eq. (2) yields 
larger errors even at ~0 = 0.7mc [6], we will consider only the second case. In accordance 
with the Routh-Hurwitz conditions, a pair of complex roots will lie in the first and fourth 
quadrants and have positive Reu Each y corresponds to two values k = ~(y= + k20)I/2~ 
Figure 2b shows the location of the roots of Eq. (17). Here, Ys and y~ correspond to +k 3 
and ~k~, not satisfying radiation conditions (15) and not lying on the chosen plane of-inte- 
gration. Thus, the singularities are located at the points !k2, +_ks, !k* s (where * denotes 
the taking of the conjugate value). 

Calculating (15) for positive x, we need to close the contour of integration in the 
upper half-plane [I]. Similar to the case of negative x, the contour is already closed in 
the lower half-plane k. Figure 2c shows the contour of integration. Meanwhile, to deter- 
mine the path around the poles !k 2 and the branch points ~k0, we need to introduce an infini- 
tesimal damping into the plate and analyze the displacement of the poles. The Cauchy 
theorem gives the following expression for the displacements w0(x , t) 

wo(x,t)= ~ma { [ e~k'x e~k, x -~--Re e-m.t2~i A,(k2. i~o) 4 A,(ks, ieo)'~. 
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I e..x ,,l.x>.O 
+ A" ( - -  k;, i ~ )  e-"~'  A (k, i~o) �9 ' 

�9 C,+B, t+B,+C, 
( 1 8 )  

The first three terms in (18) are the residues at the poles. In accordance with the Jordan 
lemma, the integrals over C l and C 2 are equal to zero. The integral over D I around the 
point k 0 approaches zero as the radius of the path approaches zero. The integrals over B l 
and B 2 correspond to the integrals over the edges of the cut. It is easily shown that on 
the Riemann on which we integrate Re(k 2 - k02)I/2 > 0, we should regard B1(k 2 - k 20)I/2 as 
i(ko 2 - k2)i/2 along B I and as -i(k~ - k2)i/2 along B 2. 

P P 
Thus, 

e'kx die = - - 2 i J ' P ( k ) e ~ k x d k + 2 i ~ P ( k ) e , k X d k  ' ( 1 9 )  
A (k, ifJo) 

B, + B, 0 0 

where 

m 

WE/J 
e ksx 

Si nc e  t h e  sum of  t h e  r e s i d u e s  a t  t h e  p o i n t s  ks and - k s *  i s  e q u a l  t o - 4 n I m a , ( k s ,  i~2o ) 

A' (ks, in0) = D 4ks + ~- ks(k~-- s ), then the deflection w0 (x, t) has the form 

[ eik'x 
Wo(X, t) f ~ w a  Re e -iuot 2ai A' 

= ~ (k2, iflo) - -  

e"" " i" - -  4~ Im A" (ks, if~.) + 2i ~ P (k) e~kNk - -  2i P (k) e~kxdk = w~ (x) cos f2ot + w2 (x) sin ~ot. 
0 0 - 

(i.e., 
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sin k2X e ik~x 
w~ (x) ---- - -  Q~na �9 A' (k=, if~o) + 2Im A' (ks, iQo) 

i ] [ cosk~x ,k~ ] 
__ 1 p (in) e-n~d~] ; w2 (x) = fl~ma "A' (k,, iQo) -6 "~  f p (k) e~xdk . 

0 0 
(20) 

It follows from the above solution that the deflection of the plate w0(x, t) is des- 
cribed by a frequency function ~0 of complex form. To find the values of ~0 realized in 
steady-state regimes, we need to solve the equation obtained from (i) by the substitution of 
Eqs. (14) and (20) and subsequent averaging over the period 2~/~ 0 . Specifically, we need 
to solve the equation 

eM1 (flo)-- e, w,. (0) = 0. (21) 

Equation (21) is a ratio of moments: the moment of the energy source eM~(~0) and the 
vibrational moment - eg~/2ma.w2(0) created on the shaft of the motor by the hydroelastic 
subsystem. Since the vibrational moment is a complex nonlinear function, Eq. (21) can only 
be solved numerically. For a physical generalization of the numerical solution, we intro- 
duce the dimensionless quantities [2] 

X = ~o. k k2. pD z/2 
~---~' Y = ~ ;  Y~=-~-o'  b =  c(p#)a/2" (22)  

As a result, the equation being examined (with approximation of the function eM1(~ 0) by a 

NO" NI ~01 is written in the following form linear function of the form ~M1(~0) = ] ] 

N (X~ - -  X) = )IT (X, b), 

where 

2NID . f~x I 
N = ( - - - - -~ ,  X~ = ; T (X, b) = by, 

~~ 4y~ + 
3 2 X (yu- -  1) 3/2 

1 

b t" (1 - -  y2)1/2 dy. 
+ ~ - ~ .  (y4 __ 1-2)2 (1 - -  y2) + b21-6 

0 

+ 

(23) 

Figure 3 shows graphs of the functions N(X x - X) and XT(X, b) corresponding to the dimension- 
less driving and vibrational moment for X < 0.7 in the case of steel (curves i and 2; b = 
0.13; N = 0.057; Xx (1) = 0.497) and aluminum (curves 3 and 4; b = 0.39; N = 0~ Xx(2) = 
0~ plates of equ@l thickness h in contact with water and excited by electric motors having 
the same moment M(O). It should be noted that the choice of the frequency range 0 < X < 0.7 
was dictated by the range of application of the plate vibration equation (2). When-X >-0.7, 
it is necessary to change over to more complex models of the process. It is evident from 
Fig. 3 that the vibrational moment is a monotonically increasing function of the frequency 
of vibration. This accounts for the fact that, with a decreasing static characteristic for 
the motor, Eq. (23) has only the solution X = ~0/~ c. The latter in turn means that there 
is a unique regime of interaction of the motor and the vibrating plate. Here, XI, 2 < Xx(l,2). 
This result is not due to the consumption of energy by the plate for internal damping and by 
the fluid, with allowance for its viscosity [4]. Instead, it is due exclusively to transfer 
of the energy of the motor by uniform waves in the plate and the fluid and by the "resultant" 
waves [i]. The reduction in the speed of rotation of the shaft will be greater in the case 
of interaction of the motor with the aluminum plate, i.e., the amplitudes of the vibrations 
will be greater than in the case of a steel plate. As a result, an aluminum plate in contact 
with a fluid creates a larger vibrational moment, and the relation X 2 < X I is satisfied. 

Thus, in contrast to a finite system, the interachion of the vibrations of a fluid- 
loaded infinite plate and an energy source of limited power does not have resonance regimes. 
As a result, the speed of rotation of the motor shaft does not have more than one value in 

923 



/v(x~x) z T(Z b) 

1 

 ,o8 I 
i 

0 

i 
t 

0,2 z2z, q4 z~ ~ 0,6 

Fig. 3 

steady-state regimes of interaction. In such regimes, moreover, a finite system exerts a 
reciprocal effect on the energy source only if the source is damped. Infinite systems 
create a vibrational moment without damping, i.e., the energy of the source is transported 
by travelling waves. 
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