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INTRODUCTION 

A number of the more effective and widely used approximate analytical methods that have 
been applied in continuum mechanics and in applied mathematics are variations of the methods 
of perturbation, expansion in a small parameter, successive approximations i and asymptotic 
methods. The mathematical foundations of these methods, and also many special results, are 
given in the monographs by Vorovich, Aleksandrov, and Babeshko [37], Guz' and Nemish [65, 
66], Ivlev and Ershov [74], ll'yushin [75], Kantorovich and Krylov [80], Kauderer [81], 
Kayuk [82], Kosmodamianskii [86-88], Cole [90], Krylov [242], Lekhnitskii [106, 107], Lom- 
akin [109, ii0], Morse and Feshbach [127], Nyfe [130, 131], Nemish and Bloshko [180], Nemish 
and Chernopiskii [205], Savin [230, 232], Svirskii [240], Khusu, Vitenberg, and Pal'mov [261], 
Ts~rpal [272], etc. Large bibliographies are contained in the review articles [89, 98, 128, 
162, 274, 307], and others. Among the various methods we concentrate in the present review 
on the method of perturbation of boundary shape (more than twenty years ago a perturbation 
method under this name was introduced into the literature and applied to the solution of 
boundary-value problems in continuum mechanics). As noted in the review by Prokopov [226] 
of the monograph [66], perturbation methods "have been used repeatedly in several branches 
of theoretical mechanics (celestial mechanics, theory of vibrations, stability Of motion), 
but its application to boundary-value problems is new." 

As far as we know, one of the first works in this direction was [40], in which an ap- 
proximate analytical method was discussed for finding the stress concentration near curved 
apertures in thin shells. It was later shown [52-54, 141, 145, 156] that since the method 
was independent of the equations of state, equilibrium, and motion, it could be applied with- 
out fundamental change to a wide class of problems in continuum mechanics. It was later 
extended [98] to nonlinear problems (the theory of bending of plates and shells, two-dimen- 
sional and three-dimensional problems), dynamical problems (in particular, steady-state dif- 
fraction problems, two-dimensional streamlining of noncircular cylindrical bodies by a vis- 
cous fluid, emission of sound by noncircular cylindrical shells in a fluid), two-dimensional 
problems in the moment theory of elasticity, and three-dimensional elastic problems for non- 
canonical regions. In the monographs [65,.66] this approach was called the first variant 
of the method of perturbation of boundary shape. Itapplies in cases when the boundary of 
the region under consideration coincides with coordinate curves (or a coordinate surface) 
of the orthogonal curvilinear coordinate system used in the problem. 

The second variant of the method of perturbation of boundary shape was worked out in 
[151, 158, 169, 171] and applied to the solution of three-dimensional problems of the theory 
of elasticity for axisymmetric and nonaxisymmetric bodies whose surfaces do not coincide 
with the coordinate surfaces of the coordinate system used in the problem. It also does 
not depend on the equations of state, equilibrium, and motion, and therefore can be applied 
to a wide class of boundary-value problems in continuum mechanics. Recently it has been 
extended to boundary-value problems of statics for corrugated bodies, piecewise-homogeneous 
bodies with noncanonical dividingsurfaces, elastic bodies of finite size, and structural 
elements with grooves and ridges and to boundary-value problems for heat conduction and 
thermoelasticity for noncanonical regions. We note that-additional applications of the me- 
thod of perturbation of boundary shape occur when it is combined with other analytical (or 
numerical) methods. Examples include boundary-value problems of the mechanics of deform- 
able bodies of noncanonical shape with more complicated rheological properties. It has been 
applied in combination with perturbation of elastic properties [143, 146-150, 239] to the 
solution of boundary-value problems for physically nonlinear [68, 144, 145, 236, 272, 274] 
and orthotropic [160] bodies, in combination with the method of superposition to cylindrical 
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bodies of revolution of finite size [20-22, 177-182] and in combination with the Laplace 
transfo~ with respect to time tO the solution of unsteady problems involving the satura- 
tion of a medium with finite and infinite noncanonical cavities [76, 77, 185, 258-260, 286- 
289]. 

The purpose of the present review is to give a short exposition of the mathematical 
foundations of these two variants of the method of perturbation of boundary shape, and also 
a summary of the numerous special results, along with an analysis of the effectiveness of 
these approaches in different branches of continuum mechanics. 

We note that the necessity of a sum/aary of the results and a writing of this review 
became apparent during our preparation of the manuscript "Perturbation of boundary shape 
in continuum mechanics," which was presented for publication to "Vishcha Shkola." It is 
a continuation of the review articles [98, 162, 307], which were concerned with an analysis 
of the research based on the different variants of the perturbation method in various 
branches of the mechanics of a solid deformable body. 

i. MATHEMATICAL FOUNDATION OF THE METHOD OF PERTURBATION 
OF BOUNDARY SHAPE 

First Variant of the Method. This variant of the method of perturbation of boundary 
shape was discussed in [40] in connection with the solution of two-dimensional boundary- 
value problems for the stress around nearly circular apertures in thin tapered spherical 
shells. Its extension to three-dimensional elastic problems for noncanonical regions was 
considered in [52-54,141, 145,152, 153,156, 160]. Moreover, using the transformation formulas 
of [129] for a second-rank tensor a, a vector 6, and an arbitrary scalar function ~ under 
a change of orthogonal curvilinear coordinates from =l, =2, =3 to ~1', =2', =3' 

3 3 3 

(1 .1 )  

it isnot difficult to note the mathematical characteristics of many two-dimensional and 
three-dimensional boundary-value problems in continuum mechanics for noncanonical regions 
[52]. 

Following [65, 66], we assume that the boundary S of the body under consideration can 
be described with the help of the function 

C~) = ro [~ + ~f (~)1 (I 81<< I; ~ = pe'~), (1.2) 

which conformally maps the exterior I~1 a 1 (interior ~ l) of a unit circle to the ex- 
terior (interior) of a contour F. Then there are the following possible cases: a) the 
curve F bounds the exterior (or interior) of a plane (or nearly plane) region; b) the curve 
F describes the cross section of a noncircular cylindrical surface bounding the exterior 
or interior of a finite or infinite body; c) the curve F describes the meridian cross sec- 
tion of a closed surface of revolution which bounds the exterior or interior of a finite 
or infinite body; d) the curve F corresponds to one of the last three cases, but forms the 
boundary dividing two continuous media with different physical and mechanical properties. 

�9 �9 �9 �9 T The dxrectzon coslnes lj k of the angles between the unit vectors ej' and ~k (J' = ~z', 
==', ~3'; k = ~i, ~a, =3) can be expressed in terms of the angle ~ between the radial direc- 
tion and the normal to the contour F. This angle is related to the function ~(~) by the 
formula e iB = ~g~[/l~II~IIm' I (here a prime denotes the derivative with respect to ~). 

In the three-dimensional case, on the boundary S of the body (p = const) either the 
external force opj,IS = oj, ~ can be specified, or the vector uj,IS = uj, ~ or the scalar 

function #'IS = ~0, or its normal derivative 8~'/8PlS = ~," Various mixed conditions are 
also possible and can be writtenas different combinations of these equations. 

Tensor, vector, and scalar quantities correspond to different physical and mechanical 
characteristics in the different branches of continuum mechanics. These characteristics 
are determined by the effect of certain operators on functions satisfying appropriate dif- 
ferential equations (in the usual cases one deals with Laplace's equation, the biharmonic 
equation, the Helmholtz equation and combinations of these equations in rectangular, spher- 
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ical, and circular cylindrical coordinates), However, the equations of equilibrium or equa- 
tions of motion of most continuous media (in terms of the variables ~l', =2', ~3') are quite 
complicated and it is usually not possible to obtain an exact analytical solution using sep- 
aration o~ variables. 

Therefore, the components of the second-rank tensor oi,j,, the vector uj,, and the 
scalar function ~' are expanded in series form 

{~vr,  Ur, r  = ~, : :.rl (~' , uJ",~, ~'~")}. 
n=O 

(1.3) 

Using the transformation equations (i.i), the expression for the direction cosines ~j'k 
in terms of the function (1.2)~ and the expansions (1.3), we obtain the following recurszon 
relations for the components in the n-th approximation. For the second-rank tensor 

O(.) ~ rr(n--m)_(ra) tin--m)/(y(~) T(n--m)-(mb. 
H'= L~I ~. +_,-2 ~ 2 . - - ~ ? ) + ~ 3  ~,2J, 

m=0 

Gfn) ~ rr(n--m)-(ra) l(n--m) ( ) L(n-m)Gtmb; 
2'2" = t.ul 022 - - ~ 2  O.~r~)__ (~r~)  - -  3 12 J 

rn=O 

~ ,rr + L(~ "-m) (a~) -- a~")]; ~'t'~ = l~-~ ,~ 
n~=O 

(1.4) 

for the vector 

/I 
-(n--m) (mh. 

m=O 

U (n') ~. rr(n--m)u(m) l(n--m) {m)1. 
----- . [/,-'5 2 ~ 6  U l  J, 

m=O 

(1.5) 

and for the arbitrary scalar function 

(D "m) = ~ L~n-~)(D (~). ( i. 6 ) 
m=0 

Here the Li(m) are differential operators which depend on the form of the function f(~); 
expressions for these operators have been given for an arbitrary order of approximation in 
[65, 66, 153]. 

, ,(n) '3 (n) are given by formulas of the type (1.5) Note that the components o I 3 o2 ' 
while a3,3, (n), u3,(n) are given by (1.6). 

An important feature of the first variant of the method of perturbation of boundary 
(m) shape is that the tensor Oks (m) (p, 7, a3'), vector u s (P, 7, as'), and scalar ~(m) (p, 

7, ~3') quantities on the right-hand sides of (1.4)-(1.6) are written by formally replacing 
circular cylindrical coordinates r, %, z (or spherical coordinates r, e, ~) by noncircular 
cylindrical coordinates p, 7, $ (or the coordinates defined by the body of revolution p, 
7, ~). This is an important feature in the solution of boundary-value problems in continu- 
um mechanics, because it allows one to use the known equations and functions in circular 
cylindrical or spherical coordinates to immediately write down the corresponding equations 
and functions in the actual orthogonal curvilinear coordinate system being used, to any 
order of approximation. 

Hence, this variant of the method can be used directly if the above tensor, vector, 
and scalar quantities are identified with specific physical and mechanical characteristics 
consistent with the formulation of the boundary-value problem, which in turn corresponds 
to some model in continuum mechanics. 

A significant extension of this approach was obtained in the solution of boundary-value 
problems in the dynamics of noncircular shells in fluids [33-36], in which the boundary con- 
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ditions are different from those discussed above in that they contain higher-order differ- 
ential operators with variable coefficients. For example, an m-th order differential oper- 
ator has the form 

]+ [ I _  a ' ~ ( ' )  ~! A%7 ) (y) (m = I, 2, 4), 
t B  : 

( l .7) 

Here B is the coefficient of the first quadratic form and depends on the function (!.2) 
which describes the contour of the cross section of the noncircular cylindrical shell. 

Boundary conditions corresponding to the three cases discussed above have the follow- 
ing simple forms in the variables p, 7, =3', in an arbitrary order of approximation: For 
stresses specified on S 

(l.S) 
for components of the displacement or velocity specified on S, 

,0{n). 
u~ ~'' 1~:oo.t = - r  , ( 1 9) 

and for the scalar function or its derivative given on S, 

�9 a o '  o~. ~. �9 (n)[p:r -~" 00("); " ~  (n) Ip=eonst : ( i .  i0  ) 

Second Variant of the Method. The second variant of the method of perturbation of 
boundary shape was developed in [151, 158, 169, 171]. The essence of this method is as fol- 
lows. Let the boundary of a continuous medium in orthogonal curvilinear coordinates ~z, 
=2, =~ be described by the equation 

=i = =0 + ~ (=,, =,), (i. 11 ) 

where ~0 = const ~ O, f(~2, =3) is a known analytical function; E is a small parameter 
([El ~ i) characterizing the deviation of the surface S under consideration from the co- 
ordinate surface =z = =0. 

Then from the function F(~ z, ==, ~3) = =i - Ef(==, =~) it is easy to calculate the unit 
normal vector 

T sT+  4 �9 (1.12) 

Here the H i are the Lame parameters. 

Therefore, the direction cosines nj of the normal ~ to S are given by 

I 1 OF (1.13) 
nj = T ~ T  "H~. aa  I " 

The f o l l o w i n g  boundary  c o n d i t i o n s  can be s p e c i f i e d  on t h e  s u r f a c e  S o f  t h e  c o n t i n u o u s  me- 
dium: t h e  components  o f  t h e  e x t e r n a l  f o r c e s  oj  ~ 

3 
0 

E c~JnkIs = ai (] = 1, 2, 3); ( l .  14) 

the components of the displacement vector (or velocity vector) uj 

0. 
uj Is = uj, 

the scalar function ~0 

( l . i5)  

�9 ]s --- ~"; 

or the normal derivative ~, of the scalar functioh 

(1 .16 )  
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0 ~Is = ~,, ( I  17) 
an 

Even though in such often-used orthogonal coordinate systems as rectangular, circular 
"cylindrical, and spherical, in which the general analytical solution of the equations of 
equilibrium and motion can be obtained for most models of continuous media by means of sep- 
aration of variables, the complexity of the boundary surface S described by an equation of 
the type (i.ii) means that one cannot obtain an exact analytical solution of the boundary- 
value problem because of the complexity of the boundary conditions of the types (1.14)- 
(1.17). For this reason the solution of the boundary-value problem is sought in the form 
of series of the type (1.3). Assuming that the unknown tensor, vector, and scalar quanti- 
ties can be expanded in Maclaurin series about the coordinateosurface ~l = ~0, we obtain 

n=0 m=O 

(1.18) 

where L (m) is a differential operator of order m. 

Therefore, from (1.14)-(1.17) the boundary conditions in an arbitrary order of ap- 
proximation reduce to the form 

3 ~ ~,r(n)_fn--m) _O(n) " 

:_,.. ,,,~ ,,*/ [-,==o = ~,j ( / =  =~, a.2, =~); ( 1 . 1 9 )  
k=I n~=O 

n 
L(~)u? -'~) I===. . o(n). 

= u i  ' (1.20) 
m=0 

n 

~] L(')(I)t"-m)l===~ = (D~ ( i .  21) 
n';=0 

3 

H~ o~z,~ ~ I===, = ~. �9 (i.22) 

k=l m=O 

Here the Nk(n) are differential operators whose analytical structure depends on the 
form of Eq. (i.ii) describing the geometry of the surface S. These operators, in an arbit- 
rary order of approximation,' have been obtained in rectangular coordinates [167: 169, 175], 
in circular cylindrical coordinates [151, 158], and in spherical coordinates [158, 170, 171]. 

This approach has made it possible to consider a series of new problems involving axi- 
symmetric and nonaxisymmetric bodies bounded by surfaces that are nearly coordinate planes 
[179, 180] or nearly the coordinate surfaces of circular cylindrical and spherical coordi- 
nate systems [65, 66, 180, 208]. 

Hence the essence of the first (for orthogonal boundaries) and second (for nonorthog- 
onal boundaries) variants of the method of perturbation of boundary shape is the reduction 
of a boundary-value problem for a noncanonical region to a series of boundary-value prob- 
lems for canonical regions which are close to the original noncanonical region, and the cor- 
rections in the successive approximations appear only in the boundary conditions. Thus 
there are no additional difficulties in constructing the general and particular solutions 
of the equations of equilibrium or motion for a continuous medium and also there is the pos- 
sibility of extending this method to a wide class of boundary-value problems in continuum 
mechanics. 

2. MECHANICS OF A DEFORMABLE SOLID BODY 

Analysis of the research up to 1981 in the field of boundary-value problems in the me- 
chanics of deformable bodies involving the method of perturbation of boundary shape has 
been given in the review articles [98, 162, 307]. The research covers the following 
branches: three-dimensional elastic problems for noncanonical regions [79, 83, 84, 115-118, 
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120, 133-136, 141, 142, 151-194, 198-209, 221-225, 253-256, 277, 278, 298, 301, 303, 308]; 
problems involving the stress concentration near curved apertures in cylindrical, spherical, 
and conical shells [17, 18, 38, 40-5!, 60, 64, 67, 69-73, 99, lll-ll4, 216-218, 220, 227-229, 
231-234, 237, 243, 246-248, 279, 280, 290-292, 297, 308, 309]; dynamical elastic problems 
for noncanonical regions (three-dimensional [52-54, 61, 62, 174] and two-dimensional [63, 
93-97, 105, 252, 302]); two-dimensional problems in the theory of elasticity and thermo- 
elasticity in the classical and refined formulations for regions with curved apertures and 
inclusions [16, 59, 85, 89, 91, 92, 102, 137-140, 210-213, 230, 235, 238, 250, 251~ 261, 
299, 304]; problems involving the bending of plates with curved inhomogeneities in the non- 
classical formulation [122, 124, 195-197, 214-216, 249, 310]; physically nonlinear problems 
(three-dimensional [144, 145]; two-dimensional [1-4, 15, 28-32, 68, 100, 101, 126, 236, 262" 
275], bending of plates [293-296], theory of shell's [126, 236, 275, 276]). 

In this section we discuss only those papers in the mechanics of deformable solid 
bodies which involve the method of perturbation of boundary shape, and which were published 
in the last few years (supplemented by some earlier publications). 

Mechanics ofpiecewise-Homogeneous Bodies with Noncanonical Surfaces. The branches 
of the mechanics of deformable bodies mentioned above, although relevant to the subject of 
this section, will not be analyzed here, since they have been reviewed in [98, 162, 307]. 
Here we will consider mainly boundary-value problems for deformable bodies with noncanonical 
cavities, elastic or rigid inclusions, and also for layered media with surfaces between the 
layers which are nearly plane, cylindrical, spherical, or conical. 

Piecewise-homogeneous bodies with noncanonical surfaces between layers are diverse 
in nature. They include mountain mas~ifs with noncanonical shafts and foreign strata, com- 
posite (granular, layered, or fibrous) materials with small-scale deviations in structure, 
etc. A wavy surface in materials composing certain products and elements of construction 
is technologically unavoidable in many cases. An example is the explosive welding of ma- 
terials [104, 241]. The mechanism of formation of wavy surfaces has been discussed in [125, 
306]. It is important in practice that the characteristics of a wavy boundary between two 
neighboring layers, which essentially determines the strength of the welded joint, can be 
controlled [104]. Multilayered elements of construction (in particular bellows [242]) are 
used in practice to increase strength and as a defense against corrosion. 

The papers [133-136, 141, 145, 191-194] are relevant to this subject. In these papers 
analytical solutions were obtained for three-dimensional axisymmetric elastic problems for 
isotropic and transversely isotropic media (spherical isotropy) with closed noncanonical 
cavities and rigid inclusions under torsion [134, 191] or uniform expansion (contraction) 
[133, 136, 192-194]. Numerical solutions were obtained to second or third order in a small 
parameter characterizing the deviation of the boundaries from spheres. The boundary sur- 
faces were obtained by rotating an equilateral triangle, square, or pentagon about the axis 
of symmetry. The effect of the curvature of the surface and the elastic properties of the 
medium on thestress concentration near noncanonical surfaceswas established. The distri- 
bution of maximum stress along characteristic directions is highly local in nature, such 
that when one moves away from the unstressed surface of a noncanonical cavity by approxi- 
mately two dimensionless radii, the deviation of the stress from the nominal does not ex- 
ceed 2%. 

The vibrations of a rigid inclusion in the shape of an oblate body of revolution was 
studied in [301] using the small parameter method, where the small parameter characterized 
the deviation from a sphere. The axisymmetric case was discussed in detail and possible 
extensions of the method to nonaxisymmetric problems were analyzed. 

The axisymmetric stress of an isotropic medium with an isotropic elastic noncanonical 
inclusion was considered in [198] for the case of a biaxial elongation (compression) "at 
infinity." The stress distribution inside the inclusion and in the medium was studied as 
a function of the ratio of the shear moduli of the two media and the static loads in two 
mutually perpendicular directions. 

It was assumed that the surface can be described by an equation of the type (i.i) with 
f(8) = cos 28. The results were compared with the known exact solution for a medium with 
an ellipsoidal cavity in a special case in [281]. 

Analogous studies have been done for the case when the isotropic medium with a non- 
canonical cavity is a reinforced thick isotropic elastic shell [199, 200]. It is assumed 
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that ideal contact exists on the surface. From this solution results for a medium with an 
elastic inclusion [281], a perfectly rigid inclusion, and with a stress-free noncanonica! 
cavity [39] follow as special cases. The cases of uniform isotropic expansion (compression) 
[199] and nonuniform loading [200] were both considered. 

The stress distribution in geometrically different reinforcing elements and in the ex- 
ternal medium was studied as a function of the ratio of the shear moduli of the two media 
and the thickness of the reinforcement. It was shown that the rigidity of the reinforce- 
ment lowers the stress concentration on the surface of the noncanonical cavity. 

The stress caused by a slightly nonspherical elastic inclusion in an unbounded matrix 
was determined in [303]. In addition to the case of ideal contact, the case was considered 
where the tangential stress is zero on the surface of the inclusion, while the normal com- 
ponent of the displacement vector is continuous across the surface (the case where the in- 
clusion slips without separating). 

In [298] the analogous two types of boundary-value problems were considered for an elas- 
tic medium with a noncircuiar cylindrical inclusion. 

Both variants of the method of perturbation of boundary shape (for orthogonal and non- 
orthogonal surfaces) have been applied to the solution of three-dimensional boundary-value 
problems for multilayered bodies (such as thick-walled shells) whose surfaces are nearly 
spherical [164] and nearly circular cylindrical [163]. This approach was used to study the 
static stress of isotropic and transversely isotropic bilayered and trilayered transversely 
corrugated [120-121, 190, 205] and longitudinally corrugated [189] thick-walled cylinders 
under a radial pressure varying according to a trigonometric function. On the ends of the 
cylinders special mixed boundary conditions were specified, a special case of which corre- 
sponds to an infinitely long, periodically stressed cylinder. 

The method of perturbation of boundary shape has been developed for three-dimensional 
statics problems involving multiply connected noneanonical regions [155] (for a three-dimen- 
sional medium with noncircular cylindrical cavities or inclusions lined up in a single di- 
rection and also for a medium with finite cavities or inclusions having the shape of bodies 
of revolution with a common axis). 

In [175] an approach was presented to solving elastic boundary-value problems for 
piecewise-homogeneous media reinforced by elastic layers of variable thickness. The small- 
scale deviations of the layers from coordinate planes were described by equations for the 
level surface. An approximate method of solving three-dimensional boundary-value problems 
involving a deformable composite cone'with noncanonical surfaces between the layers was dis- 
cussed in [176]. 

An approach to the study of the thermostress in corrugated layered bodies where the 
surfaces between the layers are close to circular cylindrical or spherical was developed 
in [168, 172]. 

An approximation method of solving three-dimensional elastic problems for nearly spher- 
oidal (ellipsoid of revolution) bodies was worked out in [221, 223]~ The method was used 
to study the stress near a short rigid cylindrical inclusion soldered into a matrix [224]. 

Various problems involving the mechanics of composite materials with small-scale struc- 
tural distortions fall into the same category. Problems of this kind are solved using the 
model of a piecewise-homogeneous medium. Also boundary-value problems in the theory of gas- 
saturated media with noncanonical cavities fall into this category. The next two sections 
review the research in these two areas. 

Mechanics of Composite Materials with Small-Scale Structural Distortions. The study 
of strength, stability, and vibration of composite materials with small-scale structural dis- 
tortions (and of structural elements made from materials of this type) requires rather com- 
plete information on the stress and deformation of the material, Small-scale structural 
distortions of composite materials is usually understood to mean deviations from some ideal 
structure such that the size of the deviations is much smaller than that of the structural 
elements of these materials under consideration. 

The continuum theory of composite materials with small-scale distortions in a regular 
structure was developed in [55-58]. It gives a possible explanation of a well-known phe- 
nomenon in the mechanics of the breakdown of unidirectional composite materials. This is 
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the "shredding" effect. It occurs when there is a uniaxial load along the reinforcing ele- 
ments and the composite material separates into threads (fibers) and strands and the solid- 
ity of the material is lost. 

However, in most cases the continuum theory [55-58] cannot give sufficiently complete 
and reliable quantitative information on the stress and deformation distributions in each 
of the components of the composite material. The stress and deformation of a composite ma- 
terial with smallTscale structural distortions has been considered in [5-14] using the piece- 
wise-homogeneous model. An effective method was given for solving three-dimensional elastic 
boundary-value problems for piecewise-homogeneous layered [i0] and fibrous [ii] materials 
with elastic components. This approach was extended to piecewise-homogeneous viscoelastic 
media in [7]. These studies have assumed a small concentration of sealer, when the inter- 
ference of neighboring distortions of the layers or fibers of the sealer are not taken into 
account in an essential way. Using the method of [I0] and the model of a piecewise-homo- 
geneous model, the same problem was studied in [13], but the interference of all of the layers 
of the sealer was fully taken into account. On this basis the results of the continuum 
theory were defined [55-58]. 

Unsteady Theory of Gas-Saturated Media with Noncanonical Cavities. The system of equa- 
tions of [257] form the groundwork in this field. These equations describe the coupling 
between the deformation of a gas-saturated porous medium and filtration of gas in the linear 
approximation. The analytical solutions of boundary-value problems have been used to study 
the stress and strength of mountain massifs near finite and infinite shafts of noncanonical 
shapes. These studies used the first variant of the method of perturbation of boundary shape 
(Sec. i), along with the Laplace transform with respect to time. 

In particular, the two-dimensional stress and strength of a gas-saturated massif has 
been studied for the case of an infinitely long cylindrical shaft of elliptical [76] and 
square [258]" cross section. The case of a cylindrical shaft with a cross section in the 
shape of a regular polygon with rounded corners was considered in [77]. 

The boundary-value problems were solved for the case when the stress of the unbroken 
porous gas-saturated massif is biaxial; a special case is a hydrostatic pressure. The sta- 
bility criterion of the solid phase was taken in the form [219]. 

Actual numerical results were obtained for shafts of elliptical and square (with round- 
ed corners) cross sections in a coal massif saturated with methane. 

Coupled two-dimensional problems for the stress of saturated porous massifs with hori- 
zontal ~ylindrical shafts ~ith curved cross sections were formulated and solved in [185, 
186]. In particular, it was shown that the coupling between the deformation and filtration 
processes affects the stress near shafts with elliptical and square cross sections. 

An axisymmetric stress state and strength of a gas-saturated massif near finite shafts 
occurs when it is assumed that at large enough depths the biaxial stress state of the un- 
broken massif can, to an acceptable approximation, be replaced with an isotropic compression 
(hydrostatic pressure). With this assumption and the equations of [257], the boundary-value 
problems were solved for an ellipsoidal shaft [259, 286] and for a finite cylindrical shaft 
[288]. Among the most complicated of the problems in this field are three-dimensional non- 
axisymmetric boundary-value problems for closed surfaces of revolution. Analytical and nu- 
merical results have been obtained for the case of a nonaxisymmetric stress state near ellip- 
soidal cavities and cylindrical cavities of finite length [260, 287]. 

The numerical results for the stress distribution near shafts obtained by solving cer- 
tain boundary-value problems have been used to describe some possible ejection mechanisms. 

Mechanics of Bodies of Finite Size and Structural Elements with Small Grooves. Two 
approaches have been typically used in the analytical solution of three-dimensional elastic 
boundary-value problems for bodies of finite size such that parts of the surface of the body 
belong to coordinate surfaces of different families. Theseapproaches are the method of 
superposition and the method of homogeneous solutions. The method of superposition of Lame 
invariably leads to an infinite system of algebraic equations. The theory of this type of 
infinite system, in which the asymptotic properties of the Unknown constants are of special 
interest, has been worked out fairly completely. 
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In principle, the methods of superposition and homogeneous solutions can be relied upon 
to obtain the solution only in those cases when parts of the boundary of the body are coord- 
inate surfaces of different families. This is because an exact general solution of the 
equations of elasticity (by means of separation of variables) can be obtained only in those 
curvilinear coordinate systems in which the Laplace equation (statics problems) or Helmholtz 
equation (dynamics problems) is separable. 

The subject of interest in this section is the class of boundary-value problems for 
solid and hollow isotropic and transversely isotropic cylindrical bodies of finite size with 
small grooves on the curved surface or on the ends of the cylinder. Because for bodies of 
this type at least one of the surfaces of the body is not a coordinate surface in cylindri- 
cal coordinates~ the method of superposition or homogeneous solutions cannot be applied di- 
rectly to the solution of boundary-value problems for such bodies. 

An approach based on the combined application of the method of perturbation of boundary 
shape and the principle of superposition was used for the first time in [177] to obtain an 
analytical solution of the axisymmetric boundary-value problem for the stress of an elastic 
isotropic cylinder of finite size with transverse corrugations. In this approach the three- 
dimensional boundary-value problem for a finite cylinder with small grooves on the curved 
surface or on the ends can be reduced to a recursive sequence of boundary-value problems 
for a circular cylinder which is bounded by coordinate planes along the axis. Therefore, 
at each step of the iterative process one can use the principle of superposition (or the 
method of homogeneous solutions). This leads to an infinite system of algebraic equations 
in each Of the successive approximations. The asymptotic properties of the unknowns of these 
systems are then studied. 

Application of this approach to axisymmetric boundary-value problems for solid and hol- 
low isotropic and transversely isotropic bodies with periodic and nonperiodic grooves on 
the lateral surfaces has been given in [20-22, 178] and with grooves on the end surfaces 
in [179]. Boundary effects in hollow cylinders with grooves caused by axisymmetric self- 
balancing loads applied to the ends were considered on this basis in [181]. 

These studies have shown that the practical convergence of the successive approximation 
process is fairly good [180]. We note that when the stress near the bottom of grooves in 
finite bodies is determined from the equations of [132], which were derived for infinite 
bodies, significantly underestimated results are obtained in many cases [180, 244]. 

3. HEAT CONDUCTION AND THERMOELASTICITY 

The different variants of the method of perturbation of boundary shape have been ap- 
plied tonew classes of boundary-value problems in the theories of heat conduction and 
thermoelasticity. These problems include, in particular, three-dimensional problems for 
bodies with noncanonical surfaces (such as rough boundaries), problems involving thin spher- 
ical and circular cylindrical shells with curved apertures, optimization problems for plates 
with curved contours, etc. 

Three-Dimensional Problems. In [165] boundary-value problems were considered for the 
heat equation involving bodies with nearly spherical surfaces. It was assumed that the co- 
efficients of thermal expansion of the body are different in the radial and tangential direc- 
tions. The following four types of boundary conditions were used, which are a certain ideal- 
ization of the actual physical processes: the temperature of heat flux is specified on the 
surface of the body, the surface is thermally insulated, or the convective boundary condi- 
tion is specified. The case of orthogonal surfaces (first variant of the method of perturba- 
tion of boundary shape) and nonorthogonal surfaces (second variant of the method of perturba- 
tion of boundary shape) were both considered. Problems of this kind reduce to a recursive 
sequence of boundary-value problems for spherical surfaces close to the surface of the body. 
Differential operators of the boundary conditions in an arbitrary order of approximation 
were given, allowing one to solve the problem to a required accuracy. Similar heat-conduc- 
tion problems for bodies with orthogonal and nonorthogonal surfaces close to circular cylin- 
drical were considered in [166]. 

This approach can be used to obtain an analytical solution in a form which is convenient 
for further use in the solution of boundary-value problems of thermoelasticity for noncanon- 
ical regions close to spherical or circular cylindrical [165, 166]. 
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Stochastic problems in the theories of heat conduction and thermoelasticity for deform- 
able bodies with Srregular surfaces were considered in [282, 283] with the help of the second 
variant of the method of perturbation of boundary shape discussed in Sec. i. 

In [168, 172] three-dimensional boundary-value problems of heat conduction and thermo- 
elasticity were formulated and solved for multilayered bodies with surfaces between layers 
that were nearly spherical or circular cylindrical. Ideal and nonideal thermal contacts 
between neighboring layers were considered. 

For orthogonal [172] and nonorthogonal [168] surfaces between layers, the original prob- 
lem was reduced to a sequence of boundary-value problems for multilayered bodies with canon- 
ical. surfaces between layers. 

Theory O f Shells and Plates. Boundary-value problems for heat conduction and thermo- 
elasticity in thin hollow spherical and circular cylindrical shells with curved apertures 
were considered in [119, 284, 285]. In particular, in [119] the steady temperature and 
stress fields were studied in a spherical shell with elliptical, triangular, square, pent- 
agonal, and hexagonal apertures. In [284] an approximate analytical solution was obtained 
for 6he thermostress of a thin isotropic cylindrical shell with elliptical, square, and hex- 
agonal apertures. It was assumed that the inner surface of the shell was thermally insulated 
and that the=e was convective heat exchange with a medium on the outer surface of the shell 
and on the contour of the curved aperture. The temperature field and stress of a trans- 
versely isotropic plate subjected to a thermally induced bend was studied in the monograph 
[215]. The method of S. P. Timoshenko was used, extended to take into account normal therm- 
al expansion in the directions perpendicular to the plane of isotropy. 

In particular, the thermostress of plates with elliptical, triangular, and square aper- 
tures was studied for the case when a bending distortion is caused by a steady temperature 
field varying linearly with thickness. 

In [26], analytical methods of dealing with optimization problems of the stress and 
deformation of thin plates induced by local heating was extended to the case when the plate 
is subjected to a two-dimensional temperature field and the high-temperature region is 
bounded by a curved contour. A mathematical formulation and analytical solution of the~e 
optimization problems was worked out using methods of the calculus of variations, s theory 
of functions of a complex variable, and the method of perturbation of boundary shape~ The 
paper [300] pertains to the same line of study. 

4. THEORY OF EMISSION AND DIFFP~CTION OF WAVES 

Emission and Diffraction of Sound by Noncircular Cylindrical Shells in a Fluid. Basic- 
ally two approaches have been devised to deal with the analytical solution of boundary-value 
problems of hydroelas[icity involving shells of noncanonical shape: the method of surface 
integral equations and the metaharmonic potential [19, 78, 123], and the method of perturba- 
tion of boundary shape [34-36]. 

One of the principal advantages of the first approach is its independence of the shape 
of the boundary surface. However, it is very difficult to obtain analytical solutions to 
actual problems and it is usually necessary to resort to various approximation methods in 
order to obtain numerical results. 

An advantage of the second approach (based on the method of perturbation of boundary 
shape) is that it does not depend on the equation of state and equations of motion of the 
shell and at each step of the iterative process the complexity of the problem remains the 
same as for the case of a circular cylindrical shell. Dynamics boundary-value problems 
involving noncircular cylindrical shells in a fluid were considered in [33-36]. Approximate 
analytical solutions were obtained for two-dimensional problems and the emission of sound 
by cylindrical shells with elliptical, triangular, and square cross sections was studied 
for the case when the shell is subjected to an axisymmetric excitation. Numerical values 
were given for the normalized pressure amplitude in the zeroth, first, and second approxi- 
mations and these results indicate that the iterative pracess converges in the practical 
sense [36]. In [35] the problem for the diffraction of sound waves by an infinitely long 
noncircular cylindrical shell filled with fluid was solved. 

It was shown that the presence of the fluid inside the shell leads to a decrease in 
the amplitude of the pressure in the reflected wave, since in this case energy is expended 
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in exciting waves in the fluid inside the shell. This agrees with results known in the 
literature for related problems [123]. 

The scattering of sound by an irregular waveguide was considered in [105]. The solu- 
tion was obtained by perturbation using a special choice of the starting (zero-order) ap- 
proximation. 

Propagation and Diffraction.of Elastic Waves. The first variant of the method of per- 
turbation of boundary shape (Sec. i), discussed in [40], has also been extended to dynami- 
cs elastic problems, The propagation and diffraction of elastic waves was studied in [53, 
54, 61-63, 91-96, 174] for bodies boUnded by smooth surfaces in the shape of noncircular 
cylinders or surfaces of revolution. 

In particular, the stress of a thin plate (generalized two-dimensional stress) with 
a curved aperture, where a uniform pressure harmonically varying in time was applied around 
the edge of the aperture, was studied in [93, 94]. It was shown that unlike the case of 
a circular aperture, in which the contour of the aperture emits only compressional waves, 
in the case of a noncircular aperture the symmetry is lost, and therefore the diverting wave 
field has compressional wave and shear wave components. The numerical results presented 
in these papers showed that there exists a frequency region in which the normal stress ex- 
ceeds its static value. 

The effect of plane harmonic compressional or shear waves on elliptical and square aper- 
tures in a thin plate was considered in [95, 96]. The most typical case was considered, 
where the aperture contour lies at a variable angle to the direction of propagation of the 
wave; however, there is symmetry with respect to this direction. The effect of cylindrical 
waves on an arclike aperture was discussed in [252] for an arbitrary location of the source. 

Methods of solving three-dimensional propagation and diffraction problems in bodies 
with noncircular cylindrical boundaries [52] and also steady-state diffraction problems of 
waves by finite nonspherical bodies of revolution [53, 62, 174] are based on the correspond- 
ing results of [40, 52, 158]. 

A generalized treatment of the approaches to the steady-state diffraction of elastic 
waves for the two- and three-dimensional cases was given in the monographs [61, 63, 65] for 
noncanonical regions. 

5. STREAMLINING OF BODIES OF NONCANONICAL SHAPES BY A VISCOUS FLUID 

Boundary-value problems for the steady streamlining of bodies by a viscous fluid have 
been discussed in several monographs by Soviet and foreign authors. However, because the 
basic equations are so complicated in the general case, exact analytical solutions cannot 
be obtained even for a sphere or circular cylinder. Therefore, various approximation me- 
thods have been devised for bodies of canonical shape which are then used to obtain a solu- 
tion with Satisfactory accuracy [23-25, 27]. In [23] an approximate analytical approach 
to the solution of two-dimensional Oseen problems for the streamlining of noncircular cylin- 
ders by a viscous fluid was developed. The approach is based on the first variant of the 
method of perturbation of boundary shape (Sec. i). The solution for a circular cylinder 
obtained in [24] was taken as the initial (zero-order) approximation. From the mathematical 
point of view this solution was constructed using rather strong simplifying assumptions; 
however, it agrees rather well with the experimental data, even for comparatively large 
Reynolds numbers. 

Explicit analytical expressions for the drag coefficients were obtained in [23] for 
the streamlining of cylinders of elliptic, triangular, and square cross sections. Compari- 
son of the numerical results for cylinders of the different shapes shows that the geometric- 
al characteristics of the cylinder, and also inertial and viscous effects affect the drag 
coefficient of the cylinder. 

6. EFFECTIVENESS OF THE METHOD OF PERTURBATION OF BOUNDARY SHAPE 
FOR BOUNDARY-VALUE PROBLEMS IN CONTINUUM MECHANICS 

An important question for approximation methods.of solving boundary-value problems in 
continuum mechanics is the effectiveness of the method. Even if one can prove that the me- 
thod converges in the general sense by the methods of functional analysis, this does not 
remove the importance of studying the practical convergence of the method. The latter in- 
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cludes the following questions: the rate of convergence; the number of terms necessary to 
obtain a given accuracy; an estimate of the remaining terms of the series; and the determin- 
ation of either the absolute or percent contribution of each of the computed terms in a sum 
of the absolute values of these terms. In addition, the effectiveness of the method can 
be judged by comparison with exact solutions in certain special cases, and also with experi- 
mental data, where data are available. 

Comparison with Exact Solutions inSpecial Cases. Boundary-value problems of continuum 
mechanics involving regions which are nearly spherical or circular cylindrical include as 
special cases elliptical and ellipsoidal regions, which in many cases have exact analytical 
solutions. Comparison of the exact and approximate numerical values for the same boundary- 
value problem is a certain indication of the effectiveness of the approximate method. 

For example, in [40, 70, 71] numerical values for the coefficient of stress concentra~ 
tion in spherical shells with curved apertures were given, along with the corresponding ap- 
proximate results for plates with similar apertures and these were then compared with the 
exact values. It was established by comparisons of this kind that when the boundary-value 
problem is solved to an accuracy of 0(e a) (in comparison with unity) the error is 1.3% for 
a free elliptical aperture with an axial ratio of 3:2 (e = 0.2) and is 5.6% for a square 
aperture with rounded corners (~ = 1/9). Approximately the same deviations are observed 
for plates with fortified elliptical and square apertures. 

It is well known [65, 107, 132, 222, 281] that three-dimensional static elastic prob- 
lems for ellipsoidal regions have exact analytical solutions. On the other hand, these prob- 
lems can be solved using the method of perturbation of boundary shape, where the initial 
approximation is taken to be the solution of the corresponding problem for a spherical re- 
gion. Therefore, the effectiveness of the method of perturbation of boundary shape can be 
analyzed by comparing the numerical results from the exact and approximate analytical solu- 
tions. For example, in [141, 19!] the exterior problem was solved for the stress of a me- 
dium with an ellipsoidal cavity of eccentricity e = (a - b)/(a + b) under applied torsion 
or compression (a and b are the half-axes of the ellipsoid). Exact solutions of these prob- 
lems are given in [107, 132, 281], for example. Comparison of the numerical values shows 
that the error (in comparison with the exact solution) does not exceed 3% for lel ~ 1/3 
(torsion) and Is ~ 0.268 (compression or elongation). 

The symmetric deformation of a thin isotropic ellipsoidal shell under internal pressure 
was considered in [117]. The exact solution of the problem was obtained in [103]. It was 
shown that when the surfaces of the shell approach one another (the thickness parameter P0 
decreases) the mdtual effect of the surfaces is amplified and the error in the method in- 
creases somewhat. However, in the interval 1.01 ~ P0 ~ 3.00 it does not exceed 3.6%, even 
though the difference between the numerical results for an ellipsoidal shell and those for 
a complete sphere reaches 32% for comparatively thin shells (i.0 ~ 20 ~ 1.05) and increases 
with increasing thickness. 

If an exact analytical solution is not available, an indication of the effectiveness 
of the approximate analytical methods can be obtained by comparison Of the approximate nu- 
merical results with experimental data, as was done in [180] in a study of the axisymmetric 
stress state of a finite solid isotropic cylinder with two circular grooves under a constant 
axial compression. A similar comparison was done in [180] for a complete cylinder with four 
circular grooves. We note that the stress concentration coefficient calculated from the 
equations of [132] for an infinite cylinder underestimates the true value by about 20-23%. 
This conclusion is also supported by the numerical results obtained in [244]. 

2tactical Convergence. As far as we know there has been no study of the convergence 
of the method of perturbation of boundary shape using functional analysis. However, in some 
special cases (and with certain assumptions) the first few terms of the series have been 
used to get an estimate of the remainder, and also the number of terms in the series neces- 
sary to attain a given accuracy [65, 66, 52]. Based on these results a majorant series can 
be constructed which gives an estimate of the original series. The estimate improves in 
accuracy the larger the number of known terms. 

However, in most cases one must be satisfied with an analysis of the so-called practi- 
cal convergence of the successive approximation process. By practical convergence we mean 
the determination of the percent contribution of each of the computed approximations in a 
sum of their absolute values, where the sum is arbitrarily taken to be 100%. This gives 
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some indication of what the percent contribution will be for the subsequent approximations 
in the numerical values of the computed physical and mechanical characteristics. In [22] 
the stress induced by an axial compression (expansion) of a transversely isotropic solid 
cylinder of finite length with a circular groove (different groove geometries were consider- 
ed, such as wavy, triangular, and trapezoidal) was studied and the stress concentration co- 
efficient was determined to the fourth order in a parameter small compared with unity (that 
is~ the first four terms of the series were found). The contribution of the zeroth approxi- 
mation was about 38-44%, the first was 44-47%, the second 6-13%, and the third 2-3%. All 
numerical values of these four approximations for three different groove shapes satisfy the 
inequality Aj+z/A. < A./A- i (J = i, 2) If it is assumed that the next (fourth) approxima- J ~ J-  
tion also satisfies thzs equality (with j = 3) then an upper bound to its contribution in 
the sum of the five approximations is 0.5-1.2%. 

Similar studies of the practical convergence of the method of perturbation of boundary 
shape have been done in other three-dimensional elastic problems for noncanonical regions 
[65, 66, 180, 208], in the theory of thin shells with curved apertures [69-71], in the me- 
chanics of composite materials with small-scale structural distortions [8-11, 13, 14], in 
the theory of emission of sound by noncircular cylindrical shells in a fluid [36], in un- 
steady problems involving the stress of a gas-saturated massif near a noncircular cylin- 
drical shaft [77, 185, 186], etc. 

Note on the Solution of Unsteady Problems in Continuum Mechanics. In solving unsteady 
boundary-value problems in continuum mechanics for noncanonical regions it is natural to 
start with the combined application of the method of perturbation of boundary shape and the 
Laplace transform with respect to time. As mentioned in Sec. 3, this approach was used in 
[76, 77, 185, 186, 258-260, 286-289] in solving unsteady boundary-value problems involving 
gas-saturated media with noncanonical cavities. Concerning the effectiveness of this com- 
bined approach (method of perturbation of boundary shape and the Laplace transform with re- 
spect to time) in unsteady problems in continuum mechanics, we note that, as the order of 
the approximation increases, the order of the corresponding differential operators also in- 
creases, especially with respect to the radial variable. This leads to higher powers of 
the Laplace transform parameters in the transformed e~uations. Hence, when the equations 
are transformed to functions of time, higher negative powers of the time t (or the dimension- 
less time Fo) will appear. This means that this approach will lead to a convergent itera- 
tire process when the region under consideration deviates only slightly from a canonical 
region, and for relatively large values of the time. 

If this restriction is not acceptable (for small values of Fo, for example), then it 
will be necessary to study the asymptotic behavior of the solution as Fo ~ 0 (s + =), or 
to apply (if necessary) various techniques of speeding up the convergence or, if this does 
not lead to satisfactory results, to develop other approaches which do not involve the com- 
bined application of these two methods. The practical convergence of the numerical results 
for the successive approximations in problems of this kind have been studied in [77, 185, 
186]. 
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