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Abstract. The wave function ~p+ of a positron in Cu is calculated using the MAPW (modified 
augmented plane wave) method. This method, taking into account the correct symmetry 
of~0+ inside the atomic polyhedron and yielding the appropriate behaviour near the nucleus, 
leads to rapidly converging results. The Hartree potential seen by the positron is constructed 
from the electronic wave functions determined by the MAPW method. It is found that the 
lowest eigenstate of the positron is a F 1 state. In a provisional calculation, the matrix 
elements describing the two-quantum angular distribution of positron annihilation 
radiation are computed using recent MAPW electron wave functions. Good agreement 
with the measured anisotropic positron annihilation is found. 

Index Headings: Positron wave function Anisotropic positron annihilation 

In the last decade different measurements of the 
angular distribution of radiation due to annihilation 
of positrons in single crystals of Cu have been 
reported [1-7]. They allow to investigate electronic 
properties of metals, particularly the momentum 
distribution of conduction electrons. The accuracy of 
the experimental methods has progressed to the 
extent that highly structured results of the anisotropic 
angular distributions are available. The theoretical 
description of this anisotropy requires a proper 
account of the crystal symmetry. That means, crystal 
wave functions for positrons and electrons have to 
be inserted and the matrix elements have to be 
evaluated integrating over the atomic polyhedron. 
The investigation of Berko and Plaskett [1] is 
incomplete in this respect. Their wave functions of 
positrons and electrons were determined by the 
Wigner-Seitz method in which the k-dependence of 
the electron wave functions is neglected. In the spirit 
of the Wigner-Seitz method, the atomic polyhedron 
is replaced by a sphere; to allow for the fact that the 
wave functions do not vanish at the Wigner-Seitz 
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radius, a correction term is added. Both approxima- 
tions seem to be serious since the main contribution 
to the matrix elements, describing the two-quantum 
angular distribution, comes from the outer part of the 
atomic polyhedron where the actual positron wave 
function exhibits a substantial anisotropy which 
cannot be produced by the Wigner-Seitz method. 
In order to avoid the disadvantages of the Wigner- 
Seitz method, not correctly describing the distribution 
at small angles, Gould et al. [6] make use of a 
procedure originally applied by Stroud and Ehren- 
reich [8] to the case of A1 and Si. They represent the 
positron wave function by a plane wave expansion in 
terms of reciprocal lattice vectors K~. This procedure 
yields a crystal wave function which incorporates 
the proper symmetry. In addition, it allows to take 
into account the shape of the atomic polyhedron 
correctly. However, they find that the amplitude of 
the positron wave function at the origin tends to 
decrease as the number of plane waves is increased. 
We believe that this overestimate of ~p + (0) enhances 
the annihilation with the low lying electron states 
and produces a momentum distribution extending 
to considerably larger momenta than those observed 
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experimentally. The weak convergence of the posi- 
tron wave functions near the origin can be explained 
in the following way: In any case, near the nucleus, 
the positron feels a spherically symmetric potential. 
From its Schr6dinger equation follows that the 
ground state wave function having/'1 symmetry may 
be approximated by 

tp+ = Ao(1 + Zr/2) + O(r2), (1) 

where Z is the positive charge of the nucleus. The 
absolute value of r is expressed in atomic units. Note 
that ,p+ consists of even and odd powers of [r[. On 
the other hand, an expansion in terms of powers of 
Irl, in the vicinity of the nucleus, of a sum over plane 
waves with vectors K~ of the cubic reciprocal lattice, 
yields even powers only. Therefore, in principle only 
the infinite sum of plane waves will produce the 
correct behaviour of ,p+ near the origin. From (1) 
we deduce that the coefficients of the plane wave 
expansion decrease as 

for large values of K I. 
This proportionality to (3V0+/&)r~o, i.e. to Z, 
explains the result found by Gould et al. [6] that the 
convergence of the plane wave expansion of the 
positron wave function in Cu turns out to be slower 
than in A1 or Si. A natural way to circumvent these 
drawbacks is to use different representations for the 
positron wave function: near the nucleus one may 
use a representation for ~+ similar to the Wigner- 
Seitz method while in the remaining part of the 
atomic polyhedron a plane wave expansion may 
be more appropriate. Wave functions constructed 
in this way may be generated by the APW (augmented 
plane wave) method proposed by Slater [9]. 
In this paper we shall apply a modified version of this 
method (MAPW) which yields wave functions and 
their first derivatives which are continuous everywhere 
in the crystal [10]. Similar to the plane wave expan- 
sion this procedure allows to take into account an 
anisotropic potential and, in addition, to calculate 
possible positron states having symmetries different 
from F,. We found that these other states have 
energies more than 2 Rydbergs higher than the F 1 
ground state. Furthermore, the matrix elements 
describing the two-quantum angular distribution are 
computed with realistic k-dependent electron wave 
functions produced by MAPW calculations. 

1. Calculation of  the Positron Wave Function 

1.1. Formalism 

In order to calculate the wave function of the positron 
in Cu we solve its time-independent Schr6dinger 
equation 

h2 
- 2 ~  A ~ + V(r) ~ = Etp. (2) 

For V(r) we use, according to the so-called Somme> 
feld approximation, the Hartree potential seen by an 
electron, with opposite sign. 
This approach is not justified in calculations of the 
positron lifetime in matter, but explains quite 
satisfactorily the angular correlation in many metals 
[11, 12]. 
The main problem in the use of V(r) is that we must 
well take into account all its anisotropies. However, 
detailed calculations published elsewhere [13, 14] 
show that for Cu, inside the sphere touching the 
atomic polyhedron (APW-sphere), the anisotropic 
components of the potential do not exceed 1% of 
the spherical mean value. (The arbitrary constant was 
adjusted so that the mean value of the potential in 
region outside the spheres vanishes, leading to an 
average of 1.354 Ry in the whole atomic polyhedron.) 
Outside this sphere, we use the plane wave expansion 
which properly accounts for the symmetry of the 
potential. As in the original APW method the 
Schr6dinger equation (2) is solved by the corre- 
sponding variational principle. 
In contrast to other versions of the APW method [15] 
we do not use exact solutions inside the APW-sphere, 
even if the potential is spherical. Similar to Stroud 
and Ehrenreich [2], outside the APW-sphere, we 
choose a linear combination of plane waves as a 
trial function for the Rayleigh-Ritz procedure 

v ~ ( r )  = Y~ vJ(j) s~,(, ', Kj) (3) 
j~' 

which has definite symmetry properties. In accordance 
with Lee-Whiting [16] we assume that the positron 
is thermalized. Hence the momentum of the positron 
is negligible compared to a characteristic length of 
the reciprocal lattice. Bloch's theorem then implies, 
that the corresponding wave function transforms as 
any representation of the cubic point group, The 
symmetrized plane waves used in expansion (3) 
account for the point symmetry and are defined 
by [17] 

1 
S~,(r, Kj)= G~, ~ D]~,(R) e iRaj" , (4) 

R 
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where R denotesan operation of the full cubic group, 
and D~(R) is the matrix belonging to R in the 
representation 7. We use Slater's [18] choice of the 
D's and the notation for the irreducible representa- 
tions due to Bouckaert et al. [19]. We define the 
shell of the vector Kj as the set of vectors obtainable 
from K i by applying on it all the operations of the 
cubic group. Different shells are ordered according 
to the magnitude of their vectors. The quantity j 
then denominates the shells where Kj is a fixed 
representative of the shell. The G's are normalization 
constants. The subscripts e, e' denote the different 
rows and columns of a representation. 
Inside the APW-sphere, products of radial functions 
and of linear combinations of spherical harmonics 
are used. These linear combinations Z~,ff, l) are 
defined in a way analogous to (4). The Z's are then 
basis functions for the row ~ of the representation 7. 
The subscript t distinguishes the different linear 
combinations which are possible for fixed 7, a, and I. 
The radial dependence of the partial waves with 
l <  L is described by the functions R,g(r, E,l ) which 
are solutions of the differential equation 

+ + ? Vsph(r) = 0 ,  (5) 

where V~p h denotes the spherical mean value of the 
potential V(r). We considered solutions of (5) in the 
intervall 0 _< r _< r o with r 0 > ri, where ri is the radius 
of the APW-sphere. Details of the determination of 
the R,~(r,E,3 may be found elsewhere [10]. The 
radial dependence of the partial waves with l > L is 
represented by spherical Bessel functions denoted by 
Jl. Making use of the identity 

S~,(r, Kj)= ~, itZV*~',tt~j, l) Z~,ff, l)jz(JKjl r) (6) 
/=0 

t 

the wave function inside the APW-sphere is described 
by L 

l=0 
n , l  

+ i' zL( , l) Z w m ~,,. ~,,. j,l)j,(lKjlr) 
I=L+I  j,a' 

' ( 7 a )  

= Y, v (j) sL,(r, K)  

L 
+ 2 ilZ~,(~' I)[2 A~l~Rm(r) 

/=o l-- 
t 

- Z V?(iiZ'*~,,,~, ~,,,.([(.j, l)jt(lKj] r)] , (7b) 
j , ~ '  

where ~ and K describe unit vectors. 

In (7 a) the second sum implies the continuity of the 
partial waves and their derivatives for l > L. In order 
to fulfil these conditions for l=< L we demand for all 
pairs l, z 

Z Z ' " V~,(j) Z~,,(Kj, l) jt(lKil ri) (8a) 
?1 JO;' 

dR,1 djz(IKjlr) 
. . . . .  

A~lt d ~ - r  r i --- E V~ (j) Za~*l(/(j, l) ( 8 b) j~, dr 

Furthermore, the presence of the second sum in (7a) 
makes it possible to work with a rather small value 
of L, e.g. L = 2 in the case of the Cu positron wave 
functions. We proceed in the usual manner and make 
stationary the expectation value of the energy under 
the constraints of normalization and continuity of the 
wave function and its derivative. For a definite 
representation 7 this leads to an algebraic eigenvalue 
problem. Its solution gives the energy eigenvalues as 
well as the expansion coefficients V~/) and A~,~,. 
Details of the formalism and the numerical procedure 
are described elsewhere [10]. 
Here we want to make some remarks on the Hartree 
potential used. Starting from the semi-empirical 
potential of Chodorow [20] the electron wave func- 
tion in Cu is calculated at 15 points in the 48th part 
of the Brillouin zone using the MAPW method. 
Poisson's equation and the Ewald method lead from 
this charge density to the Hartree potential for 
electrons. The Fourier coefficients as well as the 
r-dependent potential inside the APW-sphere are 
given in [ 14]. The arbitrary constant in the potential 
was determined by demanding that the average of the 
potential outside the APW-sphere be zero. 

1.2. Results 
In order to find out which of the positron eigenstates 
is the lowest one, the eigenvalue problem was solved 
for several representations at F. We used L = 2 and 
up to seven partners R,~ for fixed I. For the expansion 
in the outer region of the atomic polyhedron up to 
seven cubic shells were used (equivalent to 65 plane 
waves).  
In Table 1 the eigenvalues up to 7.5 Ry are listed. The 
representations not contained in the table have 
energy values higher than this value. From Table 1 
it is infered that the lowest eigenstate belongs to the 
representation F 1 in agreement with other calcula- 
tions [1, 6, 8]. 
The wave function of this state is shown in Fig. 1 for 
the directions [100], [110], and [111], within the 
Wigner-Seitz cell. The overall shape of the positron 
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Table 1. Positron eigenvalues in Ry. The mean value of the positron 
potential in the atomic polyhedron is t.354 Ry 

F~ 0.495 3.128 5.676 
F~ 2.764 
F~5 2.934 7.380 
Fi s 3.055 4.275 t'12 3.902 7.3 ! 9 
1"25 7.308 

ground-state wave function agrees with the results 
derived by Berko and Plaskett [1] as well as by 
Gould et  al. [6]. In the latter case a comparison of the 
anisotropy of the wave function is possible and again 
gives a close resemblence. An obvious difference is 
seen in the behaviour of ~p+ along the [100]-direc- 
tion. Whereas the curves for all directions in [6] 
coincide up to more than half the radius of the 
inscribed sphere, i.e. to about 1.4 a.u., our curve in the 
[100j-direction turns away from the curves in the 
other two directions at about 0.7 a.u. At the bottom 
right corner of Fig. 1 the wave function near the 
nucleus is plotted enlarged. It is seen that at r = 0 the 
amplitude of the wave function is very small but 
definitely not zero, in accordance with (1). 
Because the ansatz in (7a) seems appropriate we 
expect that the wave function shown near the nucleus 
is more realistic than that obtained by the plane 
wave expansion [6, 7], even if 145 reciprocal lattice 
vectors were used in the latter case. 

015" ~ [100) 

010" / 

0 112 214 316 

Fig. 1. Normalized positron wave function in Cu along three 
different crystal directions. In the bottom right corner the wave 
function near the nucleus is plotted in an enlarged scale 

2. Preliminary Results of the Calculations 
of the Two-Quantum Angular Distribution 

In a preliminary calculation Blumen [13] has 
calculated the matrix elements characterizing the 
positron-electron annihilation interaction. The wave 
functions of the conduction and valence electrons 
~P,k were taken from the MAPW calculations 
whereas the positron wave function was computed 
by means of a plane wave method [8] using the 
MAPW potential described in Section t. As the 
~nk's are known along directions of high symmetry 
in the reciprocal space only, the angular dependence 
of the probability that the center-of-mass momentum 
of the annihilation pair is p, 

Q(P)= Z .( d3k[S w,k'"* o~ .... ~+ dar] a , (9) 
n BZ 

was fitted by a cubic harmonic expansion following 
[3]. Using this expansion the two-quantum angular 
correlation function N~(pz) as measured by the long- 
slit geometry, may be produced straightforwardly 
as a function of the sample orientation r/. 
For a first survey many-body effects have roughly 
been taken into account by an enhancement factor 
which is assumed to be momentum-independent. 
To compare quantitatively the results with the 
observed anisotropies [2, 4], in Fig. 2 we plotted the 
difference in the angular distribution along the A- 
and X-directions, NIl 11] - N[ilo]. The agreement of 
the theoretical and experimental results is surprisingly 
good. Similar behaviour is found for the difference 

~'~ theoretical curve after Blumen 
/+It ~ Aexperi mental C:Ssh~2r :ftt earl" 

 ot/ /~176 /%r \Y"U,=- 

-t; 

Fig. 2. Difference of the angular correlations of positron annihila- 
tion in Cu between directions [110] and [111] of p-space. The 
circles represent the experimental values, the solid line gives the 
theoretical result. The ordinate values are in arbitrary units 
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N~10oj-N~1111. The deviations present may be due 
to many-body correlations leading to a momentum- 
dependent enhancement factor which is caused, 
among other things, by the different effective masses 
of the valence and conduction electrons of Cu 
[21-24]. 
This suggestion is supported by the fact that the 
averaged angular distribution calculated from NEloo J, 
N)I~ Ol, and N E1117 cannot be fitted to the experimental 
curve of Mijnarends [3] over the whole range by 
a suitable choice of a multiplicative factor. 
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