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Abstract. The use of various methods processing Doppler broadened annihilation spectra 
taking into account the detector resolution function and the restoration of the electron- 
positron pair momentum distribution is discussed. A statistic regularisation method is 
proposed. The method is found to be effective particularly for the study of electron 
momentum distribution in metals. 
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The production of Ge(Li) detectors with relatively high 
energy resolution (~ 1 keV) has resulted in extensive 
investigations of the annihilation behaviour of slow 
positrons, using the Doppler broadening of annihi- 
lation line (511 keV). The relation between the observ- 
ed Doppler energy shift AE and the moment com- 
ponent of the positron-electron pair P~ along the 
observation axis is to a good approximation equal to 

Pz E , A e =  5-  o (1) 

where E o = 511 keV and Pz in mc units. The correlation 
between the energy distribution f(AE) of annihilation 
photons and the momentum distribution N(P) of the 
positron-electron pair will be 

f(AE)= ~ N(P)/PdP (2) 
AE 

2E~o 

(assuming an isotropic momentum distribution). Since 
the experimental energy spectrum is smeared by the 
instrumental resolution function R(E), (2) can be writ- 
ten as 

o?__ r V~o/2 dEq 
f(AE)= J]  ~ R ( E ' - E ) ~ I N ( P ) d P ,  (3) 

0 L-PEo/2 1" J 

where f(AE) denotes the experimental spectrum. 

* Technical University of Denmark, Building 307, DK-2800 
Lyngby, Denmark 

As seen from (2) and (3), this method provides, in 
principle, the same information as the angular cor- 
relation method. However, some essential advantages 
such as the considerably greater rate of information 
storage, possible use of positron sources of rather low 
activity (~ 10 ~tC instead of a source strength of the 
order of 100mC in the angular correlation system), 
simplicity of the experimental procedure. A disadvan- 
tage is the poorer resolution of Ge(Li) detectors com- 
pared to angular correlation technique (~ 1.0 keV or 

4 mrad in the angular scale). Thus, a correct method 
permitting allowance for smearing of the experimental 
spectrum by resolution function would increase the 
efficiency of the use of the Ge(Li) detectors 
considerably. 

1. The Basic Relations 

The instrumental resolution function R(z) becomes a 
solution of the first-order Fredholm equation 

+ c o  

f (x)= S R(x'-x)O(x')dx', (4) 
- c o  

where f(x) is the experimental spectrum, qS(x) is the 
non-distorted spectrum. 
The algebraic form of (4) is 

fj = ~ R3i~)i, j = 1,..., n. (5) 
i = 1  
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All earlier methods of solving (4) and (5) consist of the 
development of a certain interative process with step- 
wise control of the convergence of the square sum of 
the experimental f (x)  function deviations from the 
convolution of the i-th approximation qSi(x) [1-5]. 
Vector ~b which minimizes the )~2 value 

%2=rL-1 (K) __ f/exp)2 , is taken as the problem 
i= 

solution. Further, the authors of [4, 5] approximated 
the obtained curve by the sum of some analytic 
functions (e.g. Gaussian) and use the smooth curve 
obtained as a primary approximation to the next 
iterative process. The procedure is repeated until the 
minimum of %2 is obtained. 
Though the authors of [4, 5] managed to obtain a fair 
correlation of the deconvoluted spectra from the 
Ge(Li) detector and of the angular correlation spectra, 
their method seems to have some essential drawbacks, 
such as : 
1) The method ignores the statistic nature of the 
experimental function f and consequently makes it 
impossible to estimate the deconvolution error. 

2) The method is valid only for curves with the best 
statistics (more than 106 counts in the peak). Otherwise 
a preliminary smoothing of the spectrum is needed, 
which would be an incorrect procedure. 
3) If the primary approximation is chosen wrong, the 
convergence might not be obtained. 

4) In general, Z 2 cannot be a true criterion in such 
problems, since the initial approach, (4), is incorrect. 
These difficulties arise from the poor stipulation of the 
system, i.e. from the strong dependence of the solution 
4~ on variations in f, the coefficient errors, Rij, and the 
miscalculations. 
For the reason it seems more expedient to use the 
statistical regularisation method for solution of (4), 
developed in [7, 8]. We have used it earlier in process- 
ing the angular correlation spectra [9]. 

2. The Statistical Regularisation Method 

The method implies treatment of (4) as a mathematical 
statistics problem and the regularizer (the a priori 
information) is introduced as some probability distri- 
bution for r 
Let f~ be measured with a dispersion S~, independent 
of different j and with normal distribution. Then the 
conditional probability that at the given q~ vector f can 
be measured in 

a 1 fJ-- Ji~)i 

j:lll 1/27 .sj exp - i2s  j j .  (6) P(f/gp)= 

This relation can be rewritten in matrix form 

P( f /~)  = C 1 exp [ - ~(4~, B~) + (a, ~b)], (7) 

where B = R + WR, a = R + W f  

Wij = (~ij/S~ (i,j = 1, . . . ,  n), 

C t =const, independent of ~b. Since the only a priori 
informatior~ about q)(x) is that it is a smooth function, 
the priori statistic ensemble will be [7] 

where ~2 is a positively defined symmetric matrix such 
that the functional (~b, g2~b) gives a finite difference 
approximation to the integral ~(d24)/dx2)2dx =const, 
is the regularisation parameter, C 2=const,  indepen- 
dent of ~b. 
A distribution for q5 is given by the Bayes expression 
[7] 

P(f/(P)P~(r 
P( O/ f ,  ~)= ~ p(f/4))p~(qa)dr p �9 (9) 

Substituting (6) and (8) into (9) we obtain 

1 B P(O/f,~)=Caexp{-5[r + ~f2)4,] +(a, 4,)}, (10) 

where C 3 = const, independent of ~b. The normal distri- 
bution obtained for the probability P(q)/f, cz) gives the 
most exhaustive solution of the problem with ~ in 
given a priori. The mathematical expectation of 4 over 
a distribution, (10), is taken as the deconvolution 
function 

<q~>~ = (B + ~"~)- la .  (11) 

The deconvolution error is defined as the root of r 
dispersion: 

al = ~ / ( ~ O ) u  * (i = 1, _.., n). (12) 

Thus, (11) and (12) give the most probable fair solution 
at given vectors f and S. It is important that this 
solution is obtained by using the minimal and reason- 
able a priori information about the smoothness of 
function q~(x). 
However, since in most practical cases the parameter a 
is an unknown algorithm a solution of (4) has, in this 
case, been found [7]. In computer realization this 
algorithm consists in search for the most probable 
c~ =c% and in finding the solution with ~ = a  o according 
to (11) and (12). 

3. Results and Conclusions 

To illustrate the efficiency of the program the annihi- 
lation spectra in water and benzene were measured at 
t ~  22 ~ C. Each experimental spectrum was obtained 
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using a digitally stabilized Ge(Li) system with resolu- 
tion (FWHM) 1.33keV. The statistics in each curve 
peak were ~ 106 counts. The detector resolution was 
determined by recording the 514keV 7-ray peak of 
85Sr with statistics of ~3.104 counts. For  con- 
venience, the resolution function was described as the 
sum of two Gaussians (92.9%, 0 = l . 3 4 k e V ;  7.1%, 
0 = 3.32 keV, 0.987 keV shift to the left) and was used as 
such in all calculations. It should be noted that in 
general it can be used in a tabular form. 
Before the processing of each spectrum the back- 
ground was subtracted [5]. 

i 

where B i stands for the background in the i-th channel, 
B L for the background in the low energy region of the 
spectrum, B~ for the background in the high energy 
region of the spectrum, and A for the sum of counts 
beneath the curve. 
This approximate description of the background seems 
to be quite sufficient for practical purposes and does 
not affect the ultimate result. 
The program was tested in model experiments. The 
curves with a "narrow" component corresponding to 
annihilation of p-Ps atoms were naturally the most 
difficult for deconvolution. 
The model experiments were conducted as follows. 
Setting the ~b(x) function (angular correlation curves of 
some substances were used as a rule) smeared it by a 
nucleus equation (4), and adding the normally distri- 
buted error we got "the experimental" function f(x) 
from 

n ( \1/2 
fJ=i~=, Raic~i+ i:, ~ Rxi+i) {j' j=l,...,n, (14) 

where ~ is a normally distributed value with ma- 
thematical expectation 0 and dispersion 1. 
Carrying out back deconvolution we compared the 
obtained result with the initial function ~b. The re- 
storation was considered good if the results coincided 
within the convolution error. The statistics of ~ 10 6 
counts in the peak appeared to be sufficient for 
restoration of even narrow curves (with a strong 
narrow component). Broad curves (without a narrow 
component) could be restored with statistics of ~ 105 
counts in the curve peak. 
The deconvolution of non-distorted curves from experi- 
mental spectra of benzene and water is shown in Fig. 1. 
[15% of positron annihilation in Ni foil covered the 
source and 12 % of positron annihilation in the source 
material (NaCI) were taken into consideration in 
Ge(Li) experiments.l 
Comparison of the results obtained by other methods 
of solving (4) seemed to be of interest. The method o f  
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Fig. 1. Doppler broadened annihilation line in benzene and water. �9 
The experimental curve, �9 the deconvoluted line, - solid line, 
angular correlation curve, corrected on the resolution function 
[11, 12]. The uncertainties are smaller than the points. All curves are 
normalized to equal areas 
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Fig. 2. Curve 2 is the model momen tum distribution: 1 is the 
experimental energy spectrum, 2 is the deconvoluted curve 
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ordered minimization of average risk developed by 
Vapnik and Chervonenkis [10] was used, because this 
method, as well as the statistical regularisation me- 
thod, were most suitable for the purpose. The re- 
storation curves appeared to coincide with those in 
Fig. 1 to an extent such that they could not be 
differentiated. Since the two methods implying dif- 
ferent treatment gave the same results the solution 
obtained seems to be true ...... - 
It will be noted that in a number of cases (for example, 
the problem of positron annihilation in metals) infor- 
mation about the momentum distribution of annihilat- 
ing positron-electron pair provides more information 
than the energetic photon spectrum. Here, (3) should 
be used. 
However, model experiments show that for curves with 
an intense narrow component (~15  to 20%) both 
methods gave a smooth solution even with good 
statistics ( ~  106 to 107 counts in the peak), although 
they represent very well the broad part of the curve. At 
the same time very good deconvolution was obtained 
in the peak (Fig. 2). Thus this method might appear to 
be very effective, for instance in the study of metals. 
It will be noted that the above drawback of the statistic 
regularisation method does not seem to be essential in 
principle, in this case, and is rather a consequence of 
approximate computer realization of the full algorithm 
of finding solution with an "a priori" unknown re- 
gularization parameter e, as the limited computer 

efficiency compelled us to seek the solution only with a 
single, most probable %. 
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