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We consider torsional vibrations of a system whose dynamic model is shown in Fig. i. 
Here we have used the following notation: 1 and 2, driving and driven shafts of the sys- 
tem; 3, Hooke's joint connecting these shafts; ~t, angular velocity of the end of the driv- 
ing shaft; st and s2, rigidities of the driving and the driven shafts; I~ and I2, moments 
of inertia of the reduced driving and driven masses of the system; % and 8, the angles of 
rotation of the driving and driven forks of joint 3; 0, the angle of rotation of the driven 
mass; y, the angle between shafts 1 and 2; Mfr, the moment of friction in the joint referred 
to the driving shaft; Mf, the moment of forces applied to the driven shaft 2. 

In setting up and in the analysis of the model we have assumed that Ii >> I2, the moments 
of inertia of shafts 1 and 2 are small compared with I2, and Mf = const. 

This problem has been solved in many studies, for example, [7, 8], in an analogous for- 
mulation; however, these investigations have been carried out mainly on the basis of the 
linear model and also without taking into consideration certain factors which are typical 
for such systems. Such a simplified approach does not permit one to display many interest- 
ing phenomena which can be observed in such systems. In the present article the vibrations 
of the system are investigated on the basis of the nonlinear model using the asymptotic meth- 
ods developed by Krylov, Bogolyubov and Mitropol'skii [2]. 

The motion of the investigated system under the action of a torsion moment producing 
the rotation of the driving shaft and taking the viscous damping and the moment applied to 
the driven shaft into consideration can be described by the following differential equation 
with a known degree of accuracy: 

&O" + s~ (0 - -  ~ + c (0' - -  ~') + Mf = O, (1) 

where the prime denotes differentiation with respect to time and c is the viscous damping 
constant. 
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In the presence of energy losses in the joint the following equation holds: 

Keeping in mind the well-known equation of the dynamics of Hooke's joint 

i~' cos y 
V= 1-sin2vto;ax ' 

and Eq. (2), and introducing new variables ~, = .~,t and x = X -- q~,, Eq. (i) becomes 

(2) 

(3) 

lp~x (f + ~- Fix + sq 

, 81 ) $1 X f[.-l-.-~F'~x --}-co, s~FI(x- t  - 1)-}-co~z~Fx-I-s ,  Fx-I -Mf~-O.  
s~. s z (4) 

Here 

= f (~,, ?) = cos ? ( 1 -- sin 9- ? cos2~) -'; 

_~1 [ (. cos,cos~. 
F---- F (~, y) -- 2 -- 1 -- go tg ? V 1 -- sin z ? cos" T} _ _  - -  sin 

go is a constant depending on the parameters of the joint [4, 5]: the dot denotes differen- 
tiation with respect to the angle of rotation ~: of the driving shaft. 

Expanding functions f(X, y), F(%, T), and their derivatives in power series of x and 
~, = tan(y/2) we substitute the results into Eq. (4). Next, multiplying both sides of the 
obtained equation by sa/12~(sz+s2), we write this equation in the following form: 

f +  k~ (x + Xo) = rq~ (x, ~, ~; ~) + ~,~h (x, ~, ~; ~0 + . . . .  (5) 

Here we have retained second-order nonlinearity and have introduced the following notation: 

Sz Siss ~ ~ C 
s, + s----'~ ---- P; I~(sl~.s~)=cot; - - = k ;  ~% - -  ---- w~; 214~a 

Mf. (6) 

S, 

where ~r is the eigenfrequency of the "rectified system," i.e., the system in which y = 0 
(see Fig. i); ~ is a quantity taken as the small parameter. 

Following the asymptotic methods of [2], we find the solution of Eq. (5) with an ac- 
curacy up to quantities of second order of smallness in the following form: 

2 3 
~r d- x o -- a cos # -F l ~ Z Z tz~ (a) cos (m~l -+- n~) -~ ~... (a) sin m~, d- n~), 

m = l  t ~ 3  

where the amplitude a and phase ~ of the first harmonic of the vibrations are determined 
from the system 

(7) 

�9 { a=--~a vk(1 - - p ) - - - -  a2~o~pca- 4 p ) e _  4 + 6~~ 4k ~ -  1 § (2-3p)  ( 3 -  4 p ) . ] } . k  2 - 1  ' (8) 

---- k + rLZB~ (a); (9) 

~mn(a), ~mn(a), and B2(a) are expressions which are proper functions of the amplitude a and 
the parameters of the system. 

Equating the right-hand side of Eq. (8) to zero, we obtain an equation for determining 
the stationary values of the amplitudes of vibrations; this equation admits of two solutions: 
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a = O  (lO) 

and 

a'- ---- (4k ~ -- I) (k S -- I) [32xolxp (3 -- 4p) -- vk (I -- p) (k z -- 4)I (ii) 
6Xol~kz (/~2 _ 4) [3g z (l - -  p)~ (k z - -  I) -~- (2 - -  3p) (3 - -  zlp) (4k2 - -  I)l 

An investigation of the stability of the obtained solutions shows that the inequality 

32XoIxp (3 - -  4p) (12)  
'vk ( , I - -  p) > k2__ 4 

is the condition of stability of the heteroperiodic regime (i0) and the condition of insta- 
bility of self-oscillatory regime (ii), while inequality 

32XoIxp (3 -- 4p) 
vk(1 - - p )  < k2__4 (13)  

characterizes, respectively, the instability and stability of the indicated regimes. 

In the resonance case we seek the solution of Eq, (5) in the form 

x + x o = a cos (k% + t )  + Ixu I (a, k%, t )  + . . . .  

Here the variables a and t are determined from the system 

(14) 

a ---- IxAx (a, t )  + Ix2A~ (a, t )  + . . . ;  ~ ---- IxBt (a, t )  + Ix2B~ (a, t )  + . . . .  (15) 

Following [2], in the first approximation we can detect the appearance of resonances of 
the form 

I 2 1 
k~- - f f ;  - 5 ;  -~ ;  1; 2. 

We shall analyze the cases of fundamental resonance of the system: 

k~l. Assuming that k 2 = i + h~ we write the solution in the form 

x + xo = a cos (~t + 0), 

where a and t are determined by the system of the first approximation, 

k~l and k~2. 

(16) 

[1 2 1 a ---- Ix ~-  gpa ( c o s t  + sin ~) + xopg (cos 0 - -  sin O) - -  ap sin 2 t  - -  3x.ap cos 20  - -  av  (1 - -  p) ; 

13 A] aO = Ix "4 gpaz (cos 0 - -  sin O) + xopg (cos 0 + sin t ) - -  ap cos 2 t  + 3xoap sin 2 t  + ~ a . 
(17) 

System (17) can be investigated by the qualitative methods of the phase plane [i, 2, 3]. 
Since the right-hand sides of Eqs. (17) are periodic functions of variable ~ , the phase space 
of the system can be assumed to be the cylindrical surface (a, O) with the identifying edges 

=--~ and t = ~, where ~ is the angular coordinate. 

In view of the unwieldy nature of the computations for the general case of systems of 
type (17) and also considering the smallness of parameter xo, we carry out the analysis for 
the limiting case xo = 0. Thus, as the stationary solutions of (17) we get 

and 

a ---- 0; cos 20 = hl (18) 

gta  ( c o s t  -I-" sin O) - -  sin 20 - -  vi ---- O; 3gta (cos t - -  sin O) - -  cos 2tq-At-----O. (19) 
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Here 

Fig. 2 

g i - -  g " v ( 1 - - p )  . A l =  a 
4 ' v l  = p , 2p  " 

An analysis of the roots of the characteristic equation of the linear system correspond- 
ing to solution (18) shows that the singular points of the phase plane a = 0; ~ = I/2arccos AI 
+~n are unstable equilibrium positions, i.e., saddle points, and the points a = 0, ~ = 
--:/2 arccos A~ + ~n are the stable equilibrium positions, i.e., the nodes, if the relation 
A~ >I -- ~ holds, and are unstable equilibrium positions, i.e., saddle points, if the relation 
A~ < i -- ~ holds. It must be noted that the existence of region (18) is ensured by the con- 
dition IA~I~ i. 

The characteristic equations corresponding to solutions (19) have the form 

~'x -38 2 __~I A~-- 3~-- 4v, sin 2~ --~4 A, cos 2~)-- O. (20) ~2 + 2~,p~ + ~ I cos 2~ -- 1 - -  

In order to investigate the corresponding stationary regimes we eliminate successively the 
amplitude and phase of the vibrations from (19) and obtain the dependences of the quantities 
on the parameters of the system: 

3 (cos 0 -- sin ~}) (sin 20 + v,) -- (sin ~ + cos ~) (cos 20 -- a,) = O; 

[ l /g~a 2 -}- 4 (1 -- v,) =h 5g,a] 2 [8 -- (g,a ~ l /g~a 2 -{-- 4 (1 -- v,)) 2] -- 16A~ = 0. 

(21) 

(22) 

The amplitude dependence (22) is shown graphically in the form of nomograms (Fig. 2). 

It is not difficult to verify that the number of solutions of system (19) is not more 
than three. All possible equilibrium states determined by this system can be investigated 
from the characteristic equation (20) using these nomograms. We can distinguish three re- 
gions on the amplitude nomogram (Fig. 2): I and II are the regions of the nomogram occurring 
in a single half-plane with the point MI referred to scale AI and arranged, respectively, 
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below and above the line b = gla = 0 of the family b; III is the region located in a single 
half-plane with point M2 related to scale hl. 

An analysis shows that the solution belonging to region I of the nomogram corresponds 
to the stable equilibrium position of the system, i.e., to the focus or nodes; region II 
gives unstable equilibrium points, i.e., saddle points. With regard to region III, we can 
note the following: if the resolving straight line of the nomogram intersects the fixed line 
~: (for known ~ and v:) at two points, then the intersection point closer to scale h~ de- 
termines the stable equilibrium position, while the point closer to M2 determines the un- 
stable equilibrium position. 

Let us investigate the behavior of the system on varying one parameter (h~) with the 
other parameter fixed (v~ = 0) (Fig. 3). 
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Thus, for small values of Az(A, < Azo~0.22) system (19) has three solutions which can 
be found from the nomogram (Fig. 2). One solution belonging to region I gives a singular 
point, i.e., the center Az (Fig. 3a); the other two solutions are obtained in region III of 
the nomogram. To these solutions correspond the singular points A2, i.e., the center, and 
A3, the saddle point. 

Furthermore, the four singular points a = 0; @ = • ~n (n = 0; i) are unstable points of 
the type of saddle points. For a slow increase of parameter Az, center Az on the phase cylin- 
der slides downward towards the ~ axis, and the second center A2 and saddle point A3 ap- 
proach each other, merging for Az = Azo into the singular point which is a result of merging 
of the center and the saddle point (Fig. 3b). This case corresponds to the position where 
the resolving straight line in the nomogram is tangent to the line ~z = 0. For further in- 
crease of the parameter Az(Azo < Az < i) the phase pattern of the system becomes "poorer" (Fig. 
3c); besides the saddle point a = 0, on this pattern there remains only one equilibrium posi- 
tion, i.e., center Az (in this case the nomogram gives only one solution belonging to region 
I). It is obvious that for small damping (~i # 0) the centers on the phase plane of the sys- 
tem go into stable nodes or foci. It should be noted that the separatrices of the corre- 
sponding saddle points will divide the phase plane of the system into regions of stable and 
unstable motions. 

The dependence characterizing the resonance k~..2 can be represented in a similar way. 
In particular, its stationary amplitude a is related to the parameters of the system by the 
equation 

[16xg + (l.Sa ~ + 6 x ~ -  1)(4.5a2 + 6 x ~ -  1)12----. a~ {[4xov 2 + 
+ A~ (1.Sa ~ + 6x~ - -  1)12 + [4xoA 2 -  % (4.5a 2 + 6x~-- 1)l~}. (2 3) 

Here 

%' 2 

A 2~' (1 - -  P) ," A~ = 4p 
P 
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For dependence (23) a nomogram consisting of the rectilinear scales of variables A2 and 
~= and the curvilinear response scale a has been computed and constructed for xo = 0 (Fig. 4). 
Scale a is arbitrarily divided into three segments: AB, BC, and CD. 

The investigation Shows that the solutions belonging to the segments AB and CD determine 
the stable and unstable equilibrium positions in the phase plane of the system. If the re- 
solving straight line intersects BC at two points, the solution closer to point B corresponds 
to the stable singular point, while the solution closer to point C corresponds to the unsta- 
ble singular point. Examples of phase patterns of the system are shown in Fig. 5a, b, c for 
the indicated resonance in the same way as for the case k~l. 

Experimental investigations conducted earlier on special simulating equipment reflecting 
the characteristics of the dynamic model used here confirm the reliability of the results of 
theoretical investigations presented in this paper [6]. 

297 



In conclusion, we note that the use of asymptotic methods in the investigation of vi- 
brations of these systems permitted not only the significant refinement of the results of 
the solutions of such problems in linear formulations [7, 8], but also the additional detec- 
tion of a number of phenomena which can occur in such systems (self-oscillations, parametric 
resonance). This analysis gives an idea of the dynamic behavior of the system in its param- 
eter space. With the use of analytical dependences, nomograms, and the phase patterns it is 
possible to estimate the effect of the parameters on the dynamics of the system. In parti- 
cular, by appropriate variation of these parameters, it is possible to achieve the required 
reduction of the amplitudes of the vibrations and elimination of undesirable resonance phe- 
nomena. 
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MOTION OF A BODY WITH A CAVITY PARTIALLY FILLED BY A LIQUID 

IN THE PRESENCE OF A GAS--LIQUID SEPARATOR 

V. S. Khoroshilov UDC 629.783:525:534.131.2 

i. Formulation of the Hydrodynamic Problem 

The motion of bodies with cavities partially filled with liquid has been investigated 
in [i] in the case where a gas--liquid separator of the type of an elastic plate is present 
in the cavity. In the present work similar problems are investigated, but separators in the 
form of an ellipsoid of revolution or a right circular cylinder are considered. The cavity 
is assumed to be spherical (see Fig. i, where i is the cavity, 2 is the liquid, and 3 is the 
separator). 

For simplifying the writing Of equations of the perturbed motion of the solid body, we 
assume that the center of the cavity lies on its longitudinal axis. We introduce the fol- 
lowing rectangular right-handed coordinate system: coordinate system OXYZ executing a cer- 
tain given unperturbed motion and a coordinate system oxyz attached to the center of the 
cavity. The displacement of the coordinate system oxyz relative to OXYZ determines the per- 
turbed motion; in the unperturbed motion the OX axis coincides with the longitudinal axis of 
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