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The Sommerfeld effect is a manifestation of the law of conservation of energy and is a 
universal phenomenon. It is due to direct and feedback coupling between the excitation mech- 
anisms and the vibrational loads. It must always exist, to a certain degree. A rather com- 
plete study of the effect has been given in the works of Kononenko and his group [i, 3, 5, 6] 
for different vibrating systems and for limited power electric motors. It follows from this 
study that in the steady-state case the various interaction effects collectively known as the 
Sommerfeld effect are caused by consumption of energy in internal damping of the vibrational 
system. The vibrational load "creates" a torque on the shaft of a motor proportional to the 
damping coefficient and this torque brakes the rotation of the shaft. 

The present paper is concerned with the interaction effects in the case when a different 
energy dissipation channel is significant for the excitation mechanism: the case when radia- 
tion of elastic waves and sound in the surrounding objects is significant in the dynamics of 
the shaft. Machines are sources of noise and the radiation of acoustic energy is an undesir- 
able factor which must be controlled. Hence it is necessary to estimate the effect of this 
factor on the operation of the machine. We consider the characteristic features of the 
limited excitation of elastic systems when a significant fraction of the consumed energy is 
transported by means of waves. We assume that the internal damping of the system is negligi- 
bly small. As an example, we consider the vibrations of an infinite plate in contact with an 
acoustic medium (a fluid) when the plate is subjected to a point excitation by an electric 
motor of limited power. For a system of this type, it is natural to represent the solution in 
the form of waves, since such dynamical characteristics as normal frequencies and normal modes 
do not occur because of the infinite extent of the system. Resonance methods are therefore 
inapplicable. 

i. Derivation of the Basic Equations of the Interaction. We consider the bending vibra- 
tions of a thin elastic plate subjected to a point-force excitation generated by an electric 
motor of limited power. One of the surfaces of the plate is in contact with a fluid. We note 
that the vibrations of elastic plates in contact with a fluid and subject to applied loads is 
a key problem in understanding the dynamics of structures in naval engineering. This problem, 
in its various aspects, has attracted the attention of researchers in the last decade. The 
fundamental paper is [12], in which the significant effect of the fluid on the vibrations of 
the plate was established. The radiated power and far acoustic field was studied in [2, 4, 9, 
13]. In the more recent papers [7, 14] the velocity distribution in the near field was 
studied in detail and in [i0, 15] a detailed analysis was made of the energy flux in the near 
field for the two-dimensional case. 

This problem graphically demonstrates the difficulties in hydroelasticity. These diffi- 
culties are compounded when, in addition to considering the dynamics of the elastic body and 
the acoustic fluid, we take into account their reaction on the driving force [6]. The present 
paper is concerned with an analysis of the combined system made up of the infinite elastic 
plate, the acoustic half-space, and the driving force. 

We consider an elastic plate of thickness h, density Po, and mean surface coinciding 
with the plane z = 0. We assume that the half-space z < 0 is occupied by a fluid of density 
0 and speed of sound c (Fig. i). We further assume that an electric motor is placed at the 
origin O of a cylindrical coordinate system r, 9, z. The motor has an unbalanced mass m at a 
distance a from the axis of the shaft. When the shaft rotates the vertical component of the 
inertial force of the mass m is ma(d2/dt=(l -- cos @)), where @ is the deflection angle of the 
shaft, measured with respect to upward verticalo We will consider the bending vibration w of 
the plate, therefore only this vertical component is taken into account, assuming that it has 
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Fig. 1 

circular symmetry with respect to the point O. Hence the problem is azimuthally symmetric 
with respect to the z axis. The equation describing the vibrations of the plate can then be 
written as [ii]: 

O A % ( r ,  t) + poh o2w (r, t) ma ~ (r) d~ at 2 = ~ ~ . ( 1  --cos O) + p ( r , O ,  t), (1 .1)  

where D is the bending rigidity of the plate; A = 3a/3r a + [(l/r) (~/3r)]; ~(r) is theDirac func- 
tion; p(r, z, t) is the acoustic pressure of the fluid, which satisfies a wave equation of 
the form 

1 Oap 
A p ( r , z , l ) =  c 2 Of 2 " (1 .2 )  

The boundary condition is that the normal component of the velocity must be continuous in 
passing from the plate (where it is 3w(r, t)/~t) to the fluid (where it is Vz). Therefore we 
have 3w/3t = Vzlz=o. Using the relation ~p(r, z, t)/3z =-~(3Vz/~t), which is satisfied in 
the acoustic field, the boundary condition transforms to 

a=w (r, l) ap (r, z, l) 1 
9 at 2 = Oz Iz=O" (1.3) 

The rotation of the shaft is caused by an electric motor of limited power [3], such that 
its output power is comparable to the power consumed by the vibrating plate. We let the 
moment of inertia of the rotor shaft be I, and the driving torque be M(O). Then the equation 
of motion of the shaft, including the vibration w(0, 
the plate, can be written in the form: 

I@ = M (0) + ma sin O [g 

where g is the acceleration of gravity. 

t), which the motor performs along with 

O~w (0, t) ] 
Ot~ J , ( 1 .4 )  

Equations (i.i) through (1.4) describe the complicated process of energy redistribution 
from the electric motor into the acoustic field of the vibrating plate. Using the Laplace 
transform with respect to time, and the Hankel transform with respect to the radial coordi- 
nate, general expressions for the bending deflection and pressure can be represented in the 
form 

(,, t) = f s) So z F  da, s; 
a--ioo 0 

p (r, z, 0 = 2.-X7- 1 I ~ (;~' s) '/o (Xr) e 'V t~e atlas. 

(1.5) 

Substituting these expressions into the boundary condition (1.3) and into (i.i) leads 
to the relation u(X, s) = ~(s)/z(l, s), where ~(X, s) = D1 ~ + pohs = + ps~//l 2 + sac:~; ~(s) 

ma :" d- 
is the Laplace transform of the function ma/2~[d=/dt2(l -- cos 8)]; hence ~(s)=-~ l-~y~ (I--cos 

@)e-Stdt. The relations (1.5) can then be written as 

2~-T ~ 4(XTs) 4 (Xr)Xg'~'~ds;- 

1123 



[ 

M~ ( i 2  x) 

o,2 

M(t; 2 f ~ 
2 

0,! _ ~ i , 

0 

j 
I 

~-j 

o,r o,3 z, z7 o,~ z~" 

Fig. 2 

o ' + i ~  oo 

1 S ! Sa[@///(s, e~~2do(kr, XeadXds" ( 1 . 6 )  p (r, z, g) = - -  ~ 7 '  = -~ (X, s) ~.2 , s" 
�9 -r -  C-- ~ - 

In order to obtain the explicit form of the solution for the bending vibrations of the plate 
w(r, t) and the pressure of the fluid p(r, z, t), the Laplace transform of the driving force 
of the hydroelastic system ~(s) must be known. We therefore return to the equation for the 
rotation of the motor shaft (i.I). With the help of (1.6) it can be written in the form 

{ m a f s % %  d 2 tg = M (~)) + raa sin 0 g -6 (2n)~---- 7 x (k, s) - ~  ( 
o - - i o o  0 0 

1 - - c o s  O ) e  -st dt] dXds}. 

This is a nonexistence integrodifferential equation for the variable @. An exact solution 
of this equation for arbitrary initial conditions would be difficult to find. Therefore we 
study the special, but practically important case, when the interaction has reached the 
steady state. 

2. Steady-State Interaction. The parameters describing the vibration of the plate and 
the angular velocity of the shaft can be obtained using the approximate Poincar6 method. We 
introduce the small positive parameter e = mag/l~x 2. Here ~x is the angular velocity of the 
shaft when the electric motor is idling. In this case 

M(f l~ )  = O. ( 2 . 1 )  

For a steady-state interaction She driving.torque corresponds to the static characteristics 
of the energy source. We put M(O)/I = cM~(@). Then (1.7) can be written as 

O = s M : ( O ) . e ~ s i n O +  (2~)2i ~ -ff(l--cos@)e-Udt dkds, ( 2 . 2 )  

where 
ma.q.~ 

g 

We introduce the traditional change of variable @ = ~. The solution in the cases of 
interest to us can be written as an expansion 

-Q = -Qo 4- ec~z cos .qot 4- eo% cos 2Qot 4- ec~3 sin 2f~ot + e 2 ... 

_ _ (  oo . O = f l o  t . e a~s inf~ot+ - -~-s in2f~ot - - - -~- -cos2~ot+ + 
if2 o 

8 2 ..o 
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~d (r, l) 

o 

p (r,  z, t) = ~ o r e  e ~a~ "~ (~., i~o) V x 2 - - ~ c  -2 
o 

Here Re denotes the real part; ~o, ~aj (j = i, 2, 3) are unknown constants which are to be 
determined. 

In order to determine the constants we use an approximate representation of the integral 

c2 i "~(~'~'d~ Is =-~ i~0) , which appears in the expression for the bending deflection w(0, t) of the 

0 
plate. We write the integral as an expansion in the small parameter b = 0/c (Dt/=(Poh)3/2) 
and the dimensionless frequency X = ~o/~c (where the frequency ~c is given by mc = c2(Po h/ 
D) I/2). Then from [4] 11 = w1(X, b) + iw2(X, b). From (2.2) and (2.3) we obtain the fol- 
lowing torque balance equation which can be used to find the frequency of the steady-state 
interaction: 

, e q c % ~  . 
eM~ (Zc%) - -  4riD" Z'w= (X, b) = 0. ( 2 . 4 )  

Approximating the static characteristic of the motor by a linear dependence of the form 
sMx(~o) = No/l --(Nx/l)~o (where No and Nt are constants), we can determine X from the equa- 
tion 

Here 

(2.5) 

4aNID . fl~ No 
M2 = (mac)2o= , X= = ~c = N~o~ 

From (4) and (i0) we also obtain a: = -~x2/ao, a= = q/4(~oW:), a3 =--q/4 (aoW=). 

In addition, knowing X = ~/~c, the solution of the hydroelastic problem (2.3) (by an 
appropriate choice of the contour of integration with respect to k) can be represented as a 
sum of waves [8] in the plate and fluid: uniform waves propagating to infinity in the radial 
and vertical directions, and nonuniform waves localized near the origin and the surface of 

the plate. 

Graphs of the functions M2(Xx -- X) and X=w2(x, b) are shown in Fig. 2 corresponding to 
dimensionless driving and vibrational torques for X < 0.7 in the case of steel (curves i, 2; 
b = 0.13; M=(:) = 0.143, Xx (:) = 0.646) and aluminum (curves 3 and 4; b = 0.39; M=(2) = 0.05, 
Xx (=) = 0.65) plates of equal thickness h in contact with water and excited by electric motors 

with identical characteristics. 

The dashed curve corresponds to the case of no fluid (b = 0). It is evident from Fig. 
2 that equation (2.5) has a single root. Unlike the case of a resonant interaction of a 
vibrating system with an electric motor, when even for a linear oscillator there are several 
roots to the analog of equation (2.5), in the system considered here there is a single inter- 
action regime, when the motor has the angular velocity ~o = XWc. This is because the admit- 
tance of a hydroelastic subsystem of infinite extent is approximately a power law in the ex- 
citation frequency [8]. We also point out that the decrease of the angular velocity of rota- 
tion of the motor shaft (X~,2 < Xx(~'2)) is due in this case to excitation and radiation of 
waves, rather than to internal damping in the plate and the viscosity of the fluid [6]. Our 
results show that in this case the steel plate (both with and without a fluid in contact with 
the plate) consumes less energy than the aluminum plate, since the wave amplitude in the 
steel plate is smaller; this is manifested in an inequality of the form Xl > X2 for the 
steady-state case (the larger the consumption of energy, the smaller the angular velocity). 
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THERMOELASTIC DEFORMATION OF A TRANSVERSALLY ISOTROPIC PROLATE 

SPHEROID 

Yu. N. Podil'chuk UDC 539.3 

In this article we present the exact solution of the static thermoelastic problem for a 
transversally isotropic prolate spheroid when an arbitrary temperature distribution is spec- 
ified on its surface. It is assumed that the surface of the spheroid is free of external 
forces. Both interior and exterior problems are solved for the spheroid. 

i. The static thermoelastic problem in absence of heat sources and bulk forces is de- 
scribed by the equations [3] 

O~u I , a2u O2u o [1 Ov owl  aT 
c~ ~ + .~ (c~ - -  c~) ~ + c,~ ~ + ~ ~ (c~ + c~) --O-if~ + (c,~ + c.) -3F = ~ ax ; 

A 

I (c l1_c12)  a2v OZv OZv 0 [~._(Cll .(..C12)OU awl a T  ( l . 1 )  
-~ ~ + c,~ ~ + c,~ az~ ~ av -37 + (c,~ + c.) -3F = f~ a7 

/ a2= , a2m ) a2w a { au av ) F;, aT c " / " ~  § ax~ + c~-OT + (c" + c'~) + = " �9 ~ ~ - ~  -~-y, - ~ - ,  (1.2)  

a2T a2T _,, c)~T 
ax--Zr + W ~  + ~ - ~  =o, 

where cij , B, B' B" , are constants depending on mechanical and thermal properties of the 
body. 
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