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Abstract. The transient response of an atmospheric surface duct will be studied when the 
distance between receiving and transmitting end is arbitrarily chosen. The duct model 
used is that of Kahan and Eckart, consisting of a layer of relative permittivity ~1 overlying 
an infinitely conducting plane earth. At height h, this permittivity decreaseg discontinuously 
to the value e2- The source of the electromagnetic field is assumedtobe a verticalmagnetic 
dipole at the height ~ (4 < h) above the surface of the earth with arbitrary time varying 
moment. The application of two integral transforms to the wave equation for the Fitzgerald 
vector - a Laplace transform in time and a two-dimensional Fourier transform in the 
horizontal coordinates in space - leads, under consideration of initial, boundary and 
transition conditions, to an integral representation of the solution of the wave equation in 
transform space. A series expansion with respect to the images of the primary source 
permits us to extend a method of Cagniard, de Hoop and Frankena to the case where the 
position of the source is in the medium of greater permittivity. Thus we get the step-function 
solution of the problem as an infinite sum of definite integrals over finite intervals by 
distinguishing between cases where the distance between receiving and transmitting end is 
greater or less than the total reflection distance. Thus we can give a physically intuitive 
description of the pulse propagation in a dielectric layer. 

Index Headings: Transient response - Dielectric layer - Tropospheric propagation 

For the last thirty years, the correlation between 
the propagation of electromagnetic waves in the 
atmosphere and metereological conditions has been 
investigated by radiometereologists. This paper 
treats the special problem of propagation of an 
electromagnetic impulse in an abnormal stratifica- 
tion of the lower troposphere, a so-called surface 
duct. Such inversions occur particularly in the 
boundary layer along the sea. 
During this time a number of experimental and 
theoretical models of the duct refractive-index 
profiles have been developed [1, 2], all giving more 
or less satisfactory insight into the mechanism of 
waveguiding and differing mainly in the sophistica- 
tion of the mathematics used. In considering our 
problem we will restrict ourselves to one of the 

simpler duct models. It was developed by Kahan 
and Eckart [3] and assumes a discontinuous drop 
in the otherwise constant refraction index at the 
upper duct boundary. The earth is assumed to be 
an ideal conductor and ideally plane, which cor- 
responds well to the situation at sea in the microwave 
frequency range. 
We wish to extend the steady-state duct propagation 
theory of Kahan and Eckart to transient excitation 
when no restrictions on the distance between 
receiving and transmitting end are made. The unit 
step function is considered as the time dependence 
of the dipole moment. Thus we get the transient 
response of a dielectric layer overlying a dielectric 
half-space and bounded by an infinitely conducting 
plane. 
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From the mathematical point of view both the 
geometry and the time dependence in this problem 
are an extension of Sommerfeld's half-space problem 
[4], which deals with the steady-state propagation of 
electromagnetic waves over a dielectric earth, emitted 
by a vertical dipole. Early attempts to get the transient 
response of a dielectric half-space were made by 
Gerjouy [5], Jeffreys [6], Muskat [7], Ott [8], 
Friedrichs et al. [9], and Friedlander [10]. In 1955, 
Poritsky [11] published a paper which, generalizing 
Weyl's method [12], expressed the primary field of 
the source in terms of a complex integral over plane 
waves. In 1956, van der Pol [13] found a simple 
analytic expression for the transient solution of the 
half-space problem when both transmitter and 
receiver are situated in the plane separating the two 
media; thus complications because of dispersion are 
avoided. In his work, van der Pol stimulated further 
papers dealing with the transient response of a 
vertical antenna in one of the two dielectric half- 
spaces (Pekeris et al. [14], de Hoop et al. [15, 16]). 
Bremmer [17] and Vlaar [18, 19] avoided the steady 
state solution of the problem and determined the 
field of a source with unit step-function time- 
dependence directly from an integral representation 
of the primary field in the time domain. Vlaar also 
discussed the case of the position of the source being 
in the medium of greater refractive index. 
Nearly all these authors also apply their method to 
the corresponding seismic half-space problem 
(de Hoop [20], Pekeris et al. [21-23], Vlaar [24]). 
For this special seismic problem, Cagniard [25] 
developed in 1939 a certain sophisticated method of 
solution: he used two integral transforms - a Hankel 
transform concerning the coordinates in space and 
a Laplace transform concerning the time. Now, the 
key of his method is not to use the Laplace inversion 
formula but to change the integral representation of 
the solution in the transform space to an explicit 
Laplace integral, thus being able to read off the 
solution in the time domain. Pekeris [26] slightly 
modified Cagniard's method in solving a special 
integral equation occurring in propagation problems 
of electromagnetic and seismic pulses. This solution 
was applied by Pekeris et al. [27] to the special case 
of propagation of a seismic pulse in a layered liquid. 
De Hoop and Frankena [15, 16] gave a further 
modification of Cagniard's method in finding the 
transient response of a dielectric half-space with 
arbitrary position of the source in the medium of 
smaller refractive index. These authors make use of a 

two-dimensional Fourier transform instead of the 
Hankel transform used by Cagniard, thus simplifying 
considerably the procedure of changing the solution 
in the Laplace transform space to an explicit Laplace 
integral. 
We will use this method of de Hoop and Frankena 
for the solution of our duct problem, extending it to 
the case where the source is situated in the medium 
of greater refractive index since our dipole is within 
the surface duct. Thus we find expressions for the 
potential which are numerically easy to handle and 
which give a physically intuitive description of the 
transient response of a surface duct when no restric- 
tions are made concerning the distance between 
receiving and transmitting end. For large distances 
these expressions become very impracticable, but 
this case has been treated by Pekeris in 1948 [28] for 
the seismic pulse and by the author [29] for the 
electromagnetic pulse using the approximate mode 
theory. This gives us the possibility of comparing the 
approximate solution with the exact one, coming to a 
clear definition of the term "great distance". 

1. Mathematical Formulation of the Problem 
and Integral Representation of the Solution 

A dielectric layer is assumed of relative permittivity 
el overlying an infinitely conducting plane earth 
which is confined by the plane z = 0 of a cartesian 
coordinate system (x,y,z) .  At the height h this 
permittivity decreases discontinuously to the value 
e 2 (duct model of Kahan and Eckart). The relative 
permeability/~ is assumed to be constant throughout 
the half-space z > 0. We refer to the layer as medium 1 
and to the half-space z > h  as medium 2. The 
potentials and fields which belong to the two media 
are marked by corresponding indices. The source 
of the field is assumed to be a vertical magnetic 
dipole in medium 1 at the point x = y = 0, z = ~ > 0, 
whose moment is given by C. F(t).e~. The vector e z 
denotes the unit vector in the z-direction, t is the 
time variable, C is some arbitrary constant to which 
we give the value #0#, #o being the vacuum per- 
meability. Regarding F(t) we make the causality 
assumption F(t) = 0 for t < 0. This guarantees us the 
uniqueness of our solution. 
The radiation field of this vertical magnetic dipole 
can be expressed in terms of the z-component of the 
Fitzgerald vector II(x,  y, z; t) denoted by II(~ y, 
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z; t), i =  1, 2. This component fulfills the following 
wave equation 

A~/(i) ~ ~2 H(0 _ ~ 0 for i = 2 
/)2 &2 [ _ b ( x , y , z _ ~ ) F ( t ) f o r i =  l (1) 

where/)~ denotes the phase velocity in medium i. 
The application of a Laplace transform in time and 
a two-dimensional Fourier transform in the horizon- 
tal coordinates x and y leads, under consideration 
of the initial, boundary and transition conditions for 
H(~ y, z; t), to an integral representation for 
z(~ y, z; s), the Laplace transform of H(~ 
s being the variable in the transform space. We get 
for 0 < z < h [30] 

de Hoop and Frankena [15, 16], extending it to our 
geometry and source position in the medium of 
greater refractive index. 

2. Application and Extension of the Method of 
De Hoop and Frankena 

As already mentioned, the essence of this method 
is to change the integral representation (2) to an 
explicit Laplace integral, an idea credited to Cagniard 
[-25]. In order to apply this method we must expand 
the "duct denominator" [1 + ci2 e x p ( -  2s~i h i -  ~ in 

~(1)(X, , ,  Z; S) ~ - sf(s)8~ 2 "_(moo ~ i [  e-syllz- { ' ~ 1  

n t- e - s ' / i ( 2 h - r  C 1 2 ( J  - -  e 2~7~e)_ e sY~(r + ca2 e-2s]q(h-{)) I 
71(1 +Ci2 e -2s'~lh) 

where 

e ,*s~'x+as~y. dedfi 

(2) 

I l l (e, j~) -- ]/,2(e,/~) = (3) 

and 

7i(e ' fl) : ((z2 j_/~2 @/)/-2)1/2 ; i :  1, 2 (4) 

with ReT~ >0,  i = l, 2. Here e and p are the variables 
in the transform space of the two-dimensional 
Fourier transform, f (s)  is the Laplace transform of 
F(0. A similar expression can be derived for zc(2)(x, y, 
z; s), but it will not be given here since we restrict 
our attention to H(~)(x, y, z; t). 
The first term of the integrand in (2) is the potential 
due to the primary field, the second term denotes 
the diffracted field, and cz2 corresponds to the Fresnel 
reflection coefficient. 
Considering only real/~, the integrand of (2) has four 
branch points e~, ca, e3, 7~ in the complex a-plane, 
namely 

el,r = • -t-/)12) 1/2 (5) 

0~2, 3 = +j(fia +v22)1/2 (6) 

where [el,r since medium 1 is the 
medium of the lower phase velocity. 
Our aim is to determine the potential H(i)(x, y, z; t) 
at some fixed point (x, y, z) within the duct layer as a 
function of time, having chosen a suitable function 
F(t). Therefore, we make use of the method of 

a geometric series. It can be shown [30] that this 
series converges in the whole a-plane except at the 
points el and e4. Then we get instead of (2) 

~z(n(x, y, z; s) = s f (s )  Ip(x, y, z; s) 
8~z 2 

s f (s)) 
oo 

+ E (- ly[ l ( ,1)(x ,Y,Z;S)-I{ ,2)(x ,Y,Z;  s) (7) 
87Z2 n=O 

- z fl>(x, y, z; s) y, z; s)] 

where 

+oo +oo 1 

Ip(x, y, z; s) = .[ .[ 
- o o  - -  ~ ) ~ i  

�9 e -~vll~-r dedfi 
(s) 

c7+1 
y, z; = .f .f 

- o r  oo ~1 

�9 e s~'~(2)+J~+JsP7 dedfi  

+ oo + ao n 

.f .f c l ,  
--oo --oo ~1 

" e - s ' ' l { ~ ) + j s c ~ x + j s t 3 ) '  dedfl 

i = 1 , 2 , 3  

(9) 

(lo) 
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and 

~(n 1) = 2h(n + 1) - d - z 

~2) = 2h(n + 1) + ~ - z 

~3) = 2h(n + 1) - r + z 

~(41 = 2n h + ~ + z tl 

The subscript p in (7) stands for primary source. 
We realize that all other integrals I~ ~) (i = 1 . . . .  ,4) as 
shown in (9) and (10) are of the same structure as Ip 
except the occurrence of the coefficients ca2 " + 1, c12, 
respectively. This is due to the fact that our series 
expansion corresponds to the infinite number of 
reflections of the primary source at both planes z = 0 
and z = h, where each reflection at the latter plane 
yields a multiplication by the reflection coefficient 
C12. We denote the reflected image source by Q,~ 
when it corresponds to the integral I, C~). In the follow- 
ing we restrict our attention to I~ 1), since it is re- 
presentative of all the integrals I, ") (i = 1, ..�9 4). 

2.1�9 The Region below Total Reflection 

We introduce polar coordinates (r, ~0) regarding the 
space variables x, y and new variables p, q in the 
Fourier transform space through 

= p  cosq~ - q  sin(0 (12) 

fi = p  sin~0 +q  cos~o. 

Further spherical polar coordinates with origin at 
the reflected image source Q,1 are introduced, viz 

(i) �9 (1) r = R, sin,9, 

rp =~o~ I) (13) 

~(n 1) ~ R(n 1) [COSO(nl)l �9 

Then we get instead of (9) 

+oo +oo n + l /  
I~i)(x, y, z; s) = .[ dq .[ ci2 tP, q) 

- ~o - ~o 7 ~ ( P ,  q )  

~-s71ROqcos,.a(1)l + j s p R ( 1 ) s i n , 9 ( l )  A ~  (14) �9 e n n n n U/) . 

The integrand of (14) has two branch points P1(q) 
and P2(q) in the upper complex p-plane corresponding 
to the branch points ~l(fl) and e2(fl). We have 
]P J(q)l > ]P2(q)]. 

~ [ ~ p 2  (q] : ](q2+ 722 ? 2  

-<___+_J 
N p  {q) =j  (q2*vl-211'2 S n~'~ ) 

�9 Rep 

Fig. 1. Branch points, branch cuts and integration path in the 
upper complex p-plane in the region below total reflection denoted 
by C i and in the region beyond total reflction denoted by C2 

In the Riemann sheet of the complex p-plane given 
by Re71/2 > 0  we search for an integration path on 
which f (p ,  q) = ~ is real and positive and 

f(P, q) = 7 I(P, q)R~ t) Icos 0~.1)[ - jpr , , "  ~,(t)sinO~j). (15) 

This path is a hyperbola yielding R~l~(q2 + v~-2) - 1/2 
< "c < 0o. This is illustrated in Fig. 1, together with 
the branch points and branch cuts of the upper 
p-plane�9 The point of intersection of the hyperbola 
with the imaginary p-axis is given by 

p,(q) =j(q2 -t-/212)1/2 sin0~l). (16) 

We see that ]p,(q)l<lpl(q)]. In addition [P,(q)l 
< [P2(q)l if 

( q2 -t- 1)2- 2 )1/2 
sin0~ 1~< q2 +vi -g  (17) 

which yields the condition 

= (18)  
1) 1 

sin0~t) < 
i) 2 

In geometrical optics, this is the condition that a ray 
originating from the source Q,1 is not yet totally 
reflected from the layer z = h; that is to say, the sign 
of equality in (18) determines the critical angle of 
total reflection. (18) yields for the horizontal distance 
r between source and point of observation 

V 3 (19) r < ~ l ) -  1 -  

where 6 = ez/e i. If r is chosen in such a manner, that 
(18) is fulfilled for some reflected image source 
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QN ~, then it is fulfilled for all n > N. In the following 
we have taken N = 0. 
Then integrating (14) along the hyperbolic integration 
path C, of Fig. 1 and changing the order of integra- 
tion yields [15, 16, 30] 

I."~(~,z;~)= .f ~ Re{d;t(~,~)}d~ e -s~d', 
R~ l ) /v I 0 

(20) 

where we have introduced the new variable p through 

( z'2 1) i/2 
q= R~ 1'2 v~- s in~.  (21) 

Eq. (20) denotes the Laplace transform of the 
function i}[)(r, z; t) where 

[0 for 
i~l)(r'z;t)=~ 4 ~/2 

[R~I) ! Re{c~fl(%~p)}d~o for t>R(,1)/vi . 

(22) 

The same procedure as described above can be 
applied to the integrals (8), (9) for i = 2, 3 and (10). 
Now choose f(s) = 1/s, that is to say, take F(t) as the 
unit step function. Then in connection with (7) and 
(22) we have reached our aim of representing the 
potential of the vertical magnetic dipole within the 
duct layer as a function of time for some fixed point 
of observation in the region below total reflection. 
We now turn our attention to the region beyond 
total reflection�9 

2.2. The Region beyond Total Reflection 

We again consider the integral I~l)(x,y, z; s) given 
by (9) and choose the distance r in such a manner 
that (19) j s  not fulfilled for the reflected image 
source Q,t, that is to say, IP2(q)] <]P.(q)[ <lPi(q)l. 
The resulting integration path C2 in the complex 
p-plane is shown in Fig�9 1. It is clear that the part 
of the integral due to the hyperbolic part of the 
integration path is equal to (20). But now we have in 
addition to (20) the parts due to the borders V~ and 
Vz of the branch cut which can be combined to the 
following integral [30], since c12 o n  V l is the complex 
conjugate of c12 on V~: 

Pn(q) im{c,a~ l(p,q)} 
Vji)(r, z; s) = 4j ,f dq .f 

0 P2Lq) ];l(P' q) 
(23) 

�9 e - ~ R ~ ,  Ir l)~i,Uc," dp. 

r,, (o) l , f  " _ 

0 q(l) 
o~q 

r~ (ql 
r(q) / R--TTTq 

r~ (q~) ~ 

q 

- q  
~- OO 

Fig. 2. Region of integration (shaded) in the z, q-plane 

In (23) p takes on only purely imaginary values, so 
we substitute p=ju.  The new end points of the 
integration interval regarding p are denoted by u2(q) 
and u,(q). These curves u2(q) and u,(q) have one 
point of intersection at uo,"(1), where 

q(1)_ 1 ( _.12 sin0(i) _ 1~  i/2 
o,, Icos,9(.i) I \ v, ~-~] . (24) 

>,,(1) we have no longer a That means that for q = u o .  
branch cut integration, since u2(q) > u.(q) for " >  ~(1). ~/-~- ~'/0 n ,  

or, restated, for q > "(~) = uo. 71 and V2 are real and hence 
Imci2 = 0. 
So we get 

q!~) 'an(q) imc~- i 
Vji)(r, z; s) = - 4  dq .[ 

0 u2tqJ ~1 
(25) 

�9 e- s(~, R(i )  IcosS(nl) I + uR(nl )sinS(n') ) d u .  

Since the function 

f (u, q)= ~)1 *Xnl)(1) ICOS O(nl )[ + u R( i ) sin g(,1) (26) 

in the argument of the exponential in (25) is a real 
function of u and q in the region of integration, we 
replace it by the real variable z =f(u ,  q). It follows 
then 

n(l )  ~ (q) n+ e-S~ 4 7o, - Im{c12 l(z,q)} 
V~(1)(r,z;s)=~Tf) ! dq ~ dz --n 2(q) (q2 + V12 ,r22/e(nl)2)l/2 

(27) 
where 

.c2(q)=(@ ~ v~)I/2R, tcos0n [ ~ l )  (1) 

+(q2 _~_ V2- 2 ) 1 / 2  R~,)sin0(1) 
(28) 
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and 

rn(q) = R{nl)(q 2 + V; 2)1/2. 

We have %(q) => r2(q) , where equality holds for 
,~1) The region of integration of (30) is illustrated q =~o..  

in Fig. 2. By changing the order of integration we 
finally get [30] 

rn(O) 
V,(1)(r,z;s)= ~ e -**dz 

~2(0) 

�9 [4q2(r ) ~r/a Im{c~+l(r,,p)} cos~p 

r"@o*2 ' [4[q2(r) ~7~2(r)] i/2 
+ ~ e - ~ d z  

~(o) [ R .  ) 

~/2 Im {c~  l(r, Ip)} coslp ] 
.fo {q~(z) + [q~(z)--q2(~)] sin2vo},/2 d~p 

where 

q2(r) - sin2 0~1)  . . . . .  

and 

( "c2n V21) 1'/2 
q . ( r ) =  R . ~  . 

1 1/2 

The term v~,l)(r, z; t) described by (35) must be added 
to (22) when the horizontal distance r comes into the 

(29) region beyond total reflection for some reflected 
image source Q,1. Expressions similar to (35) can 
be derived for all other sources Q,i; it is only re- 
markable that r since the integral 
representation (10) has only one branch point cq(fl) 
ifn =0. 
(22) and (35), together with the corresponding terms 
i,(r, z; t), i())(r, z; t) (i =2, 3, 4) and V(ni)(r, z; t) (i =2, 
3, 4) represent the exact solution of the transient 
response of a dielectric layer, i.e. the response of the 
layer when F(t) is given as a unit step function�9 We 
denote this response by n(1)~ z; t). 

(30) It is to be noted that II~l~(r, z; t) becomes logarithmi- 
cally singular in the region beyond total reflection 
for times t =Rt.~ which is due to the additional 
integrals (35); that is to say, the wave front amplitudes 
of the spherical waves originating from the reflected 
image sources Q.i (except Qo4) are singular in a 
logarithmical manner if the distance r is great 
enough so that total reflection has occurred. This 
fact has already been cited by several authors treating 

(31) the transient response of a totally reflecting plane 
between two dielectric half-spaces [21, 27, 10]. One 
can show that this is mathematically due to the 
discontinuity of the unit step function at t = 0 [30]. 

In the first term of (30) we have substituted 

q = q2(z) sin~p 

and in the second term 

q = (q2(r) + [q2(r ) _ q2(z)] sin2~}l/2. 

(32) 

Now, if Vn(1)(r,z;s) is the Laplace transform of 
v~l)(r, z; t), our solution in the time domain has the 
following form 

3. Numerical Results and Discussion 

Numerical computation of the transient response 
(33) rtI1)t, z; t) within the duct layer can now easily be al usf ld~ 

performed, based on (22) and (35). The following 
parameters have been chosen to calculate the curves 
shown by Figs. 3-6: duct height h = 2 0 m  and 

(34) difference of relative permittivities at the upper duct 
boundary A e = g l - e 2 = 4 . 1 0  -4. We take these 
numbers from measurements of Brocks et al. [21 who 
investigated an atmospheric surface duct in the 

CJ )(r, z; t) = 

0 for t<z2(0)  

=/2 4q2(t) Im{cT~ l(t,~p)} costr 
! [ ~ ~ - p - - q 2 ( t ) ~ i 3 2  d~ for rz (0)< t  <r.(0) R~ 1) 

4[qze(t)_ q2n(t)]X/2 ~/2 Im{c~- l(t, tp)} cos~p 
--.R(1) ,fo {qZ~(t)+[q~(t)-qZ(t)sin2tp]} u2 dp for 

0 for t>%(q?).).  

.(0) < t < r.(q~012). 

(35) 
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German Bight. Since our solution depends only on 
6 =e2/et, we take e2 = 1 and therefore ~t = 1.0004. 
The height of the primary source and the point of 
observation has been taken to be ~ = z = 15 m. We 

~r(1) r Z normalize ~%~(, ;t) in such a manner that the 
corresponding potential of the primary source is 
independent of the horizontal distance r and takes 
on the value one for t > zo -- Ro/ut ,  where R0 denotes 
the spherical distance between the source and the 
point of observation; that is to say, we multiply 

(1) . 

/ - /us f ( r ,  z ,  t)  by 4~R o. We define a normalized time 
z by z = t / z  o - 1, meaning that the beginning of the 
z-axis coincides with the arrival time of the spherical 
wave originating directly from the primary source; 
clearly this normalization depends upon the point of 
observation. 
At first we choose such a point of observation whose 
horizontal distance r from the dipole is in the region 

_(1) 
t I.[usf 

1 2 

04 

I r = 400 m I 

i, r. 103 

[T I) usf i 
oi 1,8- 

1,4. 

0.L. 

~ 

0,81 l lusf 

0,4 

o 

0,4. 

0,8- 

04 Jr = 5 0 0 m  ] 

b r -103 

04 

1 2 02/03 

r = 6 O O m  ] 

Fig. 3. Norma l i zed  potent ia l  within the duct  layer as funct ion of 
no rma l i zed  t ime:  a) r = 400 m, b) r =  500 m. c) r = 6 0 0  m 

below total reflection. Then r<rmi n where rmi n 
denotes the minimum of ~i)[6/(1 - 6)] 1/2 with respect 
to n and i. For  our numerical example this minimum 
will be taken on for n = 0 and i = 1; therefore rmi . 
= 500 m. Figure 3a shows the normalized potential 
as a function of the normalized time ifr  equals 400 m; 
we see the arrival of the spherical wave front originat- 
ing from the primary source at the time ~ = 0 of the 
normalized time axis. Time r=R(o~)/Ro - 1 is the 
arrival time of the spherical wave front originating 
from the reflected image source Qo i whose amplitude 
is superimposed into the primary potential. This 
part of Qol is formed by reflection of the primary 
wave front at the upper duct layer boundary; the 
reflection coefficient there is frequency dependent and 
therefore the contribution of Qo 1 is, in contrast to the 
primary part, no longer a unit step function. Some 
time later, at z = R~o4)/Ro - 1, the spherical wave front 
of the primary wave arrives which has been reflected 
at the infinitely conducting earth, changing its sign. 
The normalized amplitude of this wave front is 
Ro/R~o 41=0.995.  The contribution of all other re- 
flected image sources can be neglected because of 
their greater geometrical attenuation and because 
the multiple reflections at the upper duct layer 
boundary lead to an order of 10-2; that is to say, in 
the case r = 400 m we can stop the summation in (7) 
after n = 1. 
Figure 3b shows the transient response of the duct 
layer for the distance r = 500 m. The delay of the 
wave fronts originating from Qo~ and Qo4 against 
the primary wave front becomes smaller and their 
amplitudes increase because of the increase in the 
angle of incidence. 
Figure 3c shows the case where, for the first time, 
total reflection has occurred; the logarithmic sin- 
gularity of the wave front originating from Q0 t is 
indicated. With increasing horizontal distance this 
singularity becomes more and more pronounced. 
Figure 4 shows the case r = 2000 m. We see that now 
total reflection occurs for the spherical wave fronts 
originating from the reflected image sources Qo2 
and Qo 3 (since in our numerical example, ?(2)_ y{3 h 
In addition, we see another wave front arriving 
before the primary wave front; this is a conical front 
due to the reflected image source Qo 1- It exists only 
within the duct layer, travels with the phase velocity 
v2 at the upper boundary of the layer, and is described 
by the first term of (30). This conical wave front has 
already been mentioned by several authors [5, 9, 
10, 17] who investigated the transient response of a 
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(1" = 5000 m) 

totally reflecting plane boundary between two 
dielectric half-spaces. 
We now come to Fig. 5 and the horizontal distance 
r = 5000 m. The following aspects are worth being 
described: the conical wave front due to the reflected 
image sources Qo2 and Qo3 now arrives before the 
pr imary wave front, it is superimposed to the conical 
front due to Qo i and the time distance between the 
latter and the primary front becomes greater and 
greater. Also more and more reflected image sources 
must be considered, since with increasing distance 
more spherical wave fronts due to the reflected image 

sources undergo total reflection and contribute to the 
received potential with their logarithmic singularities: 
that is to say, we must sum in (7) at least those 
contributions from the reflected image sources which 
have undergone total reflection, all others being 
negligible. This means that with increasing distance r 
between receiving and transmitting end our series 
expansion becomes more and more impractical: it 
even diverges if r tends to infinity. Physically this is 
quite clear, mathematically it follows from the fact 
that if r ~  oo we have p , ( q ) ~  p 1 (q) and our series can 
not be expanded at the point Pl(q). These facts are 
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of no physical reality) and an exponential decay for 
large t. 
These different parts of the signal can also be found 
by a method very different to the one described 
above: the mode theory which was used by Pekeris 
[-281 to study the seismic pulse propagation in 
shallow water and by the author [-29] to get the 
solution of the corresponding electromagnetic pro- 
blem. This method can only be used for great 
distances r which cannot be clearly defined by the 
method itself. But comparing the results of the mode 
theory (Fig. 7) with the exact theory described in this 
paper we can say: "great" always means r >> rmi n. 
A detailed comparison of the two methods [30] 
reveals some other insufficiencies of the mode theory, 
but nevertheless it is a useful tool to get the transient 
response of layered structures for great distances, 

again illustrated in Fig. 6: we have to sum until 
n = 7. In addition, we can now characterize the 
principal behaviour of the transient response of a 
duct layer for great distances where "great" means 
r >> rmi,: the received potential as a function of time 
consists of a relatively low frequency wave formed 
by the superposition of the conical wavefronts, 
a high frequency wave formed by the spherical wave 
fronts with their logarithmic singularities (which are 

4. Concluding Remarks 

We gave the exact solution of the transient response 
of a dielectric layer as, for example, an atmospheric 
duct layer over sea valid for arbitrary distances 
between receiving and transmitting end. To this 
end, we used a method originally given by Cagniard 
and modified by de Hoop and Frankena extending 
it to the present case of more complex geometry and 
to source position in the medium of greater refractive 
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Fig. 7. Space wave, rider wave and Airy phase of the transient response of a dielectric layer at great distances 
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index. Its advantage is the physical concreteness and 
the possibility of comparing it with the asymptotic 
mode theory, giving a certain insight into the validity 
of the latter. A disadvantage of the method is that it 
cannot be used to calculate the potential in the 
dielectric half-space outside the layer in a similar 
manner. 
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