
Appl. Phys. 7, 85--92 (1975) 
�9 by Springer-Verlag 1975 Applied 

Physics 

Self-Trapping of Positively Charged Particles 
in Metals 
A. Seeger 

Max-Planck-Institut ffir Metallforschung, Institut ftir Physik, 
and Institut fiir theoretische und angewandte Physik, 
University of Stuttgart, D-7000 Stuttgart, Fed. Rep. Germany 

Received 8 March t975 

Abstract, It is shown that the existence of a metastable state in which positrons in 
metals are "self-trapped" by strong interaction with the lattice gives rise to an anomalous 
temperature dependence in positron annihilation properties. The "intermediate" tem- 
perature variation of the shape of the annihilation photon line discovered by MacKenzie 
et al. is well accounted for by this mechanism; alternative interpretations in terms of 
thermal expansion effects may be refuted. This result calls for considerable revision of 
some of the published monovacancy formation energies obtained from positron annihila- 
tion measurements. Approximate criteria for the existence and the metastabitity of a self- 
trapped state of positively charged particles in metals are given. It is found that meta- 
stable self-trapping may occur for positrons; hydrogen isotopes and positive muons should 
be self-trapped in configurations that are always stable relative to the  Bloch-wave 
states of these particles. 

Index Headings: Self-trapping in metals - Positrons Monovacancy formation energies 

Following the application of the so-called trapping 
model [l, 2] to the pioneering experiments of Mac- 
Kenzie et al. [3], the measurement of the temperature 
dependence of positron annihilation in metals has 
become an important tool for the determination of 
the formation enthalpy of monovacancies, H~v. (For 
reviews see [4--8].) Recently Lichtenberger et al. [-9] 
have called attention to an anomaly in the tempera- 
ture dependence of positron annihilation in metals 
which in a number of cases may interfere with the 
determination of Hfv from positron annihilation 
data. 
Using the specific case of the S-parameter charac- 
terizing the lineshape of the photon annihilation line 
in cadmium, Lichtenberger et al. [9] show that there 
is very little temperature dependence between I00 and 
230 K, an approximately linear increase of the S- 
parameter with temperature between 230 and 360 K, 
followed by the stronger temperature dependence, 
with saturation near the melting point, characteristic 

for the trapping of positrons by point defects in 
thermal equilibrium. The entire temperature depen- 
dence is reversible. Since there is strong evidence 
that the temperature dependence above 360K is 
indeed due to positron trapping by the point defects 
with the highest equilibrium concentration, viz., the 
monovacancies, the "intermediate" temperature de- 
pendence between 230 and 360 K cannot be due to 
defects in thermal equilibrium. As Lichtenberger et al. 
[-9] emphasized it cannot be due to thermal expansion 
either, since in such a case one could not understand 
the break in the temperature variation of S at about 
230 K. Rather, from the small temperature dependence 
of S and of other parameters characterizing positron 
annihilation at low temperatures we may conclude 
that the effect of thermal expansion on the annihila- 
tion of "free" or "untrapped" positrons is small. 
Similar results were obtained on other metals, among 
them Cu and Pb [10], so that the existence of the 
intermediate temperature dependence appears to be 



86 A. Seeger 

a fairly general phenomenon in metals. It is not' con- 
fined to the shape of the annihilation line, i.e., to Doppler 
broadening, either. The temperature variation of the 
angular correlation of the noble metals [11, 12] 
shows such an "intermediate" temperature depen- 
dence below the trapping-by-monovacancies regime, 
too, extending down to about room temperature. 
Triftsh~iuser and McGervey [-12] are of the opinion 
that this temperature dependence is a thermal ex- 
pansion effect. 
Angular correlation and Doppler broadening are very 
similar; they both probe the momentum or velocity 
distribution of the electrons in the metal. Therefore, 
the reasoning given above indicates strongly that the 
intermediate temperature variation in the angular 
correlation experiments should not be attributed to 
thermal expansion. A further argument leading to the 
same conclusion, though not as clear-cut as the pre- 
ceding one, is the following: From a theoretical view- 
point it is not at all clear that the annihilation of free 
positrons in metals should show a temperature de- 
pendence as strong as the bulk thermal expansion 
coefficient of metals [13], let alone a stronger one as 
has to be assumed in the interpretation of Trifts- 
h~iuser and McGervey [12]. 
From the preceding discussion it follows that the inter- 
mediate temperature dependence is neither associated 
with lattice defects in thermal equilibrium nor with 
thermal expansion. Its explanation is likely to lie in 
the interaction of thermalized positrons with the 
crystal lattice, possibly taking the form of a self- 
trapping effect. An explanation along this line of rea- 
soning has been proposed by Lichtenberger et al. 
[-9]. However, any such explanation has to overcome 
the difficulty that the intermediate temperature de- 
pendence sets in very suddenly, whereas at low tem- 
peratures the "self-trapping" is not seen at all. This is 
incompatible with the idea that a self-trapped positron 
has a lower free energy than a free ("Bloch-wave 
type") positron. We shall show that the answer to 
this problem lies presumably in a self-trapped positron 
configuration with a negative binding energy, i.e., one 
which is metastable with respect to a free positron 
state. 
Self-trapping of charged particles has first been treated 
theoretically in ionic crystals, and important insights 
into the present problem may be obtained from this 
work. We shall therefore begin the qualitative discus- 
sion of Section 2 with a review of the relevant 
results on ionic crystals. The semi-quantitative treat- 
ment of Section 3 will indeed start from a recent 

paper of self-trapping in ionic crystals [14]. It is 
important to realize that experimentally the self- 
trapping of positively charged particles in metals has 
been with us for a long time: Most of the experiments 
on hydrogen in metals are interpreted in terms of 
protons localized on interstitial lattice sites and moving 
by a thermally activated trapping process. We should 
therefore view the problem of self-trapping of an ele- 
mentary positive charge in a metal as a fairly general 
problem, in which the mass of the particle plays an 
important r61e. Positrons form just one end of a 
sequence, with protons, deuterons etc. on the other end, 
and positive muons (with 207 times the positron mass 
or 1/9 of the proton mass) in between. For simplicity, 
in our theoretical treatment we shall refer to the particle 
carrying the elementary positive charge as "positron" 
and consider its mass as one of the variables of the 
problem. 

1. Qualitative Discussion of Self-Trapping 

In an attempt to account for the phenomena in ionic 
crystals now known to be associated with F-centres, 
Landau [15] introduced the concept of a self-trapped 
electron. The electric field exerted by the electron 
on the neighbouring ions may displace the ions in such 
a way that an attractive potential, behaving at large 
distances r as -e2(e~ 1 -  eol)/r, is set up (~oo =high- 
frequency dielectric constant, eo=static dielectric 
constant, e=elementary electric charge). In this 
potential well a series of bound states for an electron 
is formed; an electron in such a bound state surrounded 
by a polarized medium may form a stable configura- 
tion. Mort and Gurney [16], who discussed this 
"Landau trapping" in some detail, called such an elec- 
tron "trapped by digging its own hole". They pointed 
out that analogous arguments predict the self-trapping 
of positive holes in ionic crystals. The electron spin 
resonance work of Castner and K~inzig [t7] has 
demonstrated that in a number of alkali halides posi- 
tive holes may indeed be self-trapped, though more by 
the formation of halogen molecule-ions than by 
developing strong polarisation fields around the 
holes. 
The theory of the interaction of electrons or positive 
holes with the lattice polarization of ionic crystals was 
developed under the name "polaron" theory in con- 
siderable detail by Pekar [,18], Fr6hlich [19], Feyn- 
man [-20] and others (for reviews see Fr6hlich [19], 
Appel [21], and Jones and March [-22]). The strength 
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of this interaction is determined by the magnitude of 
the coupling constant 

e (  m* tl/a 

where co t denotes the circular frequency of longi- 
tudinal optical phonons, m* the band-mass of the 
electrons or holes, and h Planck's constant. 
An important result of the abovermentioned work on 
"polaron theory" is that the transition, with increasing 
~, from "free" electrons and holes to self-trapped 
quasi-particles does not involve any discontinuities. 
In 1961, however, Toyozawa [23] showed that if the 
interaction with acoustical phonons is included, the 
polaron properties may change discontinuously as a 
function of the coupling strength between the electri- 
cal charge and the acoustical phonons. This difference 
is associated with the fact that the interaction of an 
electron or hole with the optical phonons is of long 
range, whereas that with the acoustical phonons is of 
short range [23, 24]. The significance of the range of 
the interactions for the self-trapping problem had al- 
ready been stressed by Mort and Gurney [16]. Sumi 
and Toyozawa [24] showed that the existence or non- 
existence of a discontinuity as a function of the coupling 
parameters does not depend on whether a continuum 
or a discrete description for the crystal is used, pro- 
vided in the former description a Debye-type cut-off 
is introduced. 
Because of the screening of electric fields by a re- 
distribution of the conduction electrons, the inter- 
action between an additional electric charge and the 
ions in a metal is of short range, hence the arguments 
of Toyozawa [23] and Sumi and Toyozawa [24] 
should be applicable. In metals we may thus expect a 
discontinuity as a function of the strength of the inter- 
action. If the coupling between the electric charge and 
the phonons is sufficiently strong, two different con- 
figurations associated with the extra charge are 
possible: One in which the interaction is weak, i.e., 
in which the charged particle remains in what is 
essentially a Bloch state, and another one which 
corresponds to the self-trapping picture outlined 
above, i.e., a strongly localized wave-function. 
If the coupling strength is such that both configura- 
tions are "mechanically stable", one of them will in 
general be metastable with respect to the other. As will 
be borne out by the quantitative treatment of Sec- 
tion 3, it is the negative binding energy of the self- 
trapped state which is needed to account for the 

"intermediate" temperature variation of positron anni- 
hilation, as recently observed by Lichtenberger et al. 
[9, 10] on a number of metals. 

2. Quantitative Treatment of Self-Trapping in Metals 

An elementary positive charge inserted into a metal is 
"'screened" within a distance comparable with the inter- 
atomic distance [25, 26]. In a simplified picture this 
screening effect may be thought of as consisting of two 
contributions: (i) Near the inserted charge the con- 
duction electrons, attracted by the positive charge, re- 
distribute themselves in such a way that a self- 
consistent screening is achieved. (ii) The positively 
charged ion cores near to the inserted positive charge 
are pushed away. This results in a local reduction 
of the total positive charge to be screened by the con- 
duction electrons. 
Mechanisms (i) and (ii) are clearly coupled. Unfortuna- 
tely a convincing solution of the coupled problem has 
not yet been found inspite of a large amount of good 
work on the individual problems. Fortunately, for 
answering the main question of the present paper 
a simple treatment of the coupled problem suffices. 
Following Toyozawa and Sumi [14] we describe the 
interaction between the positron wavefunction e+(r) 
and the crystal in the simplest possible way, namely 
through a coupling of the elastic dilation O(r) with the 
positron charge density le+(r)l 2, and use the follow- 
ing "Ansatz" for the energy functional 

E [e+ ,  O] = ~ - S  [O(")] 2 d3r 

(2) 
h 2 

+ [ e +  (r)] O(r)d 3 r + S Eve§  (,.)]2 d 3,,. 

In (2) the first term represents the elastic energy 
associated with the dilation (K denotes a combination 
of elastic constants containing the modulus of com- 
pression but also shear moduli, since a more complete 
treatment should take into account also the long-range 
shear field associated with a centre of elastic dila- 
tion), the second term the coupling between the 
positive charge and the elastic strain (c a denotes the 
positron deformation potential parameter introduced 
earlier [28]), and the third is the kinetic energy 
associated with the positron wavefunction e+(r). 
Here h denotes Planck's constant divided by 27r, and 
m§ the positron band mass. All integrations in (2) 
extend over the entire crystal. 
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By minimizing (1) with respect to the positron wave- 
function ~+(r) we obtain the adiabatic potential 
E[O(r)] for the lowest positron state as a functional 
of O(r). The extrema of this potential can alternatively 
be found by extremizing (2) first with respect to ~+ 
and subsequently with respect to O. The first step gives 
US 

gd O ( r )  = - ~ - I ~ e + ( r ) t  = (3)  

and, after inserting (3) into (2), 

h 2 
E[tP+] - 2m+ ~ [V7~+]2 d3r  

(4) 

2 K  

Since a spherically symmetric solution of the differ- 
ential equation resulting from the extremalization of 
(4) cannot be found is closed form, we follow Toyo- 
zawa and Sumi 1-14] further in using the trial func- 
tion 

+ ( r ) =  (2tr 3/4- exp( -  ~ h2 2 r2 ) ,  (5) 

where ~c is an adjustable parameter with the dimension 
of a wavenumber. Insertion of (5) into (4) gives us for 
the energy of the system 

E(~:) = 3 ~ h ~  x2 _ l e a 2 ~:3. (6) 
2m+ 2 K 

As a function of tc, (6) has a minimum at ~c = 0. This 
minimum, corresponding to the  positron energy 
e = 0, represents a non-localized positron, i.e., a Bloch- 
wave type of solution if the periodic lattice potential 
had been allowed for. 
A second minimum of (6) may arise because of the 
physical meaning of ~c as a wave-number, which 
introduces an upper cut-off •0 approximately equal to 
a reciprocal interatomic distance. Whether such a 
second minimum, with energy 

3gh2t r  2 1 2 3 ~d NO 
e ( K O )  - -  - -  , ( 7 )  

2m+ 2 K 

exists, depends on whether the maximum of (6) occurs 
at a value 

K h 2 
- -  - -  (8) Kin, x=2~z e2 m+ 

that is smaller than K 0. 
The minimum at ~:o corresponds to a very concentrated 
positron wave-function, i.e., to a localized positron. The 
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Fig. 1. Energy of positively charged particles in metals (in units 
of 37rhtcg/2m+) as a function of K/~c 0 according to (6). (a): Energy 
minimum at re= ~c 0 metastable with respect to that at K = 0. (b): 
Energy minimum at ~c = rc o stable with respect to that at x = 0 

centre of the positron wave-function is surrounded 
by a localized dilation field according to (3) and 
(5) 1. This means that we are dealing with an analogue 
to the "polaron", namely a positron self-trapped by 
strong interaction with acoustic phonons. The pro- 
perties (lifetime, mobility, etc.) of these self-trapped 
positrons are different from those of the "free" 
(Bloch-wave type) positrons; we shall distinguish the 
two states by subscripts st and f, respectively. 
If the condition 

Kma x < K 0 (9) 

is satisfied, two basically different situations may 
arise (Fig. 1): (i) e(~Co)>0 (Fig. 1, curve a). Then the 
self-trapped state is metastable relative to low-lying 
free positron states. At very low temperatures all 
positrons will be in Bloch states, but with increasing 
temperature an increasing fraction of them will be- 
come self-trapped. As will be discussed in more detail 
below, this results in an additional temperature 
dependence of the experimentally observed positron 
properties. 
(ii) z(~co)<0 (Fig. 1, curve b). In this case the self- 
trapped state is stable, whereas the free positron states 
are metastable. However, this case is less likely to be 

i This localized dilation field may be considered as a centre of 
dilatation. It is surrounded by shear strains decaying at large 
distance r as r-3. Since in metals the interaction of extra charges 
with shear strains is weaker than that with dilations, we have 
neglected the long-range strain field. 
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realized than case (i), since the condition ~(~o)<0 is 
considerably stronger than (9). This may be seen by 
rewriting (7) as 

e(lCo) = 3nh~2 leg ( 1 2 m +  23 KTmaxKO ). (10) 
When working out, for the case e(%) > 0, the tempera- 
ture dependence of the fractions f f  of free and .f,~ of 
self-trapped positrons, one has to take into account 
the fact that the state ~c= 0 is the lowest state of a 
quasi-continuum of Bloch states, with three-dimen- 
sional wave-vectors k as good quantum numbers. 
Application of quantum statistics gives us 

1 
fz (V) = l + A T-3/z exp [ - e(~co)/k, T] (11 a) 

1 
f~t(r) = 1 + A -1 r a/2 exp[e(Ko)/k~T] = 1 - f y (T ) .  

( l lb)  

In (11) k n denotes Boltzmann's constant, T the 
absolute temperature and 

where Oo=atomic  volume and v~,v)=vibrationat 
frequencies of the crystal with fiee or self-trapped 
positrons. The product ~ extends over all vibrational 

J 
modes of the crystal; it is expected to be smaller than 
but not very different from unity. 
The dimensionless quantity A T  -3/a is always very 
much larger than unity. For e(%)>0,  i.e., case (i) 
above, the interesting possibility arises that at a tem- 
perature T* which is well below e(~Co)/k B a change- 
over takes place from f~]fy ~ 1 to fsdfz  >> 1. The con- 
dition for the temperature T* at which f~ = f l  = 1/2 
reads 
e(/C0) = k B T* ln(A/T*3/2) . (12) 

In the temperature range of this transition one 
observes a weighted average of a positron property 
F according to 

F(T)  = Fr f f ( T ) +  Fstf~t(T ) . (1 3) 

3. Discuss ion  

We propose that the "intermediate" temperature 
dependence in positron properties pointed out by 
Lichtenberger et aL [9, 10] and also shown in other 
experimental work [11, 12] is caused by the ad- 
ditional temperature variation introduced by a meta- 

],Oj / 

fst(T) l // 

Z~ I /  

o I 
i i 

I r2 1.5 2 2.5 0,5 ~ r -'-~ reduced temperclture ~=T 
Fig. 2. Fraction f,t of self-trapped positrons (e(•o) > 0) as a function 
of the reduced temperature 8 = T/T* For the definitions of 7"1, T2, 
and T'see text 

stable self-trapped state according to (13). In Fig. 2 
we have plotted f~,(T) as a function of the reduced 
temperature 

,9 = T /T*  (14) 

under the assumptions Q~c0)>0, T * = 4 0 0 K ,  f2 o 
= 12.10 -30 m 3, 1-[(vj/v))= l and m+ =too=free  elec- 

J 
tron mass. These assumptions give A / T  .3/2 = 4.31 �9 103 
and e(Ko)= 0.288 eV. We see that the fraction of self- 
trapped positrons is negligible for ,9 < 0.6, and that 
for 0 > 2.5 practically all positrons are self-trapped. The 
additional temperature dependence of a positron 
property F(T)  according to (13) is highly non-linear. 
This explains why the self-trapping effect is not seen at 
low temperatures. The approximate linearity of the 
temperature dependence in an intermediate tem- 
perature regime [9, 11, 12] is seen to result from the 
fact that over a limited temperature range near 
,9=0.9 Eq. (13) may be approximated by a linear 
T-dependence. 
In the simplest case that F;- and F~t may be con- 
sidered as temperature independent the application of 
the present theory to the analysis of experiments in- 
volves the adjusting of four parameters, namely Fs, 
F~,, A, and e(%). F s may be easily found from meas- 
urements of F at sufficiently low temperatures. In 
metals in which positrons are trapped by vacancies 
in thermal equilibrium, Fs, must be found by a curve- 
fitting procedure based on the trapping model and (13). 
Such a fitting procedure will also give A and co. An 
estimate of e0 can be obtained in the following 
way: An empirical straight-line approximation to 
F(T)  in the intermediate temperature regime will have 
approximately the slope 

F;,(d f r /d  T)T = T* + Fst(d f J d  T)r = r* 

1 
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Fig. 3. Temperature dependence of S-parameter characterizing the 
photon line-shape of positron annihilation of Cd. The full curve 
gives the fit according to (13), as described in the text 

This straight-line approximation intersects the 
straight-line approximation to the low-temperature 
regime at a temperature 

(16) 
[(2)] 

T~=T* 1 -  A-  3 
In T~g E- - y  

With the help of estimates of the parameters entering 
into A one may obtain T* from the experimental 
value T 1 and thus, with the help of (12), the energy 
a(Ko). In the example of Fig. 2 we have T 1 =0.71 T*. 
An estimate of F~, may be obtained from the rule of 
thumb that in an F -  T plot the straight line F = Fst 
is intersected by the straight-line approximation to 
the intermediate regime at a temperature 

T2=T* 1+ A 3 " 
In ~ - y  

Figure 3 shows the application of the theory to the 
measurements of the parameter S characterizing the 
lineshape of the annihilation photons in Cd E9]. We 
have chosen (somewhat arbitrarily) A as in Fig. 2 
and find that an excellent fit may be obtained with 
T* = 292 K (T~ = 210 K, T 2 = 374 K, effc0) = 0.21 eV). 
The deviations of the measurements from this fit be- 
come detectable from about 340 K upwards. In Cd 
this corresponds to a vacancy concentration in 
thermal equilibrium of about l0 6 [6]. 
In the case of copper Lichtenberger's measurements 
indicate T~ ~ 335 K. We choose A equal to between 
a third and a quarter of the above value and find 
T* ~ 540 K, corresponding to a(Ko),-~ 0.3 eV. These 

values are somewhat uncertain. Nevertheless we see 
that, provided in the case of angular-correlation 
peak-height counts F~ may be taken as temperature 
independent, an almost temperature independent 
background should be subtracted in the temperature 
range between 950 and 1200K, where Triftsh~iuser 
and McGervey [12] determined H(v. Instead Trifts- 
h~iuser and McGervey [12] subtracted a correction 
proportional to bulk thermal expansion, which in 
this temperature range is considerably larger than in 
the "intermediate" temperature range. The authors 
[12] do not give details of their correction procedure; 
we estimate that their procedure gave them a slope 
in the Arrhenius plot for the determination of H(v 
which is too large by about 20 %. Applying a negative 
20 %-correction to their Cu-value H~v = (1.29 _+ 0.02) eV 
gives us H(v .~ 1.03 eV. 
The preceding discussion is supported by a con- 
sideration of the entropy of monovacancy formation, 
Sly. The concentration of monovacancies in thermal 
equilibrium reads 

e q _ _  C 1v - exp(Sfv/kB) e x p ( -  Hfv/k B T). 

Disregarding, for simplicity, a possible divacancy 
concentration and inserting the melting-point con- 
centration c]q(Tm)=2.10 -4 [29] together with Hf)j 
= 1.29 eV gives us Sfv = 2.5 k B. This value is much 
larger than the values found for comparable metals 
[6] and rather difficult to understand theoretically. A 
plausible value is Sfv=O.6kB [6]; this leads to 
H(v = 1.06 eV, which is within the uncertainty range 
of the above revised analysis of Triftsh~iuser's and 
McGervey's [12] measurements. 
A similar discussion may be carried out for the Ag 
and Au measurements of Triftsh~iuser and McGervey 
[12]. The correction to be applied is smallest in Au, 
for which Triftsh~iuser and McGervey [12] give 
H(v =(0,97 + 0.01) eV. Correction of this value ac- 
cording to the present interpretation brings it into 
the range of H~v = (0.92_+ 0.02)eV, which has been 
established by quenching experiments beyond any 
reasonable doubt [30, 31]. The latter value leads to a 
formation entropy Sfv = 0.6 k 8, too [6, 31]. 
The preceding discussions have shown that the pre- 
sent interpretation in terms of a metastable positron 
self-trapping appears to lead to good accord with 
the observations and that it brings positron anni- 
hilation data on vacancy formation enthalpies and 
entropies that where unreasonably large back into the 
established range of values. Nevertheless, a quantita- 
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tive least-square analysis of the temperature depen- 
dence of a large number of metals is desirable. Such 
an analysis may remove remaining discrepancies, 
e.g., the unreasonably large value for Hfv deduced 
from positron annihilation measurements on In 
1-32, 4]. 
In Section 3 we have given criteria for the existence 
and the observability of the self-trapping effect. The 
essential feature is that a metastable self-trapped 
positron configuration exist. [If e(~c0)< 0, self-trapp- 
ing is virtually complete at all temperatures, and can 
therefore not be detected by a sudden break in the 
temperature dependence of annihilation properties.] 
Due to the crude nature of the electron theory aspects 
of this paper, these criteria have only qualitative 
significance. Fortunately this does not impair the 
quantitative application of the statistical theory, since 
in this theory the metastable self-trapped state is 
completely characterized by three parameters, namely 
e(~Co) > 0, ln(A T* - 3/2) > 0, and Fs, e. 
The energies ~0c0) resulting from the comparison of 
positron annihilation data with the statistical theory 
came out small compared with the Fermi energy, 
which is of the order of magnitude h 2 ~c2/m *. This 
means that there is substantial cancellation between 
the two terms in (7) 3. A moderate increase in m+ 
would make e(~Co) negative, i.e., give us a self-trapping 
state which is stable with respect to the Bloch- 
wave-type positron state. There is indeed overwhelm- 
ing evidence that, as expected from this consideration, 
protons and deuterons in metals are "self-trapped', 
i.e., localized on interstitial sites surrounded by 
lattice distortions. Our considerations show that this 
should also be the case for positive muons. The 
measurements of Gurevich et al. [33] indicate indeed 
that positive muons in copper are localized and move 
by a thermally activated hopping process. 
The preceding results show that positive muons, 
protons, deuterons, and tritons in metals may be 
treated in terms of a uniform model over the entire 
temperature range. They are localized on interstitial 
sites from the lowest temperatures upwards; their 
movement from site to site may be treated in terms of 
thermally activated rate processes (or at very low 

2 There is, however, the possibility that in addition an "excited" 
self-trapped state with a higher energy exists, and that this has to 
be taken into account at high temperatures. 
3 This may be used to obtain, from (7), an estimate of the positron 
deformation potential parameter  e~ in terms of K/tcom+. Since a 
detailed discussion of the "effective" elastic constant K is beyond 
the scope of this paper, we postpone numerical estimates to a later 
paper. 

temperatures in terms of tunneling through the 
barriers between adjacent sites). The situation is quite 
different for positrons in those metals in which 
metastable self-trapped positron states are formed. At 
low temperatures the majority of the positrons are in 
Bloch states; their mobility may be treated in terms of 
scattering processes, e.g., by phonons [28]. Above the 
temperature T* the majority of the positrons is 
localized in self-trapped states (this is to be dis- 
tinguished clearly from the localization in wave- 
packets formed from Bloch states discussed elsewhere 
[-34]). In these states the positrons have clearly a 
much higher effective mass than in the Bloch states; 
as a consequence, their mobility will be much smaller. 
The mobility or the diffusion coefficient of positrons 
cannot be measured directly (in contrast to positive 
muons and hydrogen isotopes). Experimental informa- 
tion on the positron diffusion coefficient has to come 
from trapping rates, which, however, depend also on 
the probability, characterized by a rate coefficient k j, 
with which a trap captures a neighbouring positron 
[8, 35]. Whereas for Bloch-state positrons kj may be 
very small and hence the trapping rate may well be 
controlling the rate of capture, this is unlikely to be so 
for self-trapped positrons. A self-trapped positron ad- 
jacent to a trap, e.g., a monovacancy, should have no 
difficulty in giving up energy to the lattice and falling 
into the bound state of the trap. Thus we expect 
that in metals showing self-trapping of positrons, high- 
temperature trapping measurements do indeed give 
information on the positron diffusion coefficient. By 
comparison with theoretical expressions [28] the 
effective positron mass m+ may deduced. In this way 
we may obtain information on the displacement of 
the ions surrounding the positron, since this gives the 
main contribution to the effective positron mass in 
the self-trapped state. 
From the preceding discussion it is obvious that ex- 
treme care must be exercised in attempts to deduce 
the temperature dependence of the positron diffusion 
coefficient from measurements of trapping rates at 
widely different temperatures [6, 13, 34, 36-39]. We 
have seen that in the case of metastable self-trapping 
quite different physical quantities may control the 
trapping rate at low and at high temperatures 
(positron diffusion coefficient D at high temperatures, 
capture rate kj at low temperatures). This may explain 
why so far all attempts have failed to relate measure- 
ments of trapping rates over a wide temperature range 
to theories of the temperature dependence of positron 
mobility. 
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