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Abstract. In this review we discuss the different aspects of positron annihilation in metals 
that involve the dynamics of positron motion before annihilation. The emphasis is on the 
theory, but also some experimental evidence is quoted. The topics covered are: slowing 
down and thermalization, effective mass, temperature dependence of positron vacancy 
trapping, positron channeling, and escape of low energy positrons from metal surfaces. 

Index Headings:  Positron annihilation - Metals 

Some of the most tricky and recalcitrant problems 
in the field of positron annihilation are related to the 
motion of positrons before they annihilate. We 
believe that a few of these questions are of funda- 
mental nature and thus of intrinsic interest and that 
even in the other cases a proper understanding is 
necessary to assure a correct interpretation of the 
experimental data. We limit ourselves to metals, but 
because the positron annihilation is becoming such 
a large field, we might be overlooking some im- 
portant effects, something for which we wish to 
apologize. 
In Section 1 we discuss the slowing down of positrons 
from the MeV energy region to thermal energies. 
The problem of the effective mass of the positron is 
discussed in Section 2, while the controversial 
question of the velocity dependence of the positron 
vacancy trapping rate is reviewed in Section 3. 
Section 4 contains a discussion of positron channeling, 
while Section 5 is concerned with the escape of low 
energy positrons from metal surfaces. The notation 
to be used frequently is defined in Table l. 

1. The Slowing Down and Thermalization 

1.1. Slowing Down of Fast Positrons 
When one considers the motion of positrons in 
metals, there are three main energy regions involved. 

~' Invited paper presented at 3rd Internat'l Conf. Positron Annihi- 
lation, Otaniemi, Finland (August 1973). 
** External research worker at the Research Institute for Theo- 
retical Physics, University of Helsinki, Helsinki 17, Finland. 

In the range from a few MeV to, say, 10keV the 
positron has enough energy to penetrate deeply 
into the metal. Nearly all the energy loss is then due 
to plasmon production and ionizing collisions and 
only at still higher energies does radiation loss 
become the dominant effect. There seems to be 
relatively little difference in this range between a fast 
electron and a positron. Rohrlich and Carlson [-1] 

Table 1. Some commonly used symbols. Units h =  1 are used 
throughout 
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Energy of a positron with wave vector k 
Energy of an electron with wave vector k 
Dynamic dielectric function 
Positron bare mass 
Positron effective mass 
Transition probability per unit time between 
positron 
states indicated by the labels k and k' 
Conduction electron momentum distribu- 
tion (Fermi-Dirac distribution at zero tem- 
perature) 
Equilibrium positron distribution 
Positron momentum distribution at time t 
after it has been inserted in the crystal 
Fourier transform of the Coulomb po- 
tential 
Boltzmann's constant 
Volume of the crystal 
Volume of the unit cell 
Number of lattice sites in the crystal 
Ionic mass 
Longitudinal sound velocity 
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have estimated the positron-electron differencies in 
the average energy loss and penetration depth in A1 
and Pb. Their results indicate that, almost inde- 
pendent of Z, positrons lose energy more rapidly 
than electrons below about 350 keV, but less rapidly 
above that value. This effect increases percentage- 
wise with the average ionization potential and is 
about a factor 1/6 to 1/3 larger in Pb than in A1. 
When experiments on the relative positron-electron 
penetration depth in metals are done, also the effect 
of the positron-electron difference in the multiple 
scattering has to be considered. This affects the 
penetration depth zd at which the memory of the 
original direction of the particle beam has been 
essentially lost and this has to be taken into account 
in addition to the part describing the energy loss to 
give the theoretical estimate of the average penetra- 
tion depth. 
Seliger [2], Takhar [3, 4], and Rupaal and Patrick 
[5,6] report experimental data on electron and 
positron transmission through thin metal foils. 
Above the energy 350 keV their values for the ratio 
of positron range to electron range and theoretical 
calculations agree within the experimental errors, 
giving e.g. 1.12 for AI and 1.35 for Pb, when mono- 
energetic positrons of energy 1.88 MeV are used. 
For the equivalent thickness t in units of 
mg/cmZ.(Z/A), Z denoting the nuclear charge and 
A being the mass number, and for a given trans- 
mission T one can write the empirical formula 

In It-+ (T)] = C(T) + B+- Z 1/3 , (1) 

where the + and - signs refer to positrons and 
electrons, respectively, C depends on T, and B is a 
constant. The same experimental law with different 
values of C and B is obtained to hold in the lower 
energy region, too [2, 5, 6]. 
In metals of low Z-values there seems to be, in the 
energy region below 350keV, a discrepancy be- 
tween theory and experiment, when it comes to the 
difference between the electron and positron penetra- 
tion depths. Whether this a genuine discrepancy or 
whether the experimental data are compared to the 
correct theoretical quantity is somewhat unclear 
([5-1 compares the experimental results only with 
the ratio z~/z 2 of [1]). 
The intermediate energy range from about 10 keV 
to a few eV has not been studied very much. For 
electrons, data on the 1-10keV region are given 
by Feldman [7]. 

1.2. Thermalization 

Once the positron has been sufficiently slowed 
down so that the excitation ofplasmons and ionizing 
collisions are energetically forbidden, the positron 
can lose energy only by creating conduction electron 
particle-hole pairs or exciting phonons. The simplest 
reasonably realistic theory for these processes is 
obtained by assuming that the rate of energy loss 
R(k) of a positron with momentum k is equal to an 
average over the energy loss associated with a 
collision into a positron state with momentum 
k - q  weighted by the transition rate into this state 

R(k) = ~ (E k - Ek_q)M(k, k - q). (2) 
q 

Carbotte and Arora [8] considered only collisions 
which excited electron-hole pairs and their theory 
is equivalent to the use of (2) with 

4re p I ~:(q, Ek-Ek-q)vq 2fp(l M ( k , k - o ) =  -~-  ~ -fp+q) 
(3) 

�9 ~(E k - E t a _  q - e p  + ~ p + q ) .  

By evaluating these expressions numerically they 
found that the time it takes for a positron to slow 
down from the Fermi energy to energies of the order 
0.1 eV is insignificant compared to the later stages 
of the thermalization. In the case of Na they found 
that the time it takes for a positron to slow down 
to an energy corresponding to l l0~ is about 
10-10 sec, i.e. a factor 4 less than the lifetime�9 The 
corresponding number for A1 is about 5 �9 10-lo sec 
or about 2.5 times the lifetime in that metal. 
Majumdar [9] has given arguments (similar to 
those of Kohn et al. [10, 11] in the case of conduction 
electrons) that there will, in the idealized case of 
thermalized positrons annihilating at zero tempera- 
ture, be a sharp break in the 27-angular correlation 
corresponding to the Fermi momentum. This should 
hold even when the positron interaction with the 
electrons and the lattice is taken into account. 
The result is based on perturbation theory and 
therefore needs not be true (Arponen [12]), although 
we know of no strong arguments that many-body 
perturbation theory actually breaks down for posi- 
trons. Carbotte and Kahana [13] have calculated 
the Fermi surface discontinuity due to electron gas 
interactions and found it to be about the same as in 
the non-interacting case. Hede and Carbotte [14] 
further found that the zero temperature positron- 
phonon interaction has essentially no effect on the 
angular correlation near the Fermi angle. 
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Table 2. Theoretical [171 and experimental [15] values of the 
minimum positron temperature in alkali metals. The experimental 
value is related to the assumed effective mass through 
O m i  n ~ (m*/m)-~, while for the theoretical value the relationship 
is (rn* /m)- ~ 

Omi,[~ 

Metal Theory [17] Exp. [15] m*/m 

Rb 37.5 ~ 60 2.3 
K 39.2 ~ 100 2.I 
Na 49.0 160 • 50 1.8 
Li 64.3 ~ 200 1.8 

It might then be argued that any residual smearing 
of the Fermi surface discontinuity that remains at 
zero temperature must be due to incomplete ther- 
malization. Experimentally Kim et al. [15] arrived 
at the conclusion that there is a minimum positron 
temperature, below which the positron will not 
have time to thermalize. Their estimate of this 
temperature is given in Table 2. These values are 
larger than those given by Carbotte and Arora [8], 
the discrepancy being clearest in the case of Na. 
This discrepancy becomes larger when the effect of 
the posi t ron-phonon interaction is included within 
the framework of a theory based on (2). Such a 
theory has been developed by Perkins and Carbotte  
[161. In our notation their treatment is equivalent 
to putting 

M ( k ,  k - q) = 2~z~/qT_qf(E k - Ek_,~ -- S q ) ,  (4) 

where the posi t ron-phonon matrix element 7g is 
given by 

7q = - i ( N / 2 S q  M) t / z~q l  No Iz/I-Qe(q, 0)]. (5) 

Here J Uol z is a numerical factor which is calculated 
from the positron wave function, and is unity when 
plane waves are used. The factor arises from the 
repulsion of the positron from regions close to the 
ion cores. Figure 1 summarizes the results of [8] 
and [16]. For  large positron energies the creation of 
particle-hole pairs is the most efficient mechanism 
when it comes to slowing down positrons, while 
for lower energies the phonon effects dominate. In 
the case of Na the cross-over point where both 
mechanisms are equally important  comes at the 
positron energy of 190 kB~ if m*/m = 1. For larger 
effective masses the cross-over occurs at higher 
energies, e.g. when m*/m = 2  it would be at 380 kB~ 
corresponding to a positron temperature of 253~ 
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Fig. 1. Positron energy as a function of time from [16]. The full 
curve denotes the result, when only electron = hole pair excitations 
are taken into account as the thermalization mechanism for the 
positron. In the dashed curve also positron-phonon interaction is 
included. The calculation was done for Na and ZNa is the positron 
mean lifetime in Na. (Note the logarithmic scales on both axes) 

The approach expressed by (3) might be too crude 
if the individual collisions typically involve large 
fractional energy losses. The Boltzmann equation 
will in such a case give a more accurate treatment of 
the problem and detailed calculations based on this 
approach were made by Woll and Carbotte [171. 
The Boltzmann equation can be written as 

n(k, 0 = F~ [M(k, t~')n(k', t) - M ( k ' ,  k )n (k ,  t)l 

k' (6) 
1 

- - -  n ( k ,  t ) .  
T, A 

The last term comes from the loss of positrons due 
to annihilation. Woll and Carbotte E17] solved (6) 
numerically from different starting distributions 
considering only electron gas correlations and 
substituting thermal electron momentum distribu- 
tions in (3). They found that when the positron is 
being slowed down in a medium where the tempera- 
ture is not too low it will have time to reach an 
approximate  equilibrium Boltzmann distribution. 
At lower temperatures the positron will not have 
time to do so and there will be a minimum effective 
temperature which the positron can reach. The 
calculated minimum effective temperature of [17] 
are listed in Table 1 together with the assumed 
effective masses (these are the same effective masses 
as were used by Kim et al. [15]). I f a  different effective 
mass value were more appropriate (see Section 2), 
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one can correct for this by noting that the minimum 
temperature obtained from experiment is inversely 
proportional to the assumed effective mass, while the 
theoretical value scales approximately as the inverse 
square root of m*. When the same values of the 
parameters are used, and the minimum values of the 
temperature are obtained by the Boltzmann equation 
approach of [17] and the simpler approach of [81 
using (2) and (3), it is found that the latter one over- 
estimates the minimum temperature by a factor 
1.64. 
In conclusion, we note that the calculation of [17] 
gives values for the minimum temperature which are 
of the same order of magnitude as the experimental 
values, but the theoretical ones are consistently 
lower. It might be argued that since [17] presents an 
electron gas calculation the authors should have 
used the electron gas effective masses which are 
lower than the values they used. Even so one would 
obtain a minimum temperature which is lower than 
the experimental one. We recall further that at the 
temperatures we are considering the phonon energy 
loss mechanism actually is more effective than that 
associated with the conduction electrons. One could 
therefore conclude that a Boltzmann equation 
approach, including the phonons, would result in a 
considerable lowering of the minimum temperature 
and thus increase the discrepancy even more. A 
possible complication is that in analogy with the 
hot electron work of Thornber [183 the Boltzmann 
equation may not be valid for the phonon contribu- 
tion and it might therefore be tempting to use the 
path integral method or a related formalism for this 
problem. The calculation becomes then more difficult 
and perhaps before such a major computational 
task is undertaken more experimental results should 
be available. 

for, respectively, Li, Na, K, and Rb) have represented 
somewhat of a puzzle. The early works in this field 
were reviewed by Majumdar [23]. In the independent 
particle model the momentum distribution of the 
annihilating pair will be proportional to 

E(K) = ~ gq fK-q" (7) 
q 

It is easy to see [20] that the temperature dependence 
of the electron distribution fq is insignificant com- 
pared to that of the positron distribution gq. Assum- 
ing that a positron with a momentum q has the 
energy q2/2m* and that the Boltzmann momentum 
distribution is applicable, one gets at temperature T 

E(K) = ( 2 x m *  kB T)  -3/2 .[ dS q Eo(K - q)e -q2/2m*kBw, 

(8) 

where Eo(K ) is the zero-temperature momentum 
distribution of the annihilating pair. In a real metal 
there will, of course, be correlation effects which mod- 
ify (7). It is assumed, however, in the model used to 
analyze the experimental data that (8) would still 
be valid even if the true zero temperature result, 
instead of the independent particle result, is sub- 
stituted for Eo(K ). 
The theoretical validity of (8) was discussed in some 
detail by Bergersen and Pajanne [24]. It was found 
that (8) is indeed correct in the idealized case of a 
positron annihilating in an interacting electron gas, 
and the rn* which then enters the formula is the same 
as the effective mass defined by the energy momentum 
dispersion relation. As was pointed out earlier by 
Mikeska [25, 26] the situation changes, when the 
positron-phonon interaction is included. Then the 
momentum distribution of the (quasi)positrons is no 
longer completely Boltzmann-like and (8) has to be 
replaced by the more general formula 

E(K) = (2Tcm*kBT)- 3/2 .[dSqEo(K _ q)a(q, T) (9) 

2. Effective Mass 

To our knowledge there has not been more experi- 
mental work on this problem since the papers of 
Kim et al. [19-223. What they did was to measure the 
27-angular correlation in the alkali metals at 
different temperatures and then to extract the 
effective masses by fitting the temperature depend- 
ence of the curves to a simple model described in 
detail by Kim [223. The high values thus obtained 
for the ratio between the effective and bare masses 
(m* /m = l.8 +_ 0.3 ; 1.8+_0.2; 2.1+_0.3 and 2.3+_0.3 

with the resolution function a(~, T) given by 

a(q, T) = .( dco A(q, co)e -~~ , (10) 

where A(q, co) is the positron spectral function 
(essentially the imaginary part of the single positron 
Green's function). In the non-interacting case A(q, co) 
is a delta-function centered at co = q2/2m*. When the 
electron-positron interaction is included the quasi- 
positron peak will, in the formalism of [243, get a 
width which, however, vanishes in the limit of zero 
momentum. Furthermore, this happens sufficiently 
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Fig. 2. The contribution to the positron effective mass from~con - 
duction electron correlations. The fulldrawn curve is taken from 
[331 while the dotted curve is taken from [29] 

fast so that for moderate temperatures the quasi- 
positron momentum distribution will still be Boltz- 
mann-like. This is a major reason that (8) remains 
applicable even when the interacting electron- 
positron system is studied. If, on the other hand, the 
positron-phonon interaction is included, the width 
of the spectrum becomes broad enough to cause a 
significant change in the momentum distribution. 
Indeed, when (9) is used to fit the data the apparent 
effective mass obtained will differ from the effective 
mass m* defined 'from the dispersion relation by an 
amount  which was estimated in [24] to be between 
15 and 30%. This is significant, but not in itself a 
large enough effect to explain the high reported 
values of the apparent effective masses. 
The positron-phonon [14] and band [22,27,28] 
contributions to the effective mass have been 
evaluated for the alkali metals and found to be 
small. The value of the contribution to m* fi'om 
positron conduction electron correlation is more 
difficult to calculate accurately. Hamann [29] evalu- 
ated the effective mass from the positron self-energy 
in the random phase approximation. It appears 
doubtful to-us whether such a simple approximation 
remains quantitatively valid in low density ~metals 
such as the alkalis. Bergersen and Pajanne [30] 
calculated the effective mass from a ladder approxi- 

mation to the self-energy with a potential adjusted to 
satisfy the displaced-charge sum rule. It can also be 
argued against this procedure [3 l] that the correla- 
tions included in [30] are not the most important 
ones at low density. Baldo and Pucci [32, 33] have 
performed a more detailed calculations including 
estimates of vertex correction effects in lowest 
order. At the sodium density they obtain the value 
m*/m = 1.3 and somewhat smaller values for larger 
densities (see Fig. 2). Considering the difference 
between the apparent and true effective mass values 
and the uncertainties involved, we feel that the 
discrepancies between the calculated and observed 
values need not be significant. 

3. Temperature Dependence of Positron Trapping at 
Vacancies 

The many important applications of positron an- 
nihilation to the study of defects in solids will be 
discussed by others during this conference. We will 
here instead concentrate on the somewhat contro- 
versial question of how the different models for the 
motion of the positron before it annihilates will 
affect the trapping rate. We also make some com- 
ments on the validity of the different models. 
The current theory of vacancy trapping is based on 
the rate equation approach of Brandt [-34] which 
was applied to the trapping.in metals by Bergersen 
and Stott [35] and Connors and West [36]. The 
basic equations are 

hi = - )~I nl - v ct n I 
ht=_2tn~+vctnj } (11) 

Here n, and nf are, respectively, the probabilities 
that the positron is trapped and free at time r after 
it is injected, 2, and 2f are the trapped and free 
annihilation rates, c, is the trap concentration and v 
the average trapping rate per unit vacancy concentra- 
tion. We have in (11) neglected the possibility that 
once trapped, the positron can escape. This is 
certainly justified in a metal such as A1 if one con- 
siders the estimated binding energy of a positron to 
a vacancy (Arponen et al. [37] found the value 2.6 eV, 
while Hodges [38] obtained 2.0 and 3.8 eV with 
and without electron-electron correlations taken 
into account). In most other metals the binding 
energy is expected to be somewhat smaller, but it 
seems reasonable to assume that it is in ahnost all 
cases much larger than the thermal energy kB T. 
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As demonstrated by MacKenzie et al. [39] the 
angular correlation differ markedly in the free and 
trapped states. The rate equation approach predicts 
that the observed angular correlation curves should 
be linear combinations of curves associated with the 
pure free and trapped states. The weighting factors 
are proportional to the respective probabilities Roe 
and R, of annihilation from these states 

RJRoe = vct/2oe . (12) 

The equilibrium vacancy concentration at tempera- 
ture T is given by 

c, = A e  -~vjkBr (13) 

with A an entropy factor and E= the vacancy forma- 
tion energy. MacKee et  al. [40] obtained accurate 
vacancy formation energies from angular correlation 
data taken at different temperatures, using an 
Arrhenius plot based on (12) and (13). In principle, 
the accuracy of the method depends on the extent 
to which one knows the temperature dependence of 
the trapping rate v, although in practice other 
uncertain factors are probably more or equally 
important. In any case the temperature dependence 
of v is a question which has been much discussed 
recently. 
The conventional way to calculate transition prob- 
abilities in quantum mechanics is to use the 
"golden rule" expression. This approach was used 
by Hodges [38] and is further discussed by Ber- 
gersen and Taylor [41]. The trapping rate vv for a 
positron with wave vector p is, in such a model, 
given by the expression 

vp = 4re ~ ] M ( p , k , q ) J a a ( E t - E , , + e k - e , + a ) .  (14) 
k,q 

The binding energyliberated in the trapping process 
is of the order of an electron volt and therefore the 
process involves creation of particle-hole pairs 
which absorb at least most of the excess energy. For 
this reason it was assumed in [38] and [41] that the 
matrix element has the following form 

4roe 2 
M ( p , k , q ) =  f2q2 ~ (q,O) ( P - q [ l )  f k (1  - f k + q ) .  (15) 

Here IP) represents a positron Bloch state and II) 
the state vector for a trapped positron at site I. 
From the discussion in Section I one can assume the 
positrons to be approximately thermalized. Neglect- 
ing the small deviations discussed in Section 2, we 
assume a Boltzmann-type positron momentum dis- 

tribution. This gives for the mean trapping rate per 
unit vacancy concentration 

_ 1 2 (  2rt / 3'2 
v -  ~ o  v ~ n ' n ' * ~ ]  e-V2/>"*k~Wv~ (16) 

Since the positron trapping energy is large compared 
to kBT, the Bohr radius of the trapped state will be 
short compared to typical thermal de Broglie wave 
lengths. The matrix element in (15) will then be 
approximately independent of the p-vector, i.e. of the 
temperature. The same holds for the phase space 
factor in (14). The "golden rule" model thus predicts 
an essentially temperature independent trapping 
rate, as was confirmed by explicit numerical calcula- 
tions in [41]. 
Connors and West [36] and Connors et al. [42] 
predict a different behaviour by assuming that the 
positron follows a collision-free path to the trap. 
They too assume a Boltzmann-type positron velocity 
distribution resulting in a mean velocity given by 

v =  (8kB T/zcm) 1/2 . (17) 

By treating the positron as a classical particle they 
get 

v = a ~ / f 2  o = rca2~/ f2o ,  (18) 

where a is a trapping radius which was approximately 
given by the Thomas-Fermi screening length, and a 
is the trapping cross-section. This model results in a 
T-}-law for the trapping rate v. 
Seeger [43] has recently proposed a third model for 
the vacancy trapping of positrons. He also works with 
a velocity independent trapping radius. Seeger 
makes the additional observation that at realistic 
temperatures the positron must be expected to suffer 
many collisions with a mean free path which is short 
compared to a typical intertrap separation. The reac- 
tion should therefore be considered as diffusion 
controlled (Waite [44]) and one has 

v = 4 n a D i r ?  o , (19) 

where the diffusion coefficient D is given by the 
Nernst-Einstein relation 

O = k B T ! ~ ,  (20) 

# being the positron mobility. Seeger [43] assumed 
that the mobility is limited by scattering with 
acoustical phonons and, at least qualitatively de- 
scribable, by deformation-potential theory (see e.g. 
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Conwell [45]). We thus have (Bergersen and McMul- 
len [46]) 

2 e S ~ I 2 r c  ]~ (21) 
, u -  3E 2 mSk~T2Tp . 

Here 0 is the mass density and E 1 the deformation 
potential parameter (rate of change of the energy of 
the bottom of the positron band per unit dilation 
of the crystal). The effective positron temperature 
Tp will be equal to the crystal temperature T if the 
positron is completely thermalized and essentially 
independent of T if the thermalization is incomplete. 
Seeger [43] only considered the former case and 
thus arrived at a trapping rate which was propor- 
tional to T -1/2. 
From the discussion in Section 1 one would expect 
that the mobility is phonon-limited only for low 
temperatures. At higher temperatures the positron 
is most effeciently slowed down by excitation of 
particle-hole pairs. In that case the mobility should 
be proportional to T -2 instead of the T -3/2 be- 
haviour obtained from (21), and then the above 
model would give a trapping rate proportional to 
T-1. We plan to present elsewhere estimates of the 
positron diffusion constants in some simple metals 
taking both the phonon and electron-hole contribu- 
tions into account. 
Returning to the framework of the theory based 
upon the "golden rule" we note that the positron- 
phonon interactions (which limit the positron mo- 
bility) enter in two distinct ways [24]. The first way 
is in vertex corrections to the trapping matrix ele- 
ment, but if the traps are deep compared to the Debye 
energy, this effect must be insignificant. The inter- 
actions contribute also to the positron self-energy and 
what they do is to modify the quasi-positron mo- 
mentum distribution, which is the quantity that enters 
in (16). But as discussed in connection with this equa- 
tion the modification will not be important in the 
present context if the traps are deep compared to kB T. 
Thus the mobility, which is the critical quantity 
within the framework of diffusion controlled reac- 
tions, does not enter in the "golden rule" model as a 
very significant parameter. (Note, however, that the 
same factors which control the mobility also affect the 
"apparent effective mass" discussed in Section 2.) 
The model of Connors and West and that of Seeger 
are both tied to the classical concept of a capture 
radius. Once the positron gets close enough, it is 
assumed to become always t r apped-  the problem 

is to get it there. In order to feel confident about the 
"golden rule", however, in a situation where a large 
fraction of the positrons are trapped, one would like 
to imagine a situation where the positron normally 
samples many vacancies before it gets trapped. In 
that case (15) gives a trapping cross section inversely 
proportional to the positron velocity. The fact that 
the fast positron samples more traps would then be 
compensated by the slow ones lingering longer. 
This means that the validity of the respective models 
is tied to the strength of the potential, or to be more 
specific, the validity is tied to the importance of 
multiple scattering terms in the t-matrix for trapp- 
ing. 
Bergersen and Taylor [41] estimated numerically 
the importance of these terms in a simple model and 
found them to be small. What would happen if in a 
more realistic calculation the correction terms 
turned out not to be so small? If mobility-limiting 
collisions can be neglected the only effect of this 
would be that the true trapping cross section would 
replace the "golden rule" result in the formula 
relating the trapping rate to the cross section. It 
seem, however, unlikely that the fundamental v - 1  
dependence of the cross section will change, unless 
it should happen that an s-wave resonance lies near 
the thermal energy range for free positrons. When, in 
addition, the collisions are taken into account 
diffusion aspects will also, in principle, modify the 
result. It is, however, not expected [41] that such 
effects will modify the temperature dependence of the 
trapping rate. We therefore feel that of the proposed 
models the "golden rule" approach of Hodges [38] 
gives the most satisfactory description of the trapping 
process when the trapping potential is weak, while 
models that work with a velocity independent 
trapping radius probably never give a quantum 
mechanically consistent description. 
Several conflicting opinions have been expressed 
also regarding the experimental situation. Seeger 
[47] quotes results by Connors et al. [48] from 
quenching experiments on Cd which indicate a 
trapping rate proportional to T-1/2 in agreement to 
his model. This is, however, not confirmed by later 
work by Connors and Bowler [49]. Recent ex- 
periments by McKee et aI. [50] in Au give results 
which are compatible with a T o behaviour i.e. the 
Hodges model [38], while Hall et al. [51] interprete 
their Au data in terms ofa T~-law, where 0.5 < c~ < 1.0. 
As pointed out by Cotterill ee al. [52] it is quite hard 
to sort out the possible role of dislocations and va- 
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cancy clusters in these experiments. We do not 
know whether this is the reason for the discre- 
pancies. 

4. Positron Channeling 

When energetic charged particles penetrate a crystal 
lattice in certain crystallographic low-index directions 
they will experience a strong steering effect caused by 
succesive correlated small angle scattering events 
with a large number of lattice atoms. This phenomen 
is called particle channeling and has been de- 
monstrated experimentally with a wide variety 
of heavy ions and target materials (for a review see 
e.g. Datz et al. [53]). Channeling experiments have 
also been conducted with electrons and positrons in 
Si by Walker et al. [54] and Morokhovskii et al. [55], 
in alkali halides by Didenko et al. [56], and in Si 
and anthracene by Arma~an Ok [57]. However, 
only few results on electrons and positrons channeling 
in thin metal single-crystal foils have been reported 
in the literature. Uggerhoj [58], Uggerhoj and 
Andersen [59] have studied the phenomenon in 
copper doped with Cu 64 and Uggerhoj and Frandsen 
[60], Andersen et al. 1-61] in gold. 
We will here discuss changes observed in the Ruther- 
ford scattering yield in the low-index direction in 
thin gold crystal foils. The results are essentially 
equivalent in the case of copper, where the Cu 64 
positron source was part of the material and direc- 
tional effects of emission also were observed [58, 
59]. 
For the scattering measurements a beam of positrons 
must be obtained. A well-collimated positron beam 
can be produced by accelerating positrons from a 
Co ss source in a 1-MeV electron Van der Graaff 
[61]. This method has the advantage of increasing 
the total intensity within a fixed solid angle and 
reducing the relative energy spread of the original 
positron spectrum. The dips for positrons and peaks 
for electrons in the Rutherford scattering yield are 
then studied by mounting the fcc gold single- 
crystals on a suitable goniometer set-up, allowing 
various tilts of the incoming beam to crystallographic 
axial or planar directions. Pronounced dips in the 
normalized scattering yield were found experimen- 
tally [61] in thin gold single crystals for various 
directions ((110), (111), (112)). Outside the mini- 
mum the dip has marked compensating shoulders, 
the size of which depends strongly on the azimuthal 

angle of the axial scan, indicating the importance of 
various planar channeling effects [59]. 
Lindhard [62] has presented a classical theory of the 
directional effects and according to him the observed 
half-widths for channeling along a crystallographic 
axis should be proportional to the critical angle 
tj) 1 defined as 

~91 = { 2 Z l Z 2 e Z / � 8 9  ~, when ~1 <a /d .  (22) 

Here Z~ and Z 2 are the atomic numers of the in- 
coming particle and the lattice ion, respectively, 
a is a screening distance of the string of atoms in the 
chosen direction, obtained in a continuum approxi- 
mation for the scattering potential, d is the lattice 
spacing along the string and p the momentum and 
v the velocity of the penetrating particle. In the same 
continuum approximation the minimum yield Xmi n 
is expressible as 

g d  ~(02 + a2 ) (23) 
Xmi n --  ~ 

where 02 is the mean-square thermal displacement 
perpendicular to the string of atoms. A recent 
modification has been proposed by Kubota and 
Ohtsuki [63] by taking into account the tempera- 
ture and energy dependence in a more complicated 
way. 
The proportionality constant between the half- 
width of the dip and ~t includes the effect of thermal 
vibrations of atoms in crystal lattice. According to 
Andersen [64] the value for the proportionality 
constant in the case of gold is about 0.8. This means 
e.g. that the theoretical value for the half-width 
from (22) is about 20 % larger than the experimental 
value in the (110) direction. Since discrepancies of 
this magnitude are not unusual for heavy particle 
channeling, a more decisive test as to the applica- 
bility of classical channeling theory to the case of 
positrons would be a comparison with protons 
channeling with the same value for 1/2pv.  This has 
been done in [6l] and the agreement obtained is 
very good both for the half-width and the minimum 
yield. From the results it can be concluded that in 
the axial case quantum corrections are not essen- 
tial. 
Lervig et al. [65] have given a thorough discussion of 
the possible quantum corrections to the classical 
channeling theory for positrons. They find that 
electrons and positrons are expected to behave 
more in a non-classical way than would a heavy 
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particle (e.g. wave interference due to inelastic 
collisions with atoms of the string and tunneling 
into classically forbidden potential regions). One 
way to estimate the relative importance of quantum 
effects in the axial and planar channeling is to look 
at phase space estimates for the respective transi- 
tions. When this is done, the above conclusions for 
the applicability of the classical theory for the axial 
case seem reasonable. For the planar channeling, 
say for the { 111} plane, the number of bound states 
in the transverse phase space is so small that one 
might expect the planar dips to exhibit more struc- 
ture due to quantum effects. The measurements in 
[61] had not, however, enough accuracy to resolve 
the interference "wiggles" in planar channeling. 
Pedersen et al. [66] have lately observed this fine 
structure in thin Si crystals for the planar dips. 
It should finally be mentioned that Kudrin et al. 
[677 have simulated the positron scattering in single 
crystals as a series of classical binary collisions 
with the lattice atoms. The results of such a calcula- 
tion compares well with the experimental curve for 
the ~ll0)-axial dip in gold of [611. This fact gives 
further confidence to the conclusion that relati- 
vistic positrons follow essentially the classical theory 
of channeling. 

5. Escape of Low Energy Positrons from Metal Surfaces 

The main interest in the study of the escape of low 
energy positrons from the surface of different 
materials arose from the possibility of obtaining 
positron beams with a small energy spread for 
atomic collision experiments (for a review of this 
aspect of the problem see Keever et al. [68]). 
The conceptually simplest way to obtain such a 
beam is to slow down a fraction of the randomly 
directed fast positrons that escape from a fl+-active 
source. A positron gun with an energy spread of a 
few keV that is based on this principle was described 
by Lohnert and Schneider [69]. The difficulty with 
this method is that the yield, necessarily, would 
become very small if a much better energy resolution 
were required. 
An alternative approach is based on the experimental 
observation that low energy positrons with energy of 
the order of eV are emitted from certain metals or 
metal coated surfaces of different materials [68, 
70-75]. The simplest way to explain this pheno- 
menon is to assume a negative positron work rune- 

tion. The most thorough theoretical evaluation of 
the positron work function, up till now, is that of 
Hodges and Stott [76] who analyzed it in terms of 
three contributions: 

1. The Band Structure or Zero Point Energy E o 

The origin of this term is the repulsive positron-ion 
interaction, and E o can be identified with the 
bottom o f  the positron band in a band structure 
calculation. Hodges and Stott [76] tabulated values 
of Eo for a large number of metals. The calculations 
were performed in the Wigner-Seitz approximation. 
The ions are described by a Hartree potential 
obtained from atomic structure calculations with 
special provisions for the d-electrons in the noble 
metals. In all metals (except for the alkalis and 
magnesium where it is smaller) Eo was found to be 
positive and of the order of 1/3 Ry. 

2. The Electron-Positron Correlation Energy E .... 

This is the energy associated with the attractive 
interaction between the positron and the conduction 
electrons. We expect it to approach -0 .5  Ry, the 
free positronium value, for low densities. For higher 
densities E .... will be still lower. Hodges and Stott 
[76] compute Ecor~ for an electron gas of the same 
densities as in the metals of interest from the electron 
positron correlation function g + - (r, Z). Here 
Ng+-(r ,Z) / (2  is the average electron density at a 
distance r from a "positron" of charge Z, 

_ 3 e  2 1 
Ecorf- 3 ~ dZ  ~ drr[g+-(r ,Z)  - 1]. (24) 

rs b 0 

The pair correlation function was in turn computed 
by the method of Sj61ander and Stott [77, 78] which 
leads to a simple integral equation. The method 
diverges for low electron densities. Bhattacharyya 
and Singwi [79] eliminated this difficulty (at least 
for metallic densities) by including a density gradient 
term in the integral equation for the Fourier trans- 
formed pair correlation functions. This gives rise to a 
nonlinear integro-differential equation with one 
adjustable parameter, which was fitted to give the 
expected positron lifetime for low densities. 
Bhattacharyya and Singwi [80] then proceed to 
compute the positron correlation energy from the 
pair correlation function of [793. Other authors 
[31, 33] have attempted to calculate the correlation 
energy from the positron self-energy by using 
diagrammatic methods. 
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3. The Surface Contribut ion E s 

The origin of this term is the dipole layer at the metal 
surface giving a negative contribution to the conduc- 
tion electron energy. This energy will change sign 
for positrons, i.e. give a negative contribution to the 
positron work function. In his calculation of the 
positron work function Tong [81] made use of the 
jellium-model calculation of Lang and Kohn [82] 
for the surface contribution. Hodges and Stott [763 
objected against this, because Heine and Hodges 
[833 have shown that for simple metals other than 
the alkalis and alkaline earths the ion pseudopoten- 
tial is considerably more attractive than the jellium 
potential, thus reducing the electron "spill-over" into 
the vacuum. The electron work function might still 
be relatively insensitive to the strength of the pseudo- 
potential because the reduction in the dipole layer is 
compensated for by the lowering of the band struc- 
ture energy. The authors of [763 argue that the effect 
is important in the positron case and they try to 
take it into account in their calculation. 
In the case of Au [763 obtains a negative work 
function in agreement with experiment, while in 
most other metals the work function is expected to 
be positive. The work function for positronium is in 
all cases lower than for free positrons and is expected 
to be negative in several metals. 
Orth [84] and Pendyala et al. [853 have attempted 
to discuss the low-energy positron yield (number of 
emitted low energy positrons/number of positrons 
stopped in the moderator) which for gold surfaces is 
typically of the order of 10 7. It is difficult to under- 
stand the observed spectrum [733 without assuming 
that the escaping low-energy positrons have first 
been approximately thermalized in the moderating 
material. The factors which influence the yield are 
expected to be [84] : 
a. The Distribution of Stopped Positrons throughout 
the Volume of the Metal 
This distribution can be taken to be fairly uniform, if 
the thickness t of the metal is not large compared to 
the positron range in the material. 
b. The Positron Diffusion Length L 
It can be expressed in the form 

L = (lv/32a) ~, 

where v is the average velocity, l the mean free path 
and 2 a the rate at which positrons are removed from 
the distribution of free positrons. Neglecting trapping 
mechanisms the diffusion length has been estimated 

[85, 86] to be about 500 A. Vacancy trapping will 
reduce the positron diffusion length, but probably 
not more than by an order of magnitude. 
c. The Probability of Escape 
If positrons would always escape whenever they 
approach the surface layer, the yield would be 
approximately equal to L/t ,  leading to considerably 
higher yields than have been observed [84]. Hodges 
and Stott [87] have pointed out that the image 
potential when a positron is close to the metal surface 
leads to a deep potential "gutter" just outside the 
metal. Although no estimate has been made of this, 
it is plausible that a very large fraction of the posi- 
trons will be trapped by this potential. This is sup- 
ported by the fact that the yield is very sensitive to 
surface treatment. Keever et al. [68J report that 
marked increases in the yield was obtained when the 
surfaces were not too clean and a slight leak main- 
tained in the vacuum system. It should be mentioned 
that Canter et al. [88] obtained a remarkably high 
yield of 10 -5 from a gold moderator covered with 
a layer of powdered MgO. 

Acknowledgements. The Research Institute for Theoretical Physics 
(TFT) in Helsinki and the Physics Department of UBC in Van- 
couver are thanked for their hospitality during respective visits 
of the authors while writing this review article. Partial financial 
support has been provided by TFT and the National Research 
Council of Canada through an operating grant. When working 
out this article we have been influence by many stimulating 
discussions with the participants of the 3rd Internat. Conf. Positron 
Annihilation in Otaniemi and in particular with Dr. P. H. R. 
Orth. 

References 

l. F.Rohrlich, B.C.Carlson: Phys. Rev. 93, 38 (1954) 
2. H.H.Seliger: Phys. Rev. 100, 1029 (1955) 
3. P.S.Takhar: Phys. Letters 23, 219 (1966) 
4. P.S.Takhar: Brit. J. Appl. Phys. 18, 246 (1967) 
5. A.S.Rupaal, J.R.Patrick: Phys. Letters 38A, 387 (1972) 
6. J.R.Patrick, A.S.Rupaal: Phys. Letters 35A, 235 (1971) 
7. C.Feldman: Phys. Rev. 117, 455 (1960) 
8. J.P. Carbotte, H. L. Arora: Can. J. Phys. 45, 387 (1967) 
9. C.K.Majumdar: Phys. Rev. 140, A227 (1965) 

10. W.Kohn, J.M.Luttinger: Phys. Rev. 118, 41 (1960) 
11. J.M.Luttinger, J.C.Ward: Phys. Rev. 118, 1417 (1960) 
12. J.Arponen: Proc. 2rid Int. Positron Annihilation Conf. 

(Kingston, Canada 1971), unpublished 
13. J.P.Carbotte, S.Kahana: Phys. Rev. 139, A213 (1965) 
14. B.B.J.Hede, J.P.Carbotte: Can. J. Phys. 48, 2661 (1970) 
15. S.M.Kim, A.T.Stewart, J.P.Carbotte: Phys. Rev. Letters 

18, 385 (1967) 
16. A. Perkins, J. P.Carbotte: Phys. Rev. B1, t01 (1970) 
17. E.J.Woll, J.P.Carbotte: Phys. Rev. 164, 985 (1967) 



Motion of Positrons in Metals 35 

18. K.K.Thornber: Phys. Rev. B3, 1929 (1971) 
19. A.T.Stewart, J.B.Shand: Phys. Rev. Letters 16, 261 (1966) 
20. A.T. Stewart, J. B. Shand, S. M. Kim: Proc. Phys. Soc. (London) 

88, 1001 (1966) 
21. S.M.Kim, A.T.Stewart: Bull. Am. Phys. Soc. 12, 532 (1967) 
22. S.M.Kim: P h . D .  Thesis, University of North Carolina 

(1967) unpublished 
23. C.K.Majumdar: In Theory of Condensed Matter, ed. by 

F. Bassani, G. Caglioti and J. Ziman (Internat. Atomic Energy 
Agency, Vienna 1968) p. 829 

24. B.Bergersen, E. Pajanne: Phys. Rev. B3, 1588 (1971) 
25. H.J.Mikeska: Phys. Letters 24A, 402 (1967) 
26. H.J.Mikeska: Z. Physik 232, 159 (1970) 
27. G.Dresselhaus: J. Phys. Chem. Solids 1, 14 (1956) 
28. C.K.Majumdar: Phys. Rev. 146, 406 (1966) 
29. D.R.Hamann: Phys. Rev. 146, 277 (1966) 
30. B.Bergersen, E. Pajanne: Phys. Rev. 186, 375 (1969) 
3l. B.Bergersen, J.P.Carbotte: Can. J. Phys. 50, 1332 (197l) 
32. M.Baldo, R. Pucci: Phys. Letters 40A, 86 (1972) 
33. M.Baldo, R. Pucci: Preprint 
34. W.Brandt: In Positron Annihilation, ed. by A.T.Stewart 

and L.O.Roelling (Academic Press, New York 1967), p. 155 
35. B.Bergersen, M.J.Stott: Solid State Commun. 7, 1203 (1969) 
36. D.C.Connors, R.N.West: Phys. Letters 30A, 24 (1969) 
37. J.Arponen, P.Hautoj~irvi, R.Nieminen, E. Pajanne: J, Phys. 

F (Metal Phys.) 3, 2092 (1973) 
38. C.H.Hodges: Phys. Rev. Letters 25, 284 (1970) 
39. I.K.MacKenzie, G.F.O.Langstroth, B.T.A.McKee, C.G. 

White: Can. J. Phys. 42, 1837 (1964) 

40. B.T.A.McKee, W.Trifthauser, A.T.Stewart: Phys. Rev. Let- 
ters 28, 358 (1972) 

41. B.Bergersen, D.W.Taylor: Preprint 
42. D.C.Connors, V.H.C.Crisp, R.N.West: J. Phys. F 1, 355 

(1971) 
43. A.Seeger: Phys. Letters 40A, 135 (1972) 
44. T.R.Waite: Phys. Rev. 107, 463 (1960) 
45. E.M. Conwell: Solid State Physics: Suppl. 9 (Academic Press, 

New York 1967) 
46. B.Bergersen, T.McMullen: Solid Star. Commun. 9, 1865 

(1971) 
47. A.Seeger: Phys. Letters 41A, 267 (1972) 
48. D.C.Connors, V.H.C.Crisp, R.N.West: Phys. Letters 33A, 

180 (1970) 
49. D.C.Connors, J.C.Bowler: Phys. Letters 43A, 395 (1973) 
50. B.T.A. McKee, H.C. Jamieson, A.T. Stewart: Preprint 
51. T.M.Hall, K.C.Jain, R.W.Siegel: This conference 
52. R.M.J.Cotterill, K. Petersen, G.Trumpy, J.Tr~iff: J. Phys. 

F 2, 459 (1972) 
53. S.Datz, C.Erginsoy, G.Leibfried, H.O.Lutz: Ann. Rev, Nucl. 

Sci. 17, 129 (1967) 
54. R.L. Walker, B.L. Berman, R.C. Der, T.M. Kavanagh, J.M. 

Khan: Phys. Rev. Letters 25, 5 (1970) 

55. V.L. Morokhovskii, G, D. Kovalenko, I.A. Grishaev, A.N. Fi- 
sun, V.I.Kasilov, B.I.Shramenko, A.N.Krinitsyn: Soviet 
Physics JETP-Letters 16, 112 (1970) 

56. A.I. Didenko, S.A.Vorobev, I.A.Tsckhanovskii: Soviet Phy- 
sics JETP-Letters 12, 209 (1970) 

57. H.H.Arma~an Ok: Z. Physik 240, 314 (1970) 
58. E.Uggerhoj: Phys. Letters 22, 382 (t966) 
59. E.Uggerhoj, J.U.Andersen: Can. J. Phys. 46, 543 (1968) 
60. E.Uggerhoj, F.Frandsen: Phys. Rev. B2, 582 (1969) 
61. J.U.Andersen, W.M.Augustyniak, E.Uggerhoj: Phys. Rev. 

B3, 705 (1970) 
62. J. Lindhard: Kgl. Danske Videnskab. Selskab Mat.-Fys. Medd. 

34, No. 14 (1965) 
63. Y.Kubota, Y.H.Ohtsuki: Phys. Letters 43A, 521 (1973) 
64. J.U.Andersen: Kgl. Danske Videnskab. Selskab, Mat.-Fys. 

Medd. 36, No. 7 (1967) 
65. P. Lervig, J.Lindhard, V.Nielsen: Nucl. Phys. A96, 481 (1967) 
66. M.J. Pedersen, J.U.Andersen, W.M.Augustyniak: Radiat. 

Eft. (G.B.) 12, 47 (1972) 
67. V.V.Kudrin, Yu.A.Timoshnikov, S.A.Vorobev: Phys. Stat. 

Solidi (b) 58, 409 (1973) 
68. W.C. Keever, B. Jaduszliwer, D.A.L. Paul: In Atomic Physics, 

Vol. 3, ed. by S.J.Smith and G.K.Walters (Plenum Press 
New York 1973), p. 561 

69. G.H.Lohnert, R.T.Schneider: Nuclear Technology 10, 315 
(1971) 

70. W.H.Cherry, Ph.D.Thesis: Princeton University (1958) un- 
published 

71. J.M.J.Madey: Phys. Rev. Lett. 22, 784 (1969) 
72. D.G.Costello, D.E.Grace, D.F.Herring, J.W. McGowan: 

Can. J. Phys. 50, 23 (1972) 
73. D.G.Costello, D.E.Grace, D.F.Herring, J.W.McGowan: 

Phys. Rev. BS, 1433 (1972) 
74. B. Jaduszliwer, Wm. C. Keever, D. A. L. Paul: Can. J. Phys. 50, 

1414 (1972) 
75. J.R. Patrick, A.S.Rupaal, L.E.Spanel: Nucl. Inst. Meth. 107, 

1 (1973) 
76. C.H.Hodges, M.J.Stott: Phys. Rev. B7, 73 (1973) 
77. A.SjNander, M.J.Stott: Solid State Commun. 8, 1881 (1970) 
78. A.Sj61ander, M.J.Stott: Phys. Rev. BS, 2109 (1972) 
79. P.Bhattacharyya, K.K.Singwi: Phys. Rev. Letters 29, 22 

(1972) 
80. P. Bhattacharyya, K.S.Singwi: Phys. Letters 41A, 457 (1972) 
81. B.Y.Tong: Phys. Rev. BS, 1436 (1973) 
82. N.D.Lang, W.Kohn: Phys. Rev. B3, t215 (197l) 
83. V.Heine, C.H.Hodges: J. Phys. C. 5, 225 (1972) 
84. P.H.R.Orth: Preprint 
85. S. Pendyala, P.W.Zitzewitz, J. Wm. McGowan, P.H.R. Orth: 

Phys. Letters 43A, 298 (1973) 
86. L.Madansky, F.Rasetti: Phys. Rev. 79, 397 (1950) 
87. C.H.Hodges, M.J.Stott: Preprint 
88. K.F.Canter, P.G.Coleman, T.C.Griffith, G.R.Heyland: J. 

Phys. B (Atom. Molec. Phys.) 5, L 167 (I972) 


