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Introduction

The diffraction of elastic waves poses one of the most complex and timely problems from the standpoint
of applications in the dynamics of deformable bodies. Its timeliness owes to the almost certain inevitability of
inhomogeneities (inclusions, cavities, cracks, local fluctuations of properties, etc.) being present in connection
with the deéign of new structures operating under dynamic loads in various branches of industry, in the develop-
ment of new composite heterogeneous materials, and in geophysical and seismological investigations, plus the
fact that information about the dynamic stresses near such inhomogenéities is essential for a variety of objec
tives. On the other hand, elastic-wave diffraction problems are among the classical problems of the dynamics
of deformable bodies, and their solution entails complex mathematical machinery. The latter consideration,
among other things, has long impeded the investigation of broad classes of problems involving assessment of
the stress—strain state near inhomogeneities, Major advances have been gained mainly in such areas as the
formulation of analytical solutions of a vast number of individual problems, in the majority of cases without
analysis of dynamic stresses near an obstacle; the reduction of large classes of elastic-wave diffraction prob-
lems to systems of multivariate singular and regular integral equations with subsequent proof of the existence
and uniqueness of a solution; and the development of asymptotic methods of solution, which generally are inap-
plicable for determination of the stress state near an interface. One of the basic objectives in the study of
elastic-wave diffraction by inhomogeneities is to obtain not only a formal mathematical solution, but also a solu-
tion that will permit effective determination of the diffraction field of stresses and strains near inhomogeneities.
Two basic trends in the study of dynamic stress near inhomogeneities have emerged in recent years in connec~
tion with the advent and utilization of computers. The first trend involves the development of numerical meth~
ods and concomitant quantization of problems into discrete form with the application of computers in every
stage of solution. The future evolution of this trend, in light of the universality of its algorithms, will clearly
provide the means for investigation of exceedingly general classes of problems. Nonetheless, the fundamental
results obtained in the last few years, mainly inthe USSR and the United States, fall within the second main
trend, which is associated with the first stage of solution of problems on the basis of analytical methods (sepa-
ration of variables and its generalizations, perturbation methods, reduction to integral equations after partial
separation of variables, etc.) and then the final stage with recourse to computers.

Following is a survey of research conducted to date within the context of the latter trend.

Simply Connected Domains

The broadest category of diffraction problems in an elastic medium is investigated for steady-state waves.
If we limit our perspective to steady-state (stationary) wave motions, we find it possible to separate one of the
independent variables—the time t— by taking out the exponential factor e~iwt (w is the cyclic frequency), thereby
simplifying the solution of the problem. On the other hand, the investigation of steady-state waves is important
for many practical problems. Moreover, if it is possible to calculate the response of an elastic medium to
steady-state disturbances over a wide range of frequencies, it will then be possible to analyze transient pro-
cesses by means of the mathematical machinery of integral Fourier transforms.

Circular Hole. One of the first problems to be investigated in the class of steady-state wave problems
was the diffraction of elastic waves by a cylindrical obstacle. The reason is that the solution of the Helmholtz
equation in cylindrical (polar) coordinates had long been known, but a digital computer was needed in order to
obtain numerical results. For example, in the case of the plane problem for a medium containing a circular
cylindrical cavity (hole), introducing the scalar and vector potentials for the elastic displacement vector u,
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where k is the unit vector normal to the plane of motion, we can formulate the diffraction problem as follows:
Find a solution of the Helmholtz equation
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subject to the boundary conditions at the edge of the cavity
Orr ir=R = 0; 0re ir=R =0 (3)
and the radiation conditions [53] at infinity.

In expressions (2) and (3), A is the Laplace operator, ¢, and c, are the velocities of expansion and shear
waves, Opp and Opg are the components of the. stress state, R is the radius of the cavity, and the exponential time
factor e~i®t is dropped.

The solution of (2) satisfying the conditions at infinity is expressed in terms of cylihdrical Hankel func-
tions of the first kind Hy (1),

(TN (1)
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Here r and 8 are polar coordinates, and A, and By are indeterminate constants.

In this setting the diffraction of a plane dilatational elastic wave near a circular hole in an unbounded thin
plate under conditions of a generalized plane stress state has been investigated in [62]. The author determines
the stress state in the vicinity of the edge of the hole and analyzes the dynamic stress concentration. It is
established, in particular, that the dynamic stress coefficient exceeds its static value by about 10% in a certain
frequency range. The stress distribution around the edge of the hole depends strongly on the frequency, vary-
ing quite abruptly as the latter is varied. The short- and long-wavelength limits are investigated, along with
standing waves.

In [55] the analogous problem is solved for an incident plane harmonic shear wave. It is verified that the
dynamic stress is approximately 20% greater than the static value.

Circular Inclusion. If a perfectly rigid disk is embedded in a circular hole, two types of boundary condi-
tions are pertinent. The simplest prescribe zero displacements on the part of the inclusion. The solution ob-
tained by Pao and Mow [96] for this problem shows that as the frequency tends to zero, the force keeping the in-
clusion immobile must grow without bound. It is more natural to state the problem in such a way that the in-
clusion can move together with the medium, its motion being determined from the Newtonian equation of motion.
The force acting on the inclusion in this case is specified by the stress state in the vicinity of the cavity.

A similar problem is investigated in [55] for an incident plane shear wave. It is found that the ratio of
the plate density to the inclusion density has a considerable influence on the stress— strain state in the plate. In
certain cases the maximum dynamic stresses can be 37 to 105% greater than their values in the static case.

The representation of an external wave disturbance by a plane compressional or shear wave is an ideali-
- zation relative to the real wave source, which usually has definite dimensions and is situated at a finite distance
from the object. Consequently, a vital question in practice is how strong is the influence of a nearby source on
the validity of the results obtained for a plane wave. The singularities of the stress state in the vicinity ofa
circular cylindrical cavity under the action of a cylindrical dilatational wave have been investigated in [80]. It
is postulated that the incident wave is generated by a source located at a certain point (plane problem). It is dew
termined that the disparity between the cases of a plane and a cylindrical wave exist primarily at low frequen-
cies.

The stress state in certain cross sections of an elastic plate containing a hole under the action ofa plane
wave is determined in [52]. It is confirmed that the normal stress level increases at a certain distance from
the edge qf the hole, acting as a possible cause of cleavage effects.

The action ofa plane harmonic wave incident at a certain angle with respect to the axis of a circular
cylindrical cavity in an elastic solid is analyzed in [109].

Noncircular Hole. Whereas in the case of bodies bounded by circular cylindrical surfaces the problemis
solvable by separation of variables, the latter method is no longer feasible in the case of cylindrical boundaries
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of more complex fransverse section. For such bodies (boundaries), accordingly, special approximative meth-
ods have been developed. One effective method for the solution of problems in this category is the boundary-
perturbation method proposed by Guz' [30, 33]. This method was developed in application to domains whose
exterior is obtained for conformal mapping of a plane with a hole in the form of a unit disk by means of a map-
ping function of the fype

z=C+ef(§) z=re® {=pe™ (5)

By selecting various functions f(¢) and manipulating the parameter € it is possible to generate a large set of
hole configurations. Essentially, the method entails reduction of the problem for a noncircular hole to a se-
quence of problems in circular cylindrical coordimates with variable right-hand sides of the boundary conditions
in each approximation. This method has been used by Kubenko [2] in solving various diffraction problems. The
stress state of an elastic plate containing a curvilinear hole with a time-harmonic pressure applied at its cir-
cumference has been investigated in [46]. A solution is obtained in the form of a power series with respect to
£, in which the first three terms (three approximations) are determined. Final results are obtained for an el-
liptical, a square, and a triangular hole (the latter two with rounded corners). The practical convergence of the
methods used is determined. The action of a steady-state plane compressional or shear wave on an elliptical
or square hole has been investigated in [48-50]. The numerical results indicate that the peak dynamic stresses
are 10 to 15% greater than the static value in a certain frequency range.

For a parabolic crack in an elastic medium the diffraction problem admits separation of variables in the
equation and boundary condition in the event of antiplane deformation. The action of a plane wave on a cavity or
rigid inclusion has been investigated for this case in [65]. The limiting case of a line crack or rigid cavity of
zero thickness is also derived.

Spherical Cavity (inclusion). If we consider a spherical cavity (inclusion) under conditions of an axisym-
metric stress— strain state, the general solution of the Helmholtz equations (2), written in spherical coordi-
nates, can be expressed in the following form with regard for the radiation conditions:

(ED r)P,, (cas 9), (6)
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where hgi)' denotes spherical Hankel functions of the first kind, P, denotes Legendre polynomials, and r and
are spherical coordinates.

The solution (6) is used in [97] to investigate the action of a plane harmonic dilatational wave on a spheri-
cal cavity, rigid and elastic inclusions, and a liquid sphere in an elastic medium. The influence of the curva-
ture of spherical waves on the dynamic stress concentration is discussed in [57]. If is shown in these papers
that in the case of plane waves the dynamic stress-concentration factor is approximately 10% higher than the
static value and depends on the frequency. In the case of spherical incident waves it also depends on the dis-
tance from the source. Even when the distance from the source to a spherical cavity is 50 times the cavity
radius, the maximum stress concentration is roughly 30% higher than in the plane-wave case. The plane-wave
approximation of spherical waves is admissible when the wavelength is less than the distance from the source
to the center of the obstacle.

Axisymmetric Body. For bodies of revolution other than a sphere it is extremely difficult to investigate
the diffraction of elastic waves, because separation of variables is impossible in the wave equation. An excep-
tion is the case of a spheroidal body. In spheroidal coordinates, however, the wave equation admits separation
of variables only in the axisymmetric case. The axisymmetric problem of diffraction ofa plane harmonic di-
latational wave by a moving rigid spheroidal inclusion injected into an elastic medium has been solved in [60].
The solution is formulated as a series in spheroidal functions. For evaluation of the unknown constants an in-
finite system of algebraic equations is derived, from which an approximate solution can be deduced by the trun-
cation method. It follows from the numerical results that a frequency range exists wherein the stress concen-
tration is somewhat enhanced.

For the case of arbitrary almost-spherical bodies of revolution Guz' [34] has proposed an approximate
method of solution (the "boundary-perturbation method"), which makes it possible to reduce the problem ineach
successive approximation to the problem for a spherical cavity with variable right-hand sides of the boundary
conditions. Nemish [58, 59] has formulated expressions for any approximation of the boundary-perturbation
method and analyzed the convergence of the method; the method has also been used in [39] to investigate diffrac-
tion problems for torsional waves at bodies of revolution of almost-spherical configuration.
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Cracks. An interesting and important practical problem area comprises dynamic problems in the theory
of cracks and the problems of diffraction by cracks. Few such problems have been solved to date, primarily
because of the difficulty of obtaining an effective mathematical solution insofar as the classical method of sepa-
ration of variables is inapplicable in the dynamic case for an elastic body with a crack. Dynamic problems for
bodies with cracks fall into two categories: 1) wave diffraction by stationary cracks; 2) crack propagation.
Studies have recently been published, treating the interaction of elastic waves with mobile cracks.

We briefly summarize the fundamental results in the first category of problems. The diffraction prob-
lem for a plane wave at a semiinfinite line crack under conditions of antiplane deformation has been solved in
parabolic coordinates in [65]. It has been confirmed that near the tip of the crack the stress has a singularity
of order 1/Ywr, where r is the distance from the tip. Also investigated in the same paper is the diffraction
problem for a plane wave at a rigid stationary ribbon of zero thickness. Unlike the crack problem, wave dif-
fraction at a ribbon takes place even at zero angle of incidence. The interaction of a plane harmonic compres-
sional wave with a semiinfinite line crack in an elastic half-space under conditions of plane deformation is dis-
cussed in [74, 92]. The wave potentials are constructed in the form of Fourier integrals. The solution of the
problem is sought by the Wiener— Hopf method. The interaction of waves with a crack of finite dimensions can
be analyzed in elliptical coordinates, as in [3, 64]. In [104] the diffraction of an antiplane wave by a finite crack
is reduced to a system of dual integral equations, which is then reduced to an integral equation of standard type
for a complex-valued unknown function. It is established that the dynamic stress-concentration factor is 27.5%
higher than in the static case. In [106] the diffraction of a plane harmonic wave by a crack of finite length isin-
vestigated for conditions of plane deformation. The problem is reduced to a system of two consistent Fredholm
integral equations, which admits numerical solution. In the vicinity of the tip of the crack it is possible to
separate out principal terms and then use those terms to determine the stresses. The dynamic stress-concen-
tration factor is 20 to 30% higher than the static value. The interaction of a standing torsional wave with an
elastic space weakened by a penny-shaped crack has been investigated in [105]. The diffraction of a dilatation-
al wave by a penny-shaped crack or a rigid inclusion has been studied in [85, 91, 98], and the same for a shear
wave in [88].

Parton and Kudryavtsev [63] have investigated the important problem of diffraction of a plane shear wave
by a rigid cylindrical inclusion that does not have continuous contact with the elastic medium around its entire
contour, i.e., a finite curvilinear fracture exists at the interface between the elastic medium and the rigid in-
clusion. The problem is solved under condjtions of antiplane deformation for an incident plane wave.

Circular Hole. Flexural Waves. Of considerable importanée is the solution of problems in the diffrac-
tion of flexural waves in plates containing an obstacle in the form of a hole or an inclusion. In the majority of
situations the solution is analyzed within the context of the classical theory of bending of plates, but extensive
use has been made lately of various refinements of that theory.

Using the classical theory, Konenkov [42] has studied the solution of the problem of diffraction of flexural
waves in a plate with a hole, whose edge can be free, clamped, or supported, as well as in a plate with an in-
clusion. Shvets [77] has obtained quantitative results for the case of a plane flexural wave incident on a stress-
free hole, making use of the classical equations for bending of plates. Pao and Chao [95] have obtained quanti-
tative results for a similar problem, invoking theoretical equations of the Timoshenko type.

More complex diffraction problems for flexural waves in a plate with a single circular hole have been
solved in {84] for the case in which waves are excited by a point source near the hole. Saito and Nagaya [102]
have investigated the diffraction of flexural waves in a plate with a hole subjected to dynamic loading in the edge
regions.

Circular Inclusion. Flexural Waves. Three types of inclusions are considered in relation to the diffrac-
tion of flexural waves in a plate. A perfectly rigid stationary inclusion is discussed in [42], and the problems
for a rigid mobile inclusion are solved in [76, 99]. The diffraction of a plane flexural wave by an elastic inclu~
sion is solved in [99]. These problems are solved within the context of the classical theory.

Transient Waves. Inadequate attention has been given to the study of transient elastic-wave diffraction.
The main reason for this deficit is the obvious difficulty of solving transient problems. As a rule, they are
solved with recourse to integral transforms permitting separation of the time variable, whereupon the method of

separation of variables is applied.

The propagation of transient axisymmetric and cenirosymmetric waves generated by the application of
dynamic loading to the surface of a cylindrical or a spherical cavity in a homogeneous isotropic elastic medium
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has been investigated in [89, 103, 108]. The case of a cylindrically (spherically) anisotropic medium is dis-
cussed in [86]. A cylindrical shear wave in an inhomogeneous medium is studied in [107], and the propagation
of transient dilatational waves from a cylindrical (spherical) cavity in a cylindrically (spherically) anisotropic
inhomogeneous elastic medium is covered in [44, 45, 47]. The authors of these publications determine the
stress— strain state near the periphery of the cavity, at the wave front, and behind if. The propagation of a
transient cylindrical wave is investigated in [93] in connection with application to the process of hole-punching
in a thin infinite plate. The observed increase in the tangential stresses at the edge of the hole is interpreted
by the author as responsible for the formation-and growth of radial cracks in the material.

The elementary motions of a rigid cylinder or sphere included in an elastic medium have been investi-
gated in [1, 2, 41]. Several publications have been devoted to the transient diffraction of elastic waves by ob-
stacles. In [81-83] the integral Fourier transform is used to solve the problem of the action of a plane step
wave on a cylindrical cavity in an elastic medium. The solution obtained in the papers is valid for later times,
since only the two terms of the Fourier series left in the solution for large times are calculated. The displace-
ments, velocity, and acceleration of a rigid cylinder under the action of a2 plane wave in an elastic medium have
been determined in [66]. The case of a cylindrical cavity reinforced by a shell and subjected to the action of a
plane step wave is treated in [82]. The transient stress concentration around a spherical cavity in an elastic
medium under the action of a plane wave is analyzed in [67] by the methods of residue theory and in [61] by the
method of Volterra integral equations, proposed by Kubenko [51]. The effects of a plane step dilatational wave
on a spherical inclusion are discussed in [54].

Multiply Connected Domains

Quantitative results pertaining to the diffraction of elastic waves in multiply connected bodies have been
obtained on the basis of addition theorems for special functions entering into solutions of the type (4) and (6).
The solutions of multiply connected problems come in two versions. The first approach was developed by Guz'
{31, 32, 36] and reduces the problem to the solution of infinite systems of algebraic systems. The second ap-
proach, which is adopted in [68] and other papers by non-Soviet authors, is the multiple-scattering technique.
it is a special case of the first approach and essentially entails the solution of an infinite system by successive
approximations [72].

Circular Obstacles. Among the first problems to be solved were those involving diffraction of elastic
waves in a plate containing a finite set of circular holes subjected to harmonic pressure [5, 6]. Golovchan [7]
has solved the problem of diffraction of a plane longitudinal wave by circular holes in an infinite plate. The
same problem is solved in [75] by the multiple-scattering technique. A solution of the diffraction problem for
a plane dilatational wave at several perfectly rigid circular cylinders is given in [68]. The multiple - scattering
technique is used in {90] to determine the stress state of an elastic body with several elastic inclusions of
circular cylindrical configuration, upon which is incident a cylindrical wave generated by a harmonic source
situated at a certain distance from the set of inclusions.

Cherevko {69], using the clagsical theory of bending of plates, has solved the problem of diffraction of
flexural waves in an infinite plate containing several circular holes, at the edges of which the bending moment
is specified. The same problem is solved in [38] within the framework of Timoghenko theory. The problem of
scattering of a plane flexural wave by several penny-shaped cracks in a plate is analyzed in {70], both in the
classical setting and with the application of Timoshenko theory. On the basis of the multiple-scattering tech-
nique the problem of scatteringof a plane flexural wave by holes in a plate is solved in {100] (classical theory)
and [101] (Timoshenko theory). Gritsai [29] has derived fundamental relations for the problem of diffraction of
flexural waves in a transverse isotropic plate weakened by two identical circular holes, taking into account
the inertia of rotation and transverse shear. In the case of a plate with several circular inclusions Nagayaand
Saito [94] have obtained a solution of the diffraction problems for flexural and torsional waves, using equations
of Timoshenko theory for the plate.

The solution of concrete problems for bodies containing séveral circular obstacles has disclosed the
"local resonance” effect in the domain between reflecting surfaces, where considerable stress enhancement,
several times the stress in a body with one obstacle, is observed.

The method developed by Guz' for the solution of elastic-wave diffraction problems has resulted in the
effective solution of the diffraction problem for bodies containing an array of circular obstacles. Applications
of this method for the solution of periodic and doubly periodic elastic-wave diffraction problems are described
in [24, 26, 35].
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For an elastic body containing a line array of identical circular holes Golovchan [14] has obtained numeri-
cal results for the stress field when the surfaces of the cavities are acted upon by tangential forces varying
harmonically with time and when a plane SH wave is incident on an array of holes. The field in the vicinity of
holes in a body containing several identical cavities is determined in [15, 16, 25] for the cases of a harmonic
pressure applied to the surfaces of the holes and incidence of a plane longitudinal wave on the holes. The prob-
lem of diffraction of a plane SH wave by an array of circular cylindrical elastic inclusions in a deformable body
is solved in [40]. This study reveals a considerable increase in the radial tangential stresses along the junc-
tion lines as the rigidity of the inclusion is increased, resulting in peeling of the inclusion. The scattering ofa
plane expansion wave by an array of elastic inclusions is discussed in [73], in which the stress fields are com-~
pared for various combinations of elastic properties of the inclusions.

The problem of diffraction of flexural waves in a plate containing an array of identical penny-shaped
cracks with a given bending moment at the edges has been solved by Guz', Golovchan, and Cherevko [37]. The
case of scattering ofa plane flexural wave by an array of circular holes in a plate is considered in [71], inwhich
quantitative results are obtained for the stress field. Shvets and Gritsai [78] have derived fundamental rela-
tions for the problem of diffraction of flexural waves in a transverse isotropic plate with an annular array of
identical circular holes. '

The solution of periodic problem has disclosed anomalous variations of the stress fields, namely a large
increase or abrupt variation around "glide" points, which are determined by the expression

2m=ad(l =cosy) (m=0,1,...).

Here ¢ is the incident wave number, v is the angle of wave incidence, and 6 is the distance between inclusion
centers.

For SH-wave diffraction problems and for flexural waves in a plate, in the classical setting and within the
framework of Timoshenko theory, we have a single family of glide points below the critical frequency. In longi-
tudinal-wave diffraction problems there are two families of glide points. In the solution of flexural-wave dif-
fraction problems for plates in connection with the application of Timoshenko theory at driving frequencies
above the critical point there are three families of glide points.

Studies by Golovchan [8, 10] are devoted to the solution of problems of elastic-wave propagation in a
cylinder with longitudinal cavities. Kosmodamianskii and Moiseenko [43, 56] have investigated the problems
of determining the dynamic stress state of a circular slab with eccentrically distributed holes or inclusions.

Simultaneous application of the method of specular reflection with the solution of multiply connected dif-
fraction problems has made it possible to solve a number of problems in the diffraction of SH waves in bodies
containing linear and circular boundaries [12, 79]. The problems of diffraction of shear waves in a half-space
containing a circular cavity have been solved in [9, 18]. The diffraction of SH waves by elliptical cylinders in
a half-space is also discussed in [18]. A solution is obtained in [36] for the problem of SH-wave diffraction in
a quarter-space containinga cavity, as well as in a layer with a hole. Golovchan and Guz' [28] have investigated
the problem of elastic-wave diffraction in a layer with a line array of circular holes.

Spherical Cavities. Addition theorems for spherical functions can be used to solve elastic-wave difirac-
tion problems in bodies containing spherical cavities. Various boundary-value problems associated with the
diffraction of elastic waves by several spherical cavities have been investigated in [11, 17, 20, 27]. A numeri-
cal study of the stress state of a body containing two identical spherical cavities is described in [22, 27], where,
as in the case of bodies with cylindrical boundaries, the local resonance effect is disclosed. Golovchan [19] has
investigated the problem of elastic-wave diffraction by an array of spherical cavities. The same author [13]
poses the objective of solving fundamental boundary-value problems in the diffraction of elastic waves in a half-
space containing spherical cavities. Guantitative results for the problem of oscillations of a spherical shell of
variable thickness are presented in [21]. Another paper [23] is concerned with solving the problem of torsion
of an elastic cylinder containing spherical cavities.
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