MULTICRITERIAL OPTIMIZATION
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Traditional methods of scalar optimization, very effective for the solution of sufficiently simple prob-
lems of optimal design, are largely ineffective for the solution of complex problems in real design conditions,
This is because, in essence, problems of optimal design are multicriterial, hierarchical, and decompositional
[9]. In fact, the difficulty of solving large and complex problems is associated primarily with indeterminacies
in estimating efficiency, conditions, and aims. The latter indeterminacy arises in that in complex problems
there are always several aims, each of which corresponds to its own local criterion, In consequence, the
estimation of the efficiency of solutions and the optimum choice of solutions must be made with respect to
several criteria, and the problem is formalized as a vector model of the choice of solutions [2, 4, 5].

1. Vector optimization is associated with a number of problems: criteria may be incommensurate, of
different importance, and contradictory, which means that the choice of optimal solutions must be made on the
basis of a certain set of compromises, The difficulty in choosing an expedient set of compromises is that,
in general, in the vector estimation of efficiency, there is an indefinite number of viewpoints as to what
constitutes an optimal solution; each of these viewpoints corresponds to a definite principle of optimality,

In choosing the principle, the following logical sequence must be followed: situation—axiomatics—optimality
principle [2], i.e., the given situation determines the choice of the corresponding compromise axiomatics
(set of axioms), and then the search for optimal solutions begins. Thus, the main point is that all the basic
problems (choice of optimality principle, method of normalization, and principle adopted in taking account of
priorities) are solved in strict accordance with the nature of the real situation of choice between solutions.

The present work considered the optimal design of rod and thin-walled systems in conditions where
there are several aims: minimum weight of the structure, maximum ease of construction, and maximum
rigidity of the system (minimum tendency to deformation). The criteria of the problem may be categorized
into three types [9]: a) inequality type

H{§,X)>0 o (8, X)>0 (i=12,.., m) (LY
b) equality type
TS, X)=0 o £(S5,X)=0 (i=12,...,a) (1.2)
c) extremal type
U(S, Xy—extr o 4 (S, X)—extr (i=1,2,..., p), (1.3)

where Sis the structure of the system; Xg are the parameters of the system for a given structure from the
set of parameters «y and the set of structures &g.

If the requirement of minimum tendency to deformation may be written in the form in Eq. (1.1), the
search problem for a system of minimum weight with constraints on the strength, rigidity, and stability of
the form in Eq, (L.1), taking into account coupling conditions of the form in Eq. (1.2), reduces fo the well-
known problem of mathematical programming with one criterion of the extremal type in Eq. (1.3), However,
rigidity conditions — e,g., constraints on the displacement of points — cannot always be written in the
form of Eq. (1.1). In practice these conditions are often indeterminate; i, e., the permissible displacement
of specific points cannot be clearly specified, In some cases, also, constraints on the displacement of
several points cannot simultaneously be satisfied, because they are contradictory or possibly statically
unachievable, There then arises the search problem for a structure that has little tendency to deformation,
and at the same time is of reasonable weight (two criteria) and relatively simple to construct (three
criteria), This optimal-design problem may be formulated as follows

t =1,2, ...} 1.4
%@w*&%@ ) (1.4)
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(S, X)=s0 (i=1,2 ..., m); (1.5)
P:igi(S, X)=0 (i=12,..,n) (1.6)
(X €D, (S) (SeDy), (L7

2, Suppose that, given the outline and structure of a sphere—rod system, its load and materlal and the
shape of the rod cross section, it is required to find the optimal solution (cross-sectional area) F? « @ cor-
responding to the efficiency vector Y(¥,, ¥,, ¥;), where ¥, is the weight of the system; y, = Tgo is the
difficulty of construction; y, = ¢ is the displacement of a peint of the system, characterizing the tendency to
deformation of the system; q»; is the permissible discrete set of areas chosen from among a series of sets,

It is also necessary to satisfy the conditions of strength, stability, and discreteness of the areas, and also
the condition that the elements of the system belong to a definite group q with the same areas:
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(Nﬁé” + ENinfs)Fi; > [Fanio} > 0; (2.4)
=1
Fy={F|, F, ..., F} €0} (2.5)
F,eQ; Q= {F' Fyyoy F[‘q]}E(D;’, [gl<<m (2.6)

(L=1 2., m 1-—1 2, .., 0, 8=1,2,..,k),

where m is the number of rods in the system; K = ‘/’TCkT is a coefficient taking into account the type of con-
struction and the use of high-strength steels [7]; « and b are parameters, constant for each type of system,

determined by the statistical dependence Teg = f(q); q is the number of type-dimensions (groups of identical
cross-sectional area etc.); ¢; = ®;(Aj) are nonlinear functions characterizing the dependence between the

coefficient of calculated- drag reductlon for compressible rods and the ductility A;; ¢; = my/ Aoz a b
@i =1—-myA? if A{ = Ap; m; and m, are coefficients depending on the material; Ay, is the boundary value

of the ductility corresponding to the point of inflection of the curve of ¢ = ¢(ij). The conventional notation
is used for other quantities (lengths, rod cross-sectional areas, forces, etc,),

This formulation corresponds to a vector optimization model of general form {2, 4]
FO =@ opt (v, Q)}, (2.7)
Foey

where opt is an optimization operator, defining the optimality principle and having the meaning of an order
relation; & -! is the inverse mapping Y — F* = @'I(Y), if the efficiency vector Y is related to the solution by
the mapping F*—Y = & (F¥), given analytically, statistically, or heuristically; Q = (w1, W g..., wp) is the
priority vector, indicating the relative importance of the local criteria y, V¥, ¥, .. ¥,3 p is the number
of criteria.

In order to establish in what sense the optimal solution is superior to all the other permissible solu-
tions, it is necessary to expand the operator opt (Y, £) appearing in the model in Eq. (2.7).

In the case when the criteria are normalized and of the same importance, the natural tendency is to
increase the quality of all the local criteria uniformly and harmoniously, This idea may be realized, e,g.,
using the quasiequality principle [2] :

optyi={yl ly;—y,lI<& iHveRNY" (2.8)

Here all the local criteria are minimized under the condition that the difference in the levels of the various
criteria does not exceed & (¢ — min).
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Fig. 1 ‘ Fig, 2

The idea of a valid compromise {"validity" in this context means that the levels of all the local criteria
tend to equalize) is realized in the optimality principle [2]

opt y, =min Il Y. (2.9
y€eYe per
If it cannot be assumed that the local criteria are of the same importance, a correction is introduced into
the model in Eq. (2.9) by means of the weighting vector = (ay, ¢y ..., ®p)s which is a p-dimensional vector
defined in the region

a€A={o|ap€[0,1], zap—.:l, pEI}. (2.10)
o
The optimal solution is then found on the basis of an optimization model of the form [2]
opt ys=min [] &7 (2.11
yEYé o

Note that in most cases in practice it is impossible to make a well-founded choice of weighting factors,
In those cases whenthe weighting factors cannot be chosen in the form in Eq. (2.10), the most expedient
choice of optimal model, rather than those above, is the solution approaching the utopic point in critical space
in the sense

P
2 (y;—y P~ min, (2.12)
=1

where yytj is the optimum value of the criterion Yy which corresponds to a control belonging to the impermis~
sible control region [3].

It should be emphasized that the minimization of Eqs, (2,8), (2.9), (2.11), and (2.12) gives points in
control space and the solutions obtained are Pareto-optimal,i.e,, belong to the set of unimprovable solutions
Fig. 1),

As an illustration, two examples — the optimization of a sphere—rod system and a thin-walled framed
plate — will be considered,

3. Example 1, The outline and structure of a system is given, together with its load (Fig. 2), the
material (St-3) with the calculated drags of tensioned (RT = 210 MPa) and compressed (R~ = 160 MPa) elements,
and also the shape of the rod cross section (2 T made from two equal-sided angle brackets), and the limiting
elasticity of tensioned and compressed elements ([A+] = 400, [A"} =200); h=3m;d= 4 m;a = 2.45; b = 0,55
E=2-10° MPa; K = yop Gk = 3.4 [7]; and

400!
0,0 l
The following groups of rods of identical areas are established
g=2, {{;=1,2,8,4,5 8,9, 10; I,=6,7}
=3, {li=1,2 5 10; [,=3,4,8, 9 [,=6,7}
g=4, {I;=1,2,510; [,=3,9 [,=4, 8 /I,=6,7}.

The minimum radii of inertia are as follows: for rods 5 and 10

(N Py= ” 0.0

P, =
400

o

iS5 =075 cm, 5 =15 em;

for rods 1, 2, 6, and 7

i = 1.0 em, 55 =2.0 cm;
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for rods 3, 4, 8, and 9

ia =1.25cm, i5=2.5 cm.
The optimal solution with respect to each of the criteria in Eq. (2.1) is now found: with respect to the
weight
Goin==7.36 (&) (100%), g¢= 10,
Fo={F;}’={20.2; 12.4; 7.72; 34.4; 5.92; 38,4; 54.6; 21.1; 17,26; 6.96} (cm%:
with respect to difficulty of construction
Tomin=1.4.V Gymg; ==5,58 (man-b) (100%), g=1, Fre={49.4} (cm?);
with respect to rigidity

8= 1.961 (cm) (100%), g=1.

An iterational method of the type in [6, 8] is used for optimization of the construction with respect to a
single criterion, since methods of nonlinear programing are difficult to use when the constraints in Egs,
(2.2)-(2.6) are taken into account; this does not exclude optimization using other methods of the type in [9].

According to the principle in Eq. (2.9), the optimal solution corresponds to the value q = 2, i.e.,
introducing a measure of the relative decrease in quality of the solution with respect to each of the criteria —
the "reduction cost"™ n [4] — the following result isobtained: As q; —~ q,

w > u, 4 ug (0.813>0.39);
as q;— qz
%y <%y, + %3 (0,14 <<0.157);
as qs— q,
<<y + g (0,066 < 0.128).
This solution corresponds to Gopt = 9.38 (kN) (127,44%); also
T, =6,0195 (man-h) (108%); 8 = 2.568 (cm) (131 %):
Fo ={23; 28; 23; 23; 23; 52.6; 52.6; 23; 23; 23;} (end)-
The principle in Eq, (2.8) then gives the result
1Y, —V,|=ehin=0.253 - g =2,
|V — V3| =eitn=0.053 - ¢ =3,
where gfi, _Yz, and 3-[3 are the normalized values of the criteria according to the method of [4].
Comparing the sums of the differences in level of the criteria
P, =0.253 + 0.074 (= 2)andP, = 0,34 + 0.053 (g = 3)
or calculating the total error
T, == (27% + 31% + 8%) =64% (g=2); Tl=(14% -+ 35% +257) =74% (¢3=3),

the result is again qopt = 2.
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According to Eq. (2.12)
3
Dy — Yy~ min
=1

and this sum —1.44 for q = 1, — 0,1754 for ¢ = 2, —~ 0,209 for q = 3, i.e., Yopt = 2

Example 2, It is required to find a framed plate of reasonable weight and rigidity, subjected to two
types of load. The system is shown in Fig. 8. The following information is also given: The material is AK4-
1; the calculated drag of the elements of the longitudinal and transverse sets is R(*) = 160 MPa, R(*) = 100
MPa, and that of the wall is [T] = I_<iR+ = 80 MPa, Ri = 0,6 [11); E/G = 2.5; E=T7.1. 10* MPa, h = 200 mm,

d =400 mm, The first type of load corresponds to a force P, = 40 kN and the second to Py = P; = 30 kN, The
areas of elements of the longitudinal and transverse sets within the limits of the panel are taken to be constant
and to belong to one of the given groups of identical areas

q=2: {{=11}; I,=1—2; 2—3; 3—4; 4—5, 5—~6; 1 —6; 2—51}
=3 {i=111; ,=1—2,2—3 4—5, 5—6; [;=1—6; 2—5;
3—4)
g=4& {{;=1,11; [,=1—2 4—5; 5—6; [;==1—6; 2 —5;
I,=2-—-3; 3—4}
g=5 {Iy=111; Jy=1—2; 4—5; 5~6; I;==2—3; 3—4;
[y =2—5; Iy=1—8}, etc,
The given problem may be formulated in the form in Eqs (1.4)-(1.7) with the two optimality criteria
v—zm £ it 3.1

=1

2 S N,SN,, P +2 g Tj. g, 3.2)

j=i f

where V is the volume of the system; org, dlsplacement of a point r, characterizing the tendency to deforma-
tion of the system under a load s; m, number of elements of the longitudinal and transverse sets; ¥j, cross-
sectional area of the element i; fj, area of wall j of height h and length d; tj, wall thickness; Tjr, shear force
on the wall j due to a force P = 1 applied at the point r.

The structure is optimized with respect to one criterion using the algorithm of [6], which requires no
more than 4-6 iterations to reach an optimal solution with respect to one criterion, satisfying the constraints
specified in the conditions of the problem, The usual assumptions for thin-walled systems are made in the
calculation [1, 12], Questions of stability are not considered: It is assumed that the calculated drag of the set
and the walls is chosen so that stability loss does not arise, Where required, stability of the thin-walled
panels under shear may be verified, as in [10, 11], by calculating, and then making more accurate, the
coefficient K;.

Optimizing the structure with respect to the volume for fixed g, and then maximizing the rigidity of the
system according to [6] with fixed volume and g, the following values are obtained for the criteria;

g=2>V=14708; d=1; g=3—V==1295 &=1,099;
g=4 >V =1185 8=1.197; ¢=5->V=1.155 §=1,216;
=9»V=10; 0==1.348, etc.

These are normalized values of the criteria according to the method in [4]. Accordmg to the optimality
principles in Egs. (2.8) and (2.12), the best solution corresponds to qgpt = 4, v* opt = 1048.48 cm® (118.5%),

oz t = 0.1285 em (119.7%) with the following values of the local criteria (single-criterion optimization): Vopt =
884.4 cm? (100%), q=9;00opt= 0. 107 em (100%), q = 2, The solution q = 4 corresponds to the following area
vector (cm?) and wall thickness (cm): Fopt {3; 1.5; 3; 4; 1.5; 0.2738; 0.2738}.

CONCLUSIONS

A structure of reasonable weight, rigidity, and ease of construction may be found using the theory of
multicriterial optimization. For the given class of rod and thin-walled framed structures, the most expedient
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systems of compromises are those realized using the principles of quasiequality, valid reduction, and minimal
deviation from the utopic point. The approach proposed for the solution of optimization problems for rod and
thin-walled systems allows the factor of technological feasibility to be taken into account (Fj = const, q < m).
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EFFECT OF THE COMPLIANCE OF FOUNDATION SUPPORTS
ON THE MOTION OF A CENTRIFUGAL PUMP IMPELLER

D. K. Ovcharova and E. G. Goloskokov UDC 534.1

This study deals with the motion of a centrifugal pump impeller. We consider the effect of the elasticity
and damping characteristics of the foundation supports on the stability of synchronous precession of an out-
of-balance impeller with a single-groove seal mounted on an elastic and inert base, For establishing the
stability criteria, we apply the method of averaging to the periodic coefficients in the perturbation equations
and then quasinormalize those equations.

The dynamic model of such an impeller is a flexible weightless shaft of stiffness ¢y with a disk of mass
m, at the center of the span, The impeller is mounted on a perfectly rigid plate of mass m, resting on
inertialess spring supports. All masses and stiffnesses of the system are assumed to be symmetric with
respect to the plane of the disk, with the stiffness c, of the foundation supports the same in the horizontal
plane and in the vertical plane.
_The displacement of the disk, relative to the center of the seal, during flexure of the shaft produces a

circumferential pressure gradient in the fluid around the disk and a hydrodynamic net friction force normal
to the plane of disk flexure, This force can, under certain conditions, cause self-excited asynchronous

precession of the impeller [2],
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