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A L O G I C  OF B E L I E V I N G ,  K N O W I N G ,  

A N D  I N F E R R I N G  

It will be our aim to discuss and characterize an interpreted system which 
generates the necessary truths peculiar to certain concepts of believing, 
knowing, and inferring: ones which can be realistically ascribed to beings 
(such as humans or computers) which fall short of deductive infallibility 
and omniscience. The system will also provide for a distinction between 
de re and de dicto interpretations of epistemic contexts. In the pursuit of 
these goals, some new techniques will be required which might be of 
general interest in logic. 

1. INFORMAL DISCUSSION 

In Hintikka's system [2], as well as in even the weakest among Lemmon's 
systems [7] of epistemic logic, we find counterparts of the inference rule 

(1) provably: (~b - ,  S) 

provably: (KS ~ KS). 

If we read 'K~b' as 'it is known (by some unspecified knower) that ~b', then 
the inference (1) expresses, roughly, that all logical consequences of things 
one knows are again things one knows. Given this reading, the idealized 
notion of knowledge which is being treated cannot be ascribed to beings 
whose deductive capacities are fallible or finite. A rule analogous to (1), 
but regarding beliefs instead of knowledge (as it is discussed in [5]), would 
be even less intuitive. The prevailing attitudes toward such inference rules 
seem to fall into two categories: 

(A) There is the approach, taken by Hintikka in [2], of endorsing such 
rules while endowing the formal epistemic notions with new pre-syste matic 
interpretations which seem to fit the rules. Apart from doubts whether this 
reinterpretation really corresponds to clear intuitions (see [5]), the objec- 
tion remains that the systems fail to treat of the customary notions of 
belief and knowledge. And, while idealized epistemic notions may have 
their uses, epistemologists will also require a precise treatment of 'believ- 
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ing' and 'knowing' in their customary senses. It is sometimes claimed (e.g. 
by Purtill in [9]) that this demand is inappropriate: we cannot hope, it is 
said, to develop a consistent epistemie system which takes account of the 
incoherent beliefs of the insane or the incomplete knowledge of infants. 
To the contrary, we shall aim at the construction of a consistent system 
which provides for total ignoramusses (ones who know nothing), complete 
idiots (ones who cannot draw even the most elementary inferences), and 
ultimate fools (ones who believe nothing but contradictions), without 
ceasing to be of interest to a logician. In this way, we hope to counter 
criticism of the sort 'it cannot be donel' by doing it. 

(B) There is the approach, taken by Hintikka in [5], of restricting infer- 
ence rules such as (1) to those logical consequences which, to the rational 
person, would in some sense seem 'obvious'. Whether or not an inference 
is obvious might be thought to depend on the length of the derivation, on 
the length of sentences one has to inspect in a derivation, on the logical 
complexity of these sentences (e.g. Hintikka's 'quantificational depth' in 
[5]), on the 'naturalness' of the deductive system one employs, on whether 
the derivation could be discovered by some mechanical procedure, and so 
forth. However if ones aim is that of characterizing something akin to the 
customary notion of knowledge, then this entire approach seems hopeless, 
no matter what factors in proofs one may take into account. For that aim 
requires a notion of'obviousness' which is quite subjective and dependent 
upon the intelligence, training, prejudices, and degree of scepticism of the 
knower rather than upon a particular system of derivation with which the 
knower may not even be acquainted. 

Instead of trying to explicate some notion of 'obviousness', is appears 
more fruitful to focus on those inferences (obvious or otherwise) which a 
person actually carries out. Accordingly, it looks promising to introduce, 
and suitably interpret, another epistemic operator T ,  where sentences of 
the form 'I(~b, ~b)' may be read 'from the assumption that ~b one rationally 
infers that ~b'. Then the former inference rule (1) may be replaced by the 
postulate 

(2) I(~, ~b) ~ [K~b ~ K~,] 

which says, roughly, that everything which one actually infers from things 
one knows are again things one knows. Indeed, it seems reasonable to 
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suppose that the body of ones knowledge is closed under those rational 
inferences which one actually makes. 

The analogous postulate regarding beliefs 

(3) I(~, ~) -* [B~, ~ Be] 

(where 'B~' is read 'one believes that q~') seems equally plausible. For 
suppose that some person were to believe that ~, that it were claimed that 
he himself had inferred from ~b that @, and that yet he failed to believe that 
~,. Then, it seems to me, one would deny that the person had really made 
the alleged inference. True, he might say that he did, he might even have 
written down a sequence of lines which constitute a derivation of ~ from 
~, but the presystematic notion of inferring requires more than such 
utterance or performance; namely, that a person's own inferences carry 
his beliefs into beliefs. 

In addition, we shall postulate 

(4) I(~b, ~k) -~ K(~b - .  @). 

In words: if a person rationally infers from ~b that ~, then he knows that 
if ~b then ~,. By the consequent of (4) we do not mean to convey that the 
knower need understand the meaning of conditionals. Just as a person may 
know that snow is white without understanding the English words 'snow is 
white', so also a person may know that (~ ~ ~) without understanding the 
meaning of the arrow; and one way of knowing that (~ -~ ~,) is by infer- 
ring that ~ from the assumption that ~. It is also tempting to read into (4) 
a temporal precedence: upon having first inferred from ~ that ~, a person 
subsequently knows that (~b -~ @). In our tenseless system, this reading is 
illegitimate. Rather, we regard it as analytic of the concepts of knowledge 
and of rational inference that a person who draws an inference is thereby 
satisfying the conditions which warrant the corresponding knowledge 
claim. 

The converse of (4) will not turn out to be valid. That is to say, we shall 
allow for the logical possibility that a person has non-inferential knowl- 
edge of the fact that if ~ then @. Generally, non-inferential knowledge of 
any consistent sort should be logically possible. If the converse of (4) were 
adopted, then the epistemic primitive T would become superfluous, and 
we could replace (say) the postulate (2) by the principle 

(5) K(~ -4 ~) -~ [K~ -* K~]. 
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However, (5) should not be treated as valid. For (as Professor K. Lehrer 
has pointed out to me) even though a person who satisfies the antecedents 
of  (5) would be entitled to infer that ~, he cannot be said to know that 
until he has actually drawn the inference to which he is entitled. 

Especially due to the principle (4), we regard the inferences expressed by 
T as rational (though not necessarily as deductively valid) ones. For, if 
one knows that if ~b then ~b, then one must have some rational grounds 
which justify (not necessarily deductively) the inference of  ~k from ~b. 

Among principles which connect sentences of the form 'I(~b, ~b)' with one 
another, we list the following candidates for consideration: 

(6) [I(~b, ~) & I(~,, Z)] -o I(~, Z) 

Roughly: If  one infers from tk that ~k and one infers from ~b that X, then 
one infers from ff that X. 

(7) I(~b & ~k,Z) ~ I(q~, ~ -o X) 

Roughly: If  one infers from the conjunction '~b & ~b' that X, then one infers 
from ~b that if ¢ then X. 

(8) [i(~, ¢) & x(z,0)] - ,  I(~ & z,¢ & 0) 

Roughly: If  one infers from ~b that ~b and infers from :t that 0, then one 
infers from the conjunction '~b & X' that ~ & 0. 

(9) [I(~b, ~) & I(~b, ~k ~ X)] --* I(q~, X) 

Roughly: If  one infers from ff that ~k and infers from ~b that if ~k then X, 
then one infers from q~ that X. 

(10) I(~b & ~k, ~b) 

Roughly: From every conjunction one infers the first conjunct. 
In appraising the plausibility of these principles, we ask ourselves 

whether the very meaning of  'inferring' compels us to accept them; and, 
where the principles have conditional form, we ask whether a person who 
has drawn the inference mentioned in the antecedent has thereby made the 
inference mentioned in the consequent. By this test, the proposals (6)-(10) 
seem to be listed in an order of decreasing plausibility. Accordingly, we 
shall adopt as a postulate only the principle (6) which asserts the transi- 
tivity of  inferring. Nevertheless, there are surely contexts in which a logic 
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with somewhat stronger principles would seem both desirable and war- 
ranted. This can happen, for example, if we want to apply the theory of 
inferences to machines which have been programmed to carry out certain 
deductive steps. In order to allow for this possibility, we shall characterize 
both the sematics and the deductive apparatus of our system in such a way 
that it will be immediately obvious how either can be strengthened as 
much as we please. 

It is rather generally agreed that epistemic contexts are non-extensional. 
However, it is sometimes argued (e.g. in Montague [8]) that such contexts 
can be adequately treated in the framework of some intensional logic. Yet, 
the customary notions of knowledge and especially of belief clearly make 
for contexts which are non-intensional as well, in the sense that they do 
not admit of the valid interchange even of necessarily equivalents; that is, 
of terms and formulas which express the same intension. Any person who 
falls short of logical omniscience will be ignorant of some equivalents of 
things he knows and will fail to believe some equivalents of his beliefs. 
Since one's inferences carry beliefs into beliefs, the interchange of equiva- 
lents should fail as well in contexts which express one's inferences. Thus, 
if it should happen that 

(11) I(~, ~0), 

while ~ and ~0 are respectively equivalent to ~' and q/, one is not entitled 
to conclude by interchange that either 

(12) I(~', ~) 
o r  

(13) I(~b, ~'). 

So far, we have regarded the notion of inferring as a binary relation 
between sentences. But, in general, inferences are drawn from several 
assumptions. Since the body of ones beliefs need not be closed under 
simplification or adjunction, these assumption should not be represented 
by their conjunction; and since the order in which premises are being 
considered may affect a person's beliefs, it seems best to treat the relation 
of inferring as one obtaining between a sequence of premises and a con- 
clusion. For intuitive reasons, we shall not allow that a person infers 
conclusions from the empty sequence, i.e. from nothing at all. Accord- 
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ingly, for every integer n larger then 1, we shall make use of an n-ary 
operator T which serves to distinguish e.g. the following valid principles: 

(14) I(4 & ~; X) --) [B(4 & ~) ~ BZ] 

Informally: if one infers that Z from the assumption that (4 & ~) then, if 
one believes that (4 & ~) one believes that X. 

(15) I(~k & 4; X) ~ [B(~k & 4) ~ BX] 

Informally: if one infers that Z from the assumption that (~ & 4) then, if 
one believes that (~ & 4) one believes that X. 

(16) I(4, ~,; X) ~ [(B4 & BO) ~ Bxl 

Informally: if one infers that X from the respective assumptions that 4 and 
that ~, then, if one believes that 4 and believes that ~ one also believes 
that X. 

Note that the inferences mentioned by the antecedents of (14), (15), and 
(16) are all regarded as genuinely different, as are the assumptions regard- 
ing ones beliefs. 

We shall respect tradition by endorsing the postulates: 

(17) K4 -~ 4 

[if one knows that 4 then 4], and 

(18) K4 ~ B4 

[if one knows that 4 then one believes that 4]. 
Among principles regarding iterated belief and knowledge, the following 

are frequently proposed: 

(19) B4 -~ BB4 

[if one believes that 4 then one believes that one believes that 4], 

(20) B4 ~ KB4 

[if one believes that 4 then one knows that one believes that 4], 

(21) K4 ~ BK4 
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[if one knows that ~b then one believes that one knows that $], and 

(22) K S ~ K K $  

[if one knows that ~b then one knows that one knows that q~]. 
The customary notions of belief and knowledge seem such that (a) if a 

person acts as if it were the case that ~, and the outcome of his actions 
matters to him, that tends to confirm that he believes that ~b, (b) his out- 
spoken denial that he believes that ~b tends to confirm that he fails to 
believe that he believes that q~, and (c) such actions and denials are not 
treated as both confirming and disconfirming the very same thing. Accord- 
ingly, (19), and indirectly also (20), do not seem plausible with respect to 
customary uses of 'belief' and 'knowledge'. Further, a person may well 
believe that ~b and, in fact, possess sttfficient evidence to warrant his claim 
that ~b, while he may not believe himself to be in possession of such sutfi- 
cient evidence. In these circumstances, (21), and indirectly also (22), 
appear to be false. While these considerations are not conclusive, they may 
serve to indicate that the formulas (19)-(22) are at least controversial and 
should for that reason not be treated as postulates of a general epistemic 
logic. However, it will be obvious how one can add any of them to the 
axioms and to the semantical requirements in contexts where such addi- 
tions seem plausible. 

Up to now, we have confined our discussion to ideas which will find 
formal expression in the sentential part of the subsequent theory. Of 
greater interest and difficulty, however, will be the introduction of quan- 
tifiers which are allowed to reach into epistemic contexts. 

As Quine in [10] and Kaplan in [6] have pointed out, the sentence 

(23) Someone is such that Ralph believes that he is a spy 

has at least one sense in which its truth might be of interest to the F.B.I., a 
sense which might be expressed by the formal sentence 

(24) 3 x[Ralph believes that x is a spy] 

provided that quantification is so construed that (24) is not a logical 
consequence of such almost trivial sentences as 

(25) Ralph believes that the shortest spy is a spy. 
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Similarly, assertions which have been of concern to Hintikka in [3] such as 

(26) Tom knows who the President is, 

or rather its less ambiguous paraphrase to which alone we shall address 
ourselves: 

(27) Someone is such that Tom knows of him that he is the President 

might be translated by 

(28) 3 x[Tom knows that x = the President], 

provided that (28) is so interpreted that it does not follow by Existential 
Generalization from the trivial assertion that 

(29) Tom knows that the President = the President. 

As Hintikka has made explicit in [4], we cannot endow (24) and (28) with 
the sense at issue if an unrestricted substitutional interpretation of quart- 
riflers is given. For, if we stipulate that '3 x [Tom knows that x = a]' shall 
be true just in case for some name 'b', the result of replacing 'x' by 'b' in 
'Tom knows that x = a' is true, then the given quantified statement (which 
might be a translation of (28)) will be true by virtue of the truth of 'Tom 
knows that a = a' (which might translate (29)). Hence, if a substitutional 
interpretation is chosen at all, the class of substitutable names must be 
restricted. Efforts to do so bring out what I believe to be an ambiguity in 
the English sentences (23) and (26): it could be that the F.B.I. is interested 
in Ralph's beliefs if (i): 

(30) Ralph believes that Olga Stroganoff is a spy, 

assuming that 'Olga Stroganoff'is a name which represents a person to the 
F.B.L while being sufficiently devoid of descriptive content to make it 
unlikely that Ralph has his belief by virtue of the connotation of the name 
alone. Thus, the F.B.I. might show some interest in the truth of (30) even 
if Ralph has obtained his belief just by having overheard a conversation at 
the next table near the Russian embassy without having any idea who Olga 
Stroganoff is. It could also be (ii) that the F.B.I. requires more; namely, 
that there be some name or description, say 'the pretty blonde who seduced 
Ralph', which represents a person to Ralph (perhaps by reminding him of 
the occasion at which he met that person) and which Ralph knows to be 
Olga Stroganoff. But (iii), it seems to me that the F.B.I. would show no 
interest if it were merely the case that 
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(31) Ralph believes that the most suspicious-looking female in 
Ralph's acquaintance is a spy, 

where 'the most suspicious-looking female in Ralph's acquaintance' is 
assumed to be a denoting phrase which represents a particular person to 
Ralph only, but is not representative e ra  person to the F.B.I. Thus, a name 
which is private to the epistemic subject does not seem to warrant expor- 
tation if we understand 'someone is such that Ralph believes him to be a 
spy' to mean, roughly, 'some objectively identifiable person is such that 
Ralph believes him to be a spy'. And this seems so even ffthe private name 
in fact uniquely denotes, is representative of a person to Ralph, and is a 
very 'vivid' name. 

Similarly, we might be prepared to admit that Tom knows who the 
President is (or better, that there is someone whom Tom knows the 
President to be) if 

(32) Tom knows that Richard M. Nixon -- the President 

in contexts like these: Teacher: 'Can anyone tell me who the President is?', 
- Tom: 'Richard M. Nixon is the President', - Teacher: 'Good, Tom 
knows who the President is'. Here 'Richard M. Nixon' is assumed to be a 
name which is objectively representative of a person and sufficiently free 
of descriptive content to bar the possibility that Richard M. Nixon's 
being the President is a trivial bit of knowledge. But there is also a sense in 
which Tom would not be said to know who the President is unless, in 
addition to (32), Tom knows Nixon under a description, say 'the man 
whose hand Tom shook yesterday', which is representative of a particular 
person for Tom. 

We shall formally provide for names which warrant exportation from 
epistemic contexts; names which are 'special' in the objective sense and 
ones which are 'special' in the subjective sense, so as to allow for transla- 
tions of (23) and (26) in both of their senses. 

In order to interpret contexts of belief and knowledge, we shall have to 
employ certain formally definable entities which can go proxy for bodies 
of belief and knowledge. Since we want to allow for inconsistent bodies of 
belief, we cannot very well identify a body of beliefs with a possible world 
(say, one to which access is gained by virtue of ones beliefs) or a set of 
possible worlds (those which are compatible with the believer's attitudes). 
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Instead, it seems natural to represent ones body of beliefs simply by a set 
of (possibly inconsistent) statements; namely those which, intuitively, one 
believes to be true. Similarly, the body of ones knowledge will be repre- 
sented by the set of all statements which one knows to be true. Having 
opted for an interpretation of epistemie contexts by means of sets of 
statements, it makes for a more homogeneous semantics if 'possible 
worlds' are generally replaced by arbitrary (and possibly inconsistent) sets 
of statements. Let us call such sets 'theories' or, better still, 'tales'. Truth, 
denotation, and other semantical notions will therefore be rdativized to 
tales. 

Among semantical theories with which I am acquainted, those which 
represent possible worlds by certain sets of statements (state descriptions, 
model sets) share a certain unnaturalness in their interpretation of identi- 
ties: special stipulative clauses are employed to ensure the reflexivity of 
identity and the interchange of identicals in atomic formulas. This aes- 
thetic defect can be overcome in a manner which we describe with refer- 
enee to our 'tales' as follows: We associate with every tale a function which 
maps certain names and variables (intuitively, those constants which de- 
note and those variables which have values according to the tale) into 
other names which will be called the representative (or, standard) names 
according to the tale. Thus, with respect to a tale regarding arithmetic, 
the various names of the number four (barring descriptions) might be 
mapped onto the representative name '4', also, according to the F.B.I.- 
story, various names of a suspected spy might be represented by the one 
name 'Olga Stroganoff'; and, for the purposes of a biography of the 
President, various names of the President might be mapped on the one 
representative name 'Richard M. Nixon'. I fR is snell a function and a and 
b are constants, then the identity statement 'a = b' should be true (accord- 
ing to a given tale)just in case R is defined on a and b and R(a) = R(b) [i.e. 
if a and b denote and are represented by the same name]. And, if F is an 
extensional one-place predicate, we can guarantee its extensionality by the 
requirement that 'Fa' shall be true just in case 'FR(a)' is true [i.e. that any 
name shall be interchangeable with its representative in this context]. 
This last provision will have the side effect that "Fa' will be true only i fa  is 
a denoting term (one in the domain of R), since otherwise R(a) is the empty 
set and the expression "FR(a)' will degenerate into the ill-formed expres- 
sion F which can never be true. Generally, identities and basic predicates 
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are treated as expressive of  positive qualities and relations (they truly 
apply only to denoting terms). It is one of  my idiosyncrasies that I am 
pleased with this incidental benefit from the requirement of  extensionality, 
and I have argued for its plausibility elsewhere (in [1]). 

In Henkin-type completeness proofs of  theories with identity one fre- 
quently constructs a universe by picking certain representative names and 
identifying the individuals with those names. With a view to this possibil- 
ity, it seems natural to dispense with universes altogether and to work 
only with the representative names themselves. In this way, we get rid of 
some metaphysical clutter (the universes), achieve an interpretation of  
identities which seems just as natural as ones which use assignments of  
individuals to terms, and at the same time we obtain one category of  
special names which in epistemic contexts seem to warrant exportation. 

Given these preliminaries, it is tempting to propose a substitutional 
interpretation of  quantification of  such a sort that the names to be sub- 
stituted for the variables of  quantification are representative names. How- 
ever, there does not appear to be any easy and natural way of  finding 
axioms corresponding to this interpretation (presumably a predicate would 
be needed which serves to pick out not just denoting names, as does the 
predicate 'exists', but, more specifically, representative denoting names). 
Instead, we shall proceed in roughly the following manner: Suppose that 
R is an assignment of representative names to both names and variables. 
Then a statement like '3xff(x)'  shall hold if there is a variable 'y' (free in 
~b(y)) which has values (i.e. which is in the domain of  R) such that the 
formula ~b(y) holds. And ~b(y), in turn, shall hold just in case ¢~(R(y)) 
holds. If  ~ is a purely extensional context, then the previously mentioned 
clause for extensionality will provide that the name R(y) may be replaced 
in ~ by any of  the names it represents, and '3xc, b(x)' will have its unre- 
stricted substitutional sense. But if ~b turns out to be an epistemic context, 
then the representative name R(y) may not be replaced in ~ by an arbi- 
trary name and '3 xdp(x)' will, in effect, have a substitution interpretation 
which is confined to representative names. As an intermediate step in 
evaluating the truth of  quantified statements, we shall look at the formula 
tk (y) where the free variable 'y' serves as a place holder for its representa- 
tive name; and in axiomatizing the theory, the syntactical difference be- 
tween free variables and other terms will serve us instead of  the purely 
semantical difference between representative names and other terms, since 
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we cannot express the latter distinction directly in the object-language. 
Thus, sloppily expressed, Existential Generalization will hold in the form: 

(33) [$ (x) & x exists] ~ 3 x$ (x), 

but only if 'x' is a variable. If ~b is an extensional context, but not if it is 
an epistemic context, the generalized form of(33) may be derived by inter- 
change of identicals. To give an epistemic example of (33), the sentence 

(34) 3 x [Kepler knew that x numbers the planets] 

may be inferred from 

(35) Kepler knew that x numbers the planets & x exists, 

where the indefinite 'x' is so interpreted that it stands proxy for a suitable 
representative name; say for the standard name '9'. Under any interpreta- 
tion which provides that '9' is, in fact, a representative name, (34) will be 
true provided 

(36) Kepler knew that 9 numbers the planets 

is true. But the inference of(34) from (36) will not hold under every inter- 
pretation, since it might be that '9' is not treated as a representative name. 
Also, Kepler might not have known 9 by the name '9'. If so, we might 
still grant (34) if there is some 'it' (called '9' in astronomy) such that Kepler 
knew 'it' to number the planets; i.e. if (35) is the case. On the other hand, 
(34) is definitely not warranted by the assumption that 

(37) Kepler knew that the number of planets numbers the planets. 

Assuming that 'Richard M. Nixon' is a representative name and that a 
is any term denoting Nixon, it seems that we can express (in one sense) 
that 

(38) Tom knows who a is 

by existential generalization from 

(39) Tom knows that Richard M. Nixon = a, 



368 R O L F  A. E B E R L E  

which seems to work nicely for all names a, except for the one representa- 
tive name a = 'Richard M. Nixon' itself. Does the statement 

(40) Tom knows that Richard M. Nixon = Richard M. Nixon 

really imply that Tom knows who Richard M. Nixon is? 
Note, to begin with, that ff I ask you whether you know who a is, and 

you reply by saying that he is b, I can always continue by asking you next 
whether you know who b is. And, in playing this game, you will either end 
up by asserting a trivial identity, or go around in circles, or continue for- 
ever. Given these alternatives and the assumption that there is a definite 
answer to my questions, it seems best to stop the game with an assertion 
of the form 'a = a', where a is a representative name which, in the frame- 
work of a given tale, is thought of as a proper name which lacks descriptive 
content. Observe next that (40) is not entirely trivial; for we interpret 
identity statements as having existential import, so that 'a = a' may be 
read 'a exists'. Accordingly, what Tom is said to know, by (40), is that 
Richard M. Nixon exists. But if 'Richard M. Nixon' is thought of as a 
name which is not given any descriptive content by that tale in whose 
context we appraise the truth of (40), then one knows who Richard M. 
Nixon is (in the sense that there is someone whom one knows Richard M. 
Nixon to be) if one knows (by a knowledge which is not a 'knowledge by 
descriptions') simply that Richard M. Nixon exists. I f  still more is re- 
quired before we are willing to admit that Tom knows who Nixon is, we 
may have to fall back on a special subclass of representative names: ones 
which are (subjectively) representative of  a person for Tom. To obtain 
this narrower class of names, we shall employ a special one-place predicate 
'A' (which reminds us, somewhat inappropriately, of 'acquaintance'), 
where formulas like 'Ax' are read 'there is some name or description by 
which one knows x'. Thus, that sense of 'one knows what the number of 
planets is' in which we require that one must be in some special rapport 
with the number 9, might be expressed by the relativization of quantifiers 
to the predicate 'A' as follows: 

(41) qx[Ax & K(x  numbers the planets)], 

which will be true (in a tale regarding numbers and planets) if 

(42) A9 & K (9 numbers the planets) 
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is true; where 'Ag', in turn, is true if one knows the number 9 under some 
description like 'the number of my outstretched fingers' which may be 
special subjectively by virtue of its vividness or its associations with the 
acquisition of number-terms; whereas the name '9' is special objectively 
(i.e. relative to the tale of  astronomy) by standardizing reference for the 
purpose of astronomy. 

In order to link up the predicate 'A' with epistemie notions, we postu- 
late: 

(43) AT ~ K(~ = ~) 

Roughly: if one knows x under some name or description, then one knows 
that ~ exists; and 

(44) (Av & [K(~ = ~) v K(z = ~)]) --) A~. 

Roughly: if one knows • under some name or description and one also 
knows either that ~ is x or that • is ~, then (thereby) one also knows ~ under 
some name or description. 

For the sake or simplicity, we shall not undertake to treat of  modal 
contexts. Thus, we shall not be able to express statements like '~b is com- 
possible with everything Tom knows' or (the equally interesting) '4) is 
compossible with something Tom knows'. Further, it would seem natural 
to require that 'A~' shall mean 'one has non-inferential knowledge of ~'. 
This could apparently be done by requiring that one should know that 
z exists in all those (epistemically) alternative circumstances which differ 
from the actual one at most with respect to the assumption that z's exis- 
tence has been inferred. For, if one is acquainted with ~, then it must be 
possible that ones knowledge that z exists is not the result of an inference 
one makes. However, without taking account of modal notions, we cannot 
express this requirement. Further, there is one sense of 'knowing who (or 
what) a is' in which such knowledge does not presuppose the existence or 
even the possibility of a. Thus, we might grant that someone knows who 
Faust is if the person is thoroughly familiar with the relevant literature, 
or that he knows what the largest number is if he can define that incon- 
sistent notion. These are senses in which 'one knows what a is' does not 
mean 'there exists some item which one knows to be a', their analysis 
seems to require semantical reference to tales other than the true one and, 
in the interest of simplicity, we shall not attempt to capture these senses. 
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Further informal remarks will accompany the axiomatic and semantical 
developments wherever it seems helpful to elucidate the formalism. 

2. SYNTACTICAL PRELIMINARIES 

We shall assume, in the meta-theory, the existence of a proper class of 
constants and of a proper class of variables. Also, for every natural num- 
ber n, there shall be a set, of indefinite size, of n-place predicates. We shall 
use parentheses and brackets, the customary connectives ' ~ ' ,  ' ~ ' ,  '&', 
' v ' ,  and '*-¢, the quantifers '3' and 'V', the identity sign ' = ' ,  and the 
descriptive operator '¢ .  In addition, we have the following non-schematic 
letters: the one-place sentential operator 'B' in contexts like 

Bq~ [read: one believes that ~b]; 

the one-place sentential operator 'K'  in contexts like 

K~ [read: one knows that ~b]; 

for every integer n (such that 2 ~< n), the n-place sentential operator 'I"', 
whose superscript we delete in contexts like 

I(q~l, ..., 4~,-1; ~b,) [read: one rationally infers that ~b, from the respec- 
tive assumptions that 4h, ..., qb,-1]; 

and finally the one-place predicate 'A' in the contexts 

Ax [read: one knows • under some name or description]. 

All categories of symbols are disjoint, and no symbol shall be the empty set0. 
The syntactical predicates 'is a formula', 'is a term', and 'is free in' are 

assumed to be defined in the expected manner. Sentences are formulas 
which contain no free variables, and names are terms without free vari- 
ables. Given any set T of formulas, the formulas o f t  (terms ofT, sentences 
of  T, names of T) shall be the formulas (terms, sentences, names) which 
are such that every variable, individual constant and predicate (excepting 
'A') which occurs in them also occurs in some member of T. 

If  0 is a well-formed expression, and R is a function whose domain is 
a set of constants and variables and whose range is a set of terms then 
O{R} [read: the proper simultaneous substitution, in 0, of terms for 
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free variables in accord with R] is recursively defined as follows: 
(1) if 0 is a variable, then 0{R} = R(0), if 0 is in the domain of R; and 

0 {R} = 0 otherwise, 
(2) if 0 is an individual constant, then 0{R} = 0, 
(3) if  for some n-place predicate n and n-term sequence ~o, ..., ~,-1 of 

terms 0 =n3o.. .  3n-~, then 0{R} = nxo{R}.., zn_l {R}, 
(4) if for some terms zo, 31, 0 = [Zo = xl], then 0 {R} = [zo {R} = 31 {R}], 
(5) if for some term x, 0 = Az, then 0 {R} = Az {R}, 
(6) if for some formula ~b, 0 = B~b, then 0 {R} = B~b {R}, 
(7) if for some formula ~b, 0 = Kq~, then 0{R} = Kgb {R}, 
(8) if for some n-term [2 ~<n] sequence of formulas q~l,..., ~ 0 =  

= I(~l ,  ..., ~b,-1; ~,), then 0 {R} = I(~bl {R} .... .  ~b,_ l {R}; ~bn {R}), 
(9) if for some formula ~b, 0 = ~ ~b, then 0{R} = ~ ~b{R}, 

(10) if for some formulas ~b and ~k, 0=(~b &~,), then 0{R} = (~b{R} & 
& ~b {R}), and so forth for other sentential compounds, 
(11) if for some formula ~b and variable ~, 0 = q ~q~, then 0 {R} = 3 ~ {R'}, 
where R'  = R minus the set of all pairs (x, y )  where either x = ~ or ~ is 
free in y, and similarly for universal statements and descriptive terms. 

We say that 0 {R} is proper if 0 contains no well-formed expression of 
the form 3 0~b, V ~b, or ~ ~q~ such that for some variable/~,/~ is free in q~ 
and ~ is free in R(]~). 

R~ oxo. ...... • • 7, - 11 (and, as an intended special case R ~  is that assignment which 
differs from R, if at all, only by assigning to each x~ the item y~; note that 
all the x's are in the domain of this variant of R. 

3. T H E  AXIOMS AND I N F E R E N C E  RULES 

Suppose that n is a natural number, m and k are positive integers, 2 ~< m, 
and fl are distict variables, ~b and ~b are formulas,/~ is not free in ~b, rc is 

an n-place predicate, ~ is an m-term and ~ a k-term sequence of  formulas, 
~, r/, and 0 are terms, 3 is an n-term sequence of terms, and dis the identity 
relation confined to the variables in q~. Then, an axiom is a formula of one 
of  the following forms: 

(Axl) 
(Ax2) 
(Ax3) 

~b, if q~ is a tautology 
w( , / ,  ~ ~)  ~ (vo.~ ~ w ~ , )  
3 ~ ~ ~ W  ~ 
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(Ax4) (V~4 & ~ = ~)-'+ 4{d~}, provided that ~ is a variable and 
4) {d~} is proper 

In words: If  everything satisfies the condition 4 and if 'it' is self=identical 
(or, 'it' exists), then 'it' satisfies the condition 4. (Ax4) is the principle of  
Universal Instantiation confined to variables which have values. 

(Ax5) V ~ • = 

In words: everything (i.e. every actual thing) is self-identical (or, exists). 

(Ax6) me. . .  ~,-1 ~ (~o = %  &-.- & ~ - t  =%-1)  

In words: If  the respective items *o,..., x,_ t enter into the (positive) rela- 
tion n, then each of  these items is itself-identical (or, exists). Informally: 
atomic formulas of  the sort displayed in the antecedent of  (Ax6) express 
the possession of  positive qualities or the entering into positive relations. 

(Ax7) C = ~ - ,  ~ = 

In words: If  C is identical with ~ then/i is identical with C: identity is sym- 
metric. 

(AxS) (~ = ~ & ~ = 0) - .  ~ = 0 

In words: If  [ is the same as ~ and/7 is the same as 0 then ~ is the same as 
0: identity is transitive. 

(Ax9) 0rZo ... z , - i  & zi = ~) ~ 7r*o .-. z~-t ~*~+t'.. %- t ,  for all 
i<n .  

In words: If  the respective items *o, ... %-x enter into the relation ~ and 
the i-th item zi is identical with ~ then the sequent,  of  items in which ** is 
replac, d by ~ will also enter that relation. (AxT)-(Axg) together provide 
that all atomic formulas which are free of  epistcmic operators form ex- 
tensional contexts. 

(Axl0) Vfl ~ = 7~4 ~ V~(~ = fl ¢-* 4)] 
In words: Exactly those items are identical with the thing which is 4) which 
are such that they, and they alone, are 4. 

(Ax11) ~=~ ~ qfl~=/~, if~ is a constant or ~=,~4, 

In words: If ~ is self-identical then there is something which it is. 
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(Axl2) (~ = fl & ¢) --, ¢ ' ,  where ¢ '  results from ~b by replacing one or 
more free occurrences ofu  by free occurrences o f t .  Note that 
this principle of interchange holds only with respect to vari- 
ables a and/~. 

(Ax13) K~b ---, ~b 

In words: I f  one knows that ~b, then ~b. Knowledge implies truth. 

(Axl4) Kck ---, B~b 

In words: I f  one knows that ¢ then one believes that ¢. 

(Axl5) B~b --. a = u, provided that a is free in ~b. 

In words: I f  one believes that 'it ' is ~b, then the 'it ' in question exists. 
Very loosely: A free variable a in the context 'one believes that a is ¢ '  
serves to express that one believes of the actual object u that it is ~b. (Axl5) 
is used in proving, e.g. that if one believes that a is ¢ then there exists 
something which one believes to be ¢. 

(Axl6) I(x0,..., ~m-2; ~m--1) ~ a = ~ , i f f o r  some i<m, ais freeinx~. 

Loosely: If  one carries out a certain rational inference and the variable 
a is free in one of  the formulas representing a step in that inference, then 
one is inferring something 'about' the actual object c¢. 

(Axl7) I(Xo,..., ~m-2; ~m-1) ~ ([BXo &..- & B~(,n-2] ~ BZ.-I )  

In words: I f  one infers that X,,-x from the respective assumptions that 
Xo ... .  , Z , -2  and if one believes each of these assumptions, then one also 
believes that Xm-x. Or: the body of  ones beliefs is closed under those in- 
ferences which one actually carries out. 

(Axl8) I(Xo,..., ~m-2; ~m-1) ~ ([K~o • ' "  & KXm-2] ~ KX,,,-I) 

In words: I f  one rationally infers that X,-x from the respective assump- 
tions that Zo ... .  , X,-z and if one knows that each of these assumptions is 
true, then one also knows that the conclusion is true. Or: the body of  ones 
knowledge is closed under those rational inferences which one actually 
makes. 

(Axl9) I(Xo,-.., X , -2 ;  X,-1) ~ K[(Zo &.. .  &Zm-2) -'* Xm-l] 
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In words: I f  one rationally infers that Xm-1 from the respective assump- 
tions that Zo, ..., X~-z, then one knows that the conjunction of  those as- 
sumptions is true only if the conclusion Zm-t is true. 

(Ax20) [I(~o,..., ck-z; Xo) &.-. & I(~o .... , ~k-1; Xm-1)] 

"-* [(X0 .... ,X.-1;qb) ~ I(¢ o .... , ~k-1; ~b)] 

Informally- the relation of inferring is transitive. Or: the set of  all in- 
ferences which one draws from given assumptions is closed under further 
inferences which one actually carries out. 

(Ax21) A~ ~ K(~ = ~) 

In words: I f  one knows [ by some name or description, then one knows 
that ~ is ~ (or, that [ exists). 

(Ax22) (A[ & [K([ = r/) v K( r /=  ~)]) --, A~/ 

In words: I f  one knows ~ by some name or description and if one either 
knows that ~ is t /o r  that r/is ~, then one also knows t /under some name 
or description. 

This completes the list of  axioms. No special effort has been made to 
streamline the axioms or to prove their independence. 

We say that ok follows by ModusPonens from ~ and X just in case either 
= (X -'* ~b) or X = (~b ~ q~). And ~b follows by Universal Generalization 

from ~b if and only if there exist X, 0, and ~ such that ~k = (Z ~ 0), ~b = 
=(Z  ~ V~0), and ~ is not free in X. A finite non-empty sequence 
(s  o .. . .  , S._l> is a proof of ~p just in case q~ = s . - t  and, for every i < n, st 
is a formula and either (a) st is an axiom, or (b) there a r ea  k < i such that 
st follows by Modus Ponens from sj and sk, or (c) for somej  < i, s t follows 
by Universal Generalization from sfi and such a sequence is a derivation 
o f~ from a set K of  formulas just in case ~b = s._ 1 and, for every i < n, s t 
is a formula and either (a) st is in K, or (b) there is a subsequence t of  s 
such that t is a proof  ofs~, or (c) there a r e a  k < i such that st follows by 
Modus Ponens from sl and s k. We say that ~b is a theorem (that ~b is deriv- 
able from K) if there is a proof  of  q~ (a derivation of  ~b from K). A set K 
of  formulas is con#istent if there is no formula such that both it and its 
negation are derivable from K; and K is maximally consistent with respect 
to the formulas in K if K is not properly contained in any set K'  which is 
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consistent and comprises only formulas of K (i.e. formulas, roughly, 
whose language is that of K), while K is consistent. 

Due, e.g., to the fact that we have a proper class of variables, we also 
have a proper class of theorems and no set is maximal in the sense of  
comprising all theorems of  our unrestricted language. 

4. T H E  SEMANTICS 

We begin by defining and subsequently explaining the notion of a model. 
DEF. M is a model if and only if there exist T, B, K, / ,  A, H, and R such 

that M = ( T, B, K, L A, H, R )  and 
(1) T is a set of formulas, 
(2) B is a set of sentences of (in the language of) T, 
(3) K is included in B, 
(4) I is a set of at least 2-term finite sequences of sentences of T, and 

(a) whenever (~b o ... .  , ~bn_ 1, $ , )  is in I and for every i < n, ckt is in B, 
then q~, is in B, 

(b) whenever (~bo,..., ¢k~-i, ~b,) is in I and for every i < n, $~ is in K, 
then ~b~ is in K, 

(c) whenever (~bo,..., $,_1,~b~) is in 1 and for every i<n,  
(~k0, ..., ~k,-1, ~ )  is in L then (~o,-.. ,  ~ , -1 ,  4 , )  is i n / ,  

(d) whenever (~b o ... .  , ~ - 1 ,  ~b~) is i n / ,  then [(~b o &... & ~b,_l) --, ~b,] 
is in K; 

(5) A is a set of names of (in the language of) T, and 
(a) whenever z is in A, then [3 = z] is in K, 
(b) whenever z is in A and either [~ = (] or [( = ~] is in K, then (is in A; 

(6) His  a set of sentences of(in the language of) To f the  form nzo ... %-2, 
where 7r is an n-place predicate and z is an n-term sequence of con- 
stants; and 

(7) R is a function whose domain is a set of variables and of constants of 
(in the language of) T, whose range is a set of constants of T, and such 
that, for every term • in its domain, R(R(T))= R(z), and for some 
variable a, R(z)= R(~). 

Briefly, the constituent T in a model is regarded as the tale to which 
truth is relativized. T is allowed to be any set of formulas, whether 
they be consistent or inconsistent, deductively closed or not, and of any 
cardinality. 
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The constituent B in a model represents the body of all beliefs which 
one has according to T. B may be any set of sentences of T whatever (in- 
cluding the empty body of beliefs). But we do require that B shall be a set 
of sentences, since it is not intuitively clear what items in the body of a 
person's beliefs shall be presented by open formulas. 

The set K in a model represents the body of one's knowledge. Since one 
knows only what one believes, K is included in B. By implication, K is also 
a set of sentences in the language of T. 

The constituent I of a model represents the inferences which (according 
to the tale T) one actually carries out. Accordingly, each member of I is 
a sequence whose last term represents the conclusion one draws, and 
whose other terms represent the respective premises from which one draws 
the conclusion. Since the intuitive relation of inferring is at least 2-place, 
we exclude 0-term and 1-term sequences from L The condition (4)(a) 
provides that the body B of one's beliefs is closed under one's inferences. 
According to (4) (b), the same is true of the body K of one's knowledge. 
(4) (c) requires that the set of inferences drawn from given premises 
~ko .... , ~k,_ 1 is closed under further inferences which one cares to make. 
The condition (4)(d) has this effect: whenever one draws a conclusion 
from given premises, then one knows that conditional to be true whose 
antecedent is the conjunction of the respective premises and whose con- 
sequent is the draw conclusion. Without this connection between inferring 
and knowing, we would not feel that I represents rational inferences. 

The set A in a model is intended to contain those names of T (whether 
they be constants or descriptions) which represent things to the epistemic 
subject: they are to be names by which things are known. According to 
(5) (a), if z is such a name, then the information that z = • (which turns 
out to be equivalent, in our system, to be information that z exists) must 
be in the body K of one's knowledge; and (5) (b) has the effect that when- 
ever z is a subjectively representative name in A and ~ is a name whose 
desiguatum is known to be identical with that of z, then ~ is again one of 
the names in A. 

The constituent H in a model consists of certain relational atomic sen- 
tenees in the language of T; namely those which, intuitively, hold in the 
tale T. H will take care of the base-step in the recursive definition of truth 
and hence should comprise those sentences in whose further analysis we 
are not interested. 
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The function R in a model is the assignment of representative names to 
constants and variables. Constants which are not in the domain of R are 
thought of as non-denoting, and variables not in its domain are ones 
without values. The condition that for every denoting term , ,  R(R(z)) = 
= R(, )  says that every representative name represents itself, and implies 
also that every representative name R(,)  denotes [for, i f ,  is in the domain 
of  R while R(,)  is not, then R(R(,)) = 0; and 0 is not a constant, as is 
R(,)]. The condition that for every • in the domain e r R  there is a variable 

such that R(,)  = R(~) provides that for every representative name there 
will be a variable which can go proxy for that name. 

If  M = ( T, B, K, I, A, H, R), then by M~ we mean ( T, B, K,I, A, H, R~). 
DEF. Suppose that M = (T,  B, K, I,  A, H, R)  is a model, m and n are 

natural numbers, 2 ~< m, ~ is a variable, ( and rl are terms, • is an 
n-term sequence of  terms, ~b, $, are formulas, X is an m-term 
sequence of formulas, ~r is an n-term predicate, and I is an m-term 
operator. Then the notions Val (M, ~) [in words: the value, ac- 
cording to M, of ~] and M sat dp [in words: M satisfies $] are 
recursively characterized as follows: 

(1) VaI(M, () = R((), if ( is either a constant or variable of T, 
(2) M sat 7r, o . . .  Tn_ 1 just in case lrVal(M, %)... Val(M, Tn_l )  is in H, 
(3) m sat [~ = r/] just in case VaI(M, ~) = VaI(M, t/) # 0, 
(4) M sat A~ just in case for some term 7, e {R) is in A and Msat  K [~ = ~], 
(5) M sat B$ just in case $ {R) is in B, 
(6) m sat KS just in case m sat $ and $ {R} is in K, 
(7) m sat I(Xo,..., X,-  2; X,-  1) just in case (Xo {R), ..., X,,- 1 {R}) is in I 

and for every i < m - 1 M sat X~, only if M sat Z , - l ,  
(8) M sat ,-~ $ just in case $ is a formula of T and it is not the case that 

M sat ~b, 
(9) M sat (~b & $) just in case M sat $ and M sat tp, and similarly for 

other sentential compounds, 
(10) M sat q ~$ just in case there is a variable/~ in the domain of R such 

that Mid(p) sat ~b, 
(11) M sat V~b just in case for every variable /~ in the domain of R, 

M~(p) sat 4, 
(12) Val(M, ~ b )  = R(fl) provided that ,~b is a term ofT,  p is a variable 

in that domain of R and for every variable Y in the domain of R: 
Mff(~) sat ~b just in case R (~,) = R (/~); and Val (M, ,~$) = 0 otherwise. 
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Recalling the R(z) = 0 whenever z is not in the domain of R, let us say 
that a term x denotes (according to M) if the value of z (according to M) 
differs from the empty set 0. According to clauses (1) and (12), the values 
of all denoting terms are constants of T (representative names), and the 
common value of all non-denoting terms is the empty set 0. Roughly, the 
value of a denoting description ~tk is the representative name (among 
those which represent variables) which may be substituted for ct in ~b 
(making the result true). 

According to clause (2), an atomic formula of the form rCXo.., zn-1 is 
satisfied just in case the result of replacing in it all terms z~ by their repre- 
sentative names holds; and the result of that replacement can hold only 
if the original formula is in the language of Tand if all terms ~ are denoting 
terms. For example, if zc is a one-place predicate, M sat nz, and we as- 
sumed that VaI(M, x) = 0, then the ill-formed formula n would have to 
be in H, which is ruled out by the condition (6) on models. 

Clause (3) provides that identities are true if both terms flanking the 
identity sign denote and are represented by the same name. Using the 
conditions (2) and (3), it follows easily that all predicates form extensional 
contexts. 

The condition (4) states that A( is true if ~ is known to be ~/, where the 
result of replacing the free variables in r/by their representative names is 
in the set A of those names which are representative of things for the 
epistemic subject. 

Clause (5) tells us that one believes that ~b just in case the result ~b {R} 
of replacing the free variables in q~ by their representative names (according 
to R) is in the body B of ones beliefs. Here, as indeed in all epistemic 
contexts, free variables go proxy for their representative names. 

According to (6), one knows that ~b if ~ is true and the sentence ~b {R}, 
obtained from ~b by replacing free variables by their representative names, 
is in the body K of ones knowledge. Similarly, by (7), formulas which 
express that certain inferences are drawn by the epistemie subject shall be 
satisfied if the corresponding sequence of sentences is in I and the con- 
ditional, formed by conjoining the assumptions of the inference and letting 
that conjunction imply the conclusion of the inference, is true. Due to 
this latter provision, together with (4) (d) in the definition of 'model', the 
conditionals in question will be known to be true whenever the corre- 
sponding inference is made. 



A LOGIC OF BELIEVING,  K N O W I N G ,  AND I N F E R R I N G  379 

According to the conditions (10) and (11), quantifiers 'range over' items 
which are thought of as named by representative names (which are as- 
signed to variables). A straight-forward substitutional interpretation 
would have been possible at the expense of much greater complexity. 

Some further definitions: Sentences shall be true in a model just in case 
they are satisfied by it. A formula is valid exactly in case that it is satisfied 
by every model. A set K of formulas yields a formula ~ if and only if q~ is 
satisfied by every model which satisfies all members of K. 

Since we have a proper class of names and of variables, a set K could 
never comprise all instances of a quantified statement; and every set of 
such instances which has a model will also have a model whose langugage 
is richer than that of the set. For these reasons, the semantical counterpart 
of omega-completeness fails, even though we give to quantifiers something 
akin to a substitutional interpretation. 

5. S E M A N T I C A L  ADEQUACY 

Our system is semantically adequate in the strong sense: given any set K 
of formulas and any formula q~, ~ is derivable from K if and only if K 
yields ~b. In order to minimize technical details, we shall rest content in 
merely listing the main lemmas which need to be proved and in giving the 
barest outline of the completeness argument. 

The proofs of the following three lemmas proceed by induction on the 
logical complexity of 0: 

Lemma 1. Suppose that (a) 0 is a well-formed expression, (b) ~t is a 
variable which is not free in 0, (e) M = (T, B, K, L A, H, R)  is a model, 
and (d)/~ is a variable in the domain of R. Then, 

(1) if 0 is a term of T, then Val(M, 0)=Val(M~p), 0). 
(2) if 0 is a formula of T, then M sat 0 just in case M~p) sat 0, and 
C3) 0 {k}  = 
Lemma 2. Suppose that (a) 0 is a well-formed expression, (b) M = 

= ( T, B, K, l, A, H, R)  is a model, (c) ~ is an n-term sequence of distinct 
variables, (d) ~ is an n-term sequence of variables in the domain of R, (e) 
S =/~tpo)--./~t~-~l) i, (f) N =  <T, B, K, I, A, H, S) ,  (g) d is the identity 
relation confined to the variables in 0, and (h) 0' = 0{d~o...p,_l}~°'"~"-I which" is 
proper. Then, 

(1) if 0 is a term of T, then Val(M, 0') = Val(N, 0), 
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(2) if 0 is a formula of T, then M sat 0' just in case N sat 0, and 
(3) O{S} = O'{R}. 
Lemma 3. Suppose that (a) 0 is a well-formed expression, (b) M = 

= ( T, B, K, I, A, H, R)  is a model, (c) ~ and/~ are variables, (d) 0' results 
from 0 by replacing one or more free occurrences of  ~ by free occurrences 
of/~, and (e) R ( ~ ) =  R ~ ) .  Then, 

(1) if 0 is a term of T, then VaI(M, 0) --VaI(M, 0'), 
(2) if 0 is a formula of  T, then M sat 0 just in case M sat 0', and 
(3) 0{R} = 0' {R}. 

Using these three lemmas, it is not difficult to prove that each of  the axioms 
is valid and that validity is preserved under the rules of  inference, thereby 
establishing the soundness of  the system. In order to prove its complete- 
ness, a number of  further lemmas are needed. Most of  those are familiar 
from completeness proofs of  ordinary predicate calculus, and their deriva- 
tion in our system requires at most slight variations. For this reason, we 
shall only list those lornmas which are either a bit different from customary 
ones or are not usually needed in demonstrating completeness: 

Lemma 4. I f [  and ~/are terms, then [~ = ~/-+ (~ = [ & ff = if)] is a theorem. 
Lemma 5. If  [ is a term and 0c is a variable which is not free in ~, then 

[~ = ~ *-~ 3 ~ = ~] is a theorem. 
Lemma 6. If  K is a consistent set of formulas then there exists a con- 

t t sistont set K of formulas such that Kis included in K and for all formulas 
e l K '  [i.e. in the language of  K'] of  the form V~¢~ there is a variable/~ such 
that/~ does not occur in V ~  and [(~b{d~} v ~f l - - -~)-- ,  V ~ ]  is in K'  
[where d is identity confined to the variables in ~b]. 

Lemma 7. Suppose that ~ is a constant, ~ is a variable, and ~.  is the 
result of  replacing in ~b all occurrences of  ~ by free occurrences of  ~ (ff 
possible, and ~b otherwise). Then, i f~  is a theorem, so is ~ .  (The argument 
proceeds by induction on the length of  the proof  of  ~). 

Lemma 8. Suppose that K is a consistent set of  formulas, f i s  a one-one 
mapping of the free variables of  K onto a set of  constants not occurring 
in any member of K, and L is the set of all biconditionals [~b ,-. 

gO • . . ~ n -  l ~5 {d~(,o)...y(~._l)}], whore ~& is a formula of  K, d is identity restricted to 
the variables in ~b, and o%, ..., 0e,_ 1 are distinct variables comprising some 
or all of  the variables which are free in ~b. Then the union of  K and L is 
consistent. (Suppose not, consider, finite subsets of  K and L, and use 
Lemma 7). 
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Lemma 9. Every consistent set of formulas is included in a set of for- 
mulas which is maximally consistent with respect to the formulas of K. 

Theorem [Strong Completeness]. For every consistent set F of  formulas 
there exists a model statisfying all members of  F. 

In its barest essentials, the Henkin-type completeness proof is as fol- 
lows: 

(1) By Lemma 7, there is a consistent extension F '  o f F  such that for all 
formulas o f F '  of  the form V~t4) there is a variable fl not occurring in 
Vet4) such that [(4){d~} v ,-,fl = p) ~ V~4)] is in F' .  

(2) Let f be a one-one mapping of the free variables of  F'  onto a set of 
constants new to F'. 

(3) Let L be the set of all biconditionals of  the form [4) ~-* 4)x 
x t~.j,(,o)...s(,~_l)s~~-~*'"~"-' ~1 where 4) is a formula of  r '  and %,. . . ,  ctn_ i are dis- 
tinct variables comprising some or all of  the variables which are free 
in 4). 

(4) By Lemma 9, the union of  F '  and L is consistent. 
(5) By Lemma 10, there is an extension F* of  the union o f F '  and L such 

that F* is maximally consistent with respect to the formulas of that 
union. 

(6) Let co, et, ... be an enumeration of all constants in the range o f f  
(7) For every term z, let ~ = the least indexed constant c~ such that 

[c~ = z] is in F* (if there is such a constant; and 0 otherwise). 
(8) Let M = (T,  B, K, L A, H, R)  satisfy the following conditions: 

(a) T =  F*, 
(b) R is that function whose domain is the set of  all variables and 

constants ~ such that [~ = ~] is in F*, and for every such term ~, 
R ( ~ )  = ~, 

(c) B = the set of  all 4) {R}, where B4) is in F*, 
(d) K = the set of all 4) {R}, where K4) is in F*, 
(e) I =  the set of all sequences (4)0 {R}, ..., 4)n-t {R}), where 

I(4)o, .... 4)n-2; 4)~-a) is in F*, 
(f) A = the set of all ({R) such that for some term 3, [K(z = () & Az] 

is in F*, and 
(g) H =  the set of  all sentences rr%.., z,_t, where n is an n-place 

predicate and 1r% ... z,_~ is in F*. 
(9) For every term ~, if [~ = z] is in F*, then there is a constant c~ such 

that [c~=z] is in F*. For: by Lemma 6, 3ctx=ct is in F*, by (1) 
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[~ =/~] is in F* for some new variable/~, by (3) and (6), [z = ~ ~ • = 
= ct] is in F* for some ci, and hence [ci = z] is in F*. 

(10) Claim: for every variable u, if [~ = u] is in F* then [~ = f(~)] is in F*. 
The proof  is easy by appealing to (3) and the transitivity of identity. 

(11) Claim: i f~  is a free variable in ~b and ~ is in the domain of  R, then 
[~b ~ ~b {dR~)}] is in F*. The claim can be proved by repeated use of  
(3), (10), and (Axl2). 

(12) Claim: Mis a model. The proof  of  this claim is lengthy and appeals 
to most  of  the axioms. Note especially that due to (11) we can freely 
interchange free variables for their representative names in F*, and 
that the items in B and K a r e  indeed (closed) sentences due to (Axl5). 

(13) Claim: i f0  is a term o f F *  then VaI(M, 0) = 6, and i f0  is a formula 
of  F* then M sat 0 just in case 0 is in F*. The proof  of  this claim 
proceeds by induction on the complexity of  0 in more or less the 

usual manner. 
These hints may suffice to indicate how the theorem is proved. 

I t  appears that our system is semantically adequate and in intuitive 

agreement with the informal remarks made in Section 1. 

Department of Philosophy, University of Rochester. 
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