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The Discrete Wave Number Formulation of Boundary Integral 
Equations and Boundary Element Methods: A Review with 

Applications to the Simulation of Seismic Wave Propagation in 
Complex Geological Structures 

MICHEL BOUCHON 1 

Abstract --We review the application of the discrete wave number method to problems of scattering 
of seismic waves formulated in terms of boundary integral equation and boundary element methods. The 
approach is based on the representation of the diffracting surfaces and interfaces of the medium by 
surface distributions of sources or by boundary source elements, the radiation from which is equivalent 
to the scattered wave field produced by the diffracting boundaries. The Green's functions are evaluated 
by the discrete wave number method, and the boundary conditions yield a linear system of equations, 
The inversion of this system allows the calculation of the full wave field in the medium. We investigate 
the accuracy of the method and we present applications to the simulation of surface seismic surveys, to 
the diffraction of elastic waves by fractures, to regional crustal wave propagation and to topographic 
scattering. 

Key words: Seismic wave propagation, boundary integral equations, numerical simulation in 
elastodynamics, diffraction of elastic waves. 

Introduction 

The propaga t ion  of  seismic waves through complex geological structures can be 

studied by a variety of methods.  The choice of the investigating technique depends 

in large par t  on the type of problem considered. When  the propagat ing  medium,  for 

instance, is made up of relatively homogeneous  layers separated by interfaces of 

arbi t rary  shape, or contains  cracks or inclusions embedded in an otherwise rela- 

tively homogeneous  geological format ion,  the use of b o u n d a r y  integral equat ions  or 

bounda ry  element methods  is very appropriate.  Several formula t ions  of these 

methods  in elastodynamics have been proposed over the last two decades. Here we 

shall focus our  a t tent ion on the formula t ion  based on the discrete wave n u m b e r  

representat ion of the Green ' s  functions.  We shall review the approach and  shall 
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present new examples of applications which show the types and ranges of problems 
which can be investigated by this method. 

Description of the Method 

Let us first consider the case, shown in Figure 1, of two homogeneous 
semi-infinite elastic half-spaces separated by an interface of arbitrary shape. For  
simplicity we begin with the two-dimensional antiplane problem. Let us assume that 
an elastic source is located in medium 1. Then, using Huygens principle, the elastic 
displacement wave field at a point P of medium 1 can be expressed in the form: 

V(P) = Vo(P ) + fs cr(Q)G(P, Q) dS(Q) .(la) 

where Q denotes a point of the interface S, a is an unknown source density function 
and G is the infinite space Green's function of medium 1. In writing equation ( la)  
we express the wave field at P as the sum of the direct source wave field Vo and of 
the diffracted wave field that we represent as the integral over the diffracting surface 
of an unknown source density function a(Q) (each point of the interface acts as a 
source of  radiation) times a term, G(P, Q), which expresses the radiation produced 
at the observation point P by a unit force located at the interface point Q. 

§  

v(e) = Vo(P) + f (~(Q) G(P,Q) dS (Q) 
S 

S 

+ p '  

V(P') = f ~'(Q) G'(P',Q) dS(Q) 

Figure 1 
Illustration of the method. 
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At an observation point P'  of medium 2, we obtain in a similar way: 

V(P') = fs a'(Q)G'(P', Q) dS(Q) (lb) 

where G' is the infinite space Green's function for medium 2, and a '  is the unknown 
source density function representing the diffraction sources in medium 2. 

A simple way to evaluate equations (1) is to assume that the source-medium 
configuration has a spatial periodicity L along a direction x, and to use the discrete 
wave number representation of the Green's functions (BouCHON and AKT, 1977). 
For most applications x is the horizontal direction and will be referred as such in 
the following. This representation of the Green's functions, in the frequency domain 
co, by discrete horizontal wave number summation results from the spatial periodic- 
ity and may be written: 

G(P, Q) = L g(km, co, zp --zQ) e-ik"(~P-xQ ) (2) 
m =  oo 

where z is such that (x, z) defines a Cartesian coordinate system, g denotes the rnth 
component of the plane wave expansion of the Green's function and where 

2~ 
k,~ = ~-m.  

Then, discretizing the interface at equal Ax = L/N interval, where N is chosen to be 
an odd integer, equations (1) may be written simply: 

N N / 2  

V(P)=Vo(P)+ ~ ai ~ g(km, co, z p - z i ) e  -ik~(~P-xi) 
i = 1 r n  = - N / 2  

N N/2 (3) 
V(P')= ~ ~r~ ~ g'(k,.,c.o, ze , -z i )  e -'k,.(~p-x,) 

i =  1 rn  = - N / 2  

The limited range of the wave number summation in equation (3) results from the 
discretization of the interface at constant Ax interval. This spatial discretization 
implies a periodicity in the horizontal wave number space, just as the spatial 
periodicity of the interface shape implies a discretization in the horizontal wave 
number domain. Then choosing P and P'  to be one of the discretized points Qj of 
the interface, we obtain: 

N N / 2  

V(Qj)=Vo(Qj)+ Z ai ~ g(km, co, z j - z i )  e 'km(X; xi) 
i =  1 m =  - N / 2  

N N / 2  (4) 

i = 1 m = - ? 4 / 2  

The continuity of the displacement wave field across the interface requires the 
equality of the two right hand sides of equations (4) and provides a system of N 
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equations (as j = 1, N) where the unknowns are the ai and the o-'i. The continuity 
of the stresses across S provides N more equations and thus leads to a system of 2N 
equations for 2N unknowns. The solution of this system of linear equations yields 
the source density functions from which the wave fields can be evaluated through- 
out the medium. The time domain solution is obtained by Fourier transform. The 
unwanted effects of the periodicity are eliminated by performing the Fourier 
transform in the complex frequency plane. 

The detailed formulation of the method for the antiplane (SH) case can be 
found in BOUCHON (1985) and CAMPILLO and BOUCHON (1985), and various 
applications have been presented in multilayered media for seismic exploration 
problems (CAMPILLO, 1987a; PAUL and CAMPILLO, 1988; BOUCHON et al., 1989; 
HAARTSEN et al., 1994), crustal wave propagation studies (CAMPILLO, 1987b; 
CAMPILLO et al., 1993; CHAZALON et al., 1993; GIBSON and CAMPILLO, 1994; 
PAUL, 1994; SHAPIRO et al., 1996; PAUL et aI., 1996) and seismic risk evaluation 
(CAMPILLO et  al., 1988). 

The presence of a fiat free surface or of fiat interfaces can be taken into account 
by replacing the infinite space Green's functions by the corresponding half-space 
or flat layered medium Green's functions. The g(km, oo, z , , -  zo) terms in equa- 
tion (2), then include the free surface reflections or the layer reverberations in 
the form of reftectivity and transmissivity matrices (KENNETT, 1974; MOLLER, 
1985). 

The corresponding equations for the P - S V  case are presented in GAFFET and 
BOUCHON (1989, 1991), and they have been applied to study the effects of local 
geological structures on near-field and teleseismic source radiation (GAFFET et al., 

1994; GAFFET, 1995). 
The above formulation is applicable as well to cases in which the diffracting 

surface is close, for instance to study the diffraction of seismic waves by cracks, 
cavities, or inclusions (BouCHON, 1987; COUTANT, 1989). 

This approach has also been used to simulate full wave form acoustic logging in 
an irregular borehole with axisymmetry (BOUCHON and SCHMITT, 1989). In this 
case, the borehole wall is the diffracting boundary between the acoustic borehole 
fluid and the elastic geological formation, and the Green's functions are expressed 
as discrete vertical wave number summations (CHENG and TOKS6Z, 1981). 

The applicability of the method described above requires that the medium 
surface and interfaces can be diseretized at a constant spatial interval, along the 
direction of periodicity of the structure. This, however, may not always be conve- 
nient or possible. Such a case arises for instance when a diffracting boundary is 
perpendicular to the logical direction of periodicity of the structure (for instance, 
the presence of a vertical fault in an otherwise nearly horizontally layered medium). 
In this case, starting again with equations (1), we discretize the surface S into N 
surface elements AS~ on which the source density functions ~r and a' are assumed to 
be constant. Equations (1) thus become: 
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V(P)= Vo(P) + ~, a, fA G(P, Q)dS(Q) 
i =  1 S i 

(5) 
V(P') = ~ cr~ s G'(P', Q) ds(Q). 

i = ,  S i 

To calculate the Green's function integrals, we again use the discrete wave number 
representation for the Green's function (equation (2)). We then get the expression: 

Gp, i = G(P, Q) dS(Q) = ~ h(km, co ) e i'~ml=P- ~oJ e-ik,,,c~e- xo) dS(Q) 
S i m = - -  M S i 

(6) 

and similarly for G', where we have used the relations: 

g ( k m ,  co, z p  - Z Q )  = h(k,~, co) e-i~,=l=p - =ol 

F/co',,2 1,/2 
7 . = [ ~ ) - k 2 J ,  Im(7,)_<0, 

and where fl denotes the shear-wave velocity of medium 1, and M is an integer large 
enough to insure the convergence of the series. 

The integration in equation (6) is performed analytically after approximating 
each surface element ASi by a segment of line. Next, choosing points P and P' as 
the middle Qj of the j th surface element, one obtains: 

N 

v(o,) -- Vo(Oj) + 2 
i = l  

N ( 7 )  

v(oj) Z ' - '  = ~YiG}.i  . 
i = l  

Similar to equations (4), the continuity of the displacement wave field across the 
interface requires the equality of the two right-hand sides of equations (7) and 
provides a system of N equations (as j = 1, N) where the unknowns are the a i and 
the ~r}. The continuity of the stresses across S provides N more equations and thus 
leads to a system of 2N equations for 2N unknowns. The inversion of the system 
and the Fourier transform of the resulting solution yield, as previously, the time 
domain elastic wave field throughout the medium. 

The integration scheme of the discrete wave number Green's functions over 
boundary elements was first proposed by KAWASE (1988). His boundary element 
formulation, however, is based on the elastodynamic representation theorem in 
which the unknowns are the displacement and stresses on the boundaries (an 
approach usually referred to as the direct boundary element method). In the 
formulation described above, the problem is set up in terms of Huygens principle of 
diffraction, and the unknowns are the strengths and phases of the surface diffracting 
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sources. A discussion of the relation between the two approaches may be found in 
COUTAYT (1989). Applications of the direct boundary element discrete wave 
number method to observations of ground shaking during earthquakes are pre- 
sented in KAWASE and AK~ (1989, 1990). 

A more complete presentation of the boundary element formulation described 
above can be found in BOuCHON and COUTANT (1994). This approach has also 
been applied to the calculation of the radiation from a point source located in a 
fluid-filled borehole embedded in a flat layered geological formation (BoucHoy, 
1993; DoN6 et al., 1995). In this case the borehole wall is the diffracting surface 
between the borehole fluid and the layered formation. The Green's functions are 
then expressed as discrete radial wave number summations (BOUCHON, 1981) and 
are integrated analytically over the cylindrical elements of the borehole wall. 

The generalization of the method to the three-dimensional case is straightfor- 
ward. The source-medium configuration is then assumed to be periodic in the two 
horizontal (x and y) directions, and the Green's functions (equation (2)) are 
expressed as double summations over the x and y components of the wave number 
(BOUCHON, 1979). The corresponding equations relative to an irregular 3D topog- 
raphy can be found in BOUCHON et al. (1996). 

One limitation inherent to boundary integral equation or boundary element 
methods is the size of the system of equations which must be solved when the 
medium is complex or when the distance range of propagation is large compared to 
the considered wavelengths. The number of equations of the system is equal to the 
number of diseretized points (or elements) representing the diffracting surfaces and 
interfaces times the number of boundary conditions which must be matched. The 
discretization is done automatically for each frequency: At low frequencies, a 
minimum number of points is assumed for each surface or interface, insuring that 
the geometry of the diffracting boundaries is well defined; at higher frequencies, the 
discretization interval is usually chosen to be about one third of the shortest 
wavelength present in the two media surrounding the interface. At high frequencies, 
the number of equations may thus become very large. Ways to drastically reduce 
the size of this system have been investigated and are presented in BOUCHON et al. 

(1995). 

Tests of  Accuracy of  the Method 

The first test of accuracy Of the method is illustrated in Figure 2. An explosive 
source is located at the surface of a flat layered half-space and the vertical 
displacement is recorded along a surface profile. The source pressure time depen- 
dence is a Ricker wavelet with a center frequency of 50 Hz. Only the downgoing 
wave field radiated by the explosion is considered here (that is, the direct arrivals 
at the receivers have been removed) in order to emphasize the reflected and 
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Figure 2 
Comparison of the vertical displacement traces obtained using the boundary integral equation formula- 
tion with the flat layers solution for the configuration shown at the bottom of the figure. The star 
indicates the location of the explosive source. The direct wave field has been removed from the solutions. 
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diffracted arrivals. The explosive source radiation is expressed by its discrete wave 
number representation in a way similar to equation (2). Two traces are superposed 
at each receiver, One is calculated by the boundary integral equation/discrete wave 
number method: the surface and the three interfaces are discretized at equal spatial 
interval along the horizontal direction, and diffracting sources are applied at each 
discretized point. The other trace is calculated by using the discrete wave number 
method for flat layered media (BOuCHON and AKI, 1977): each wave number 
component of the explosive source radiation is combined with the reflectivity and 
transmissivity propagator matrices (KENNETT, 1974), which include the explicit 
expressions of the reflection and transmission coefficients of the plane waves at 
plane interfaces. 

The second test of accuracy of the method is taken from a study of the 
diffraction of elastic waves by a crack (BovC~ON, 1987). The particular configura- 
tion involves a P wave normally incident on a Griffith crack located in an infinite 
elastic medium. Following MAL (1970), we calculated the crack opening for various 
wavelengths of excitation. Our results are compared to his solution in Figure 3. In 

t .s Ira} (b) 

-k;~ - 0 -8  

i .2 

0-8 

0-6 

0 4  

O'2 

0 
0 o-z  0 .4  O.S (~S J.O 

OISTANCF ALONG CRACK 

Figure 3 
(a) Amplitude of the displacement of  the face of a Griffith crack calculated by MAL (1970) for a 
vertically incident P wave for various frequencies of  excitation. The results are normalized to the static 
displacement at the center of  the crack, k 2 denotes the shear wave number.  (b) The same as (a) 

calculated using the method described in the text. (After BOUCNON, 1987) 
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our model the crack contour is represented by 42 points (21 points for each face of 
the crack), and the periodicity length, chosen to be large enough for the effects of 
the neighboring cracks to be negligible, is 1023 times the discretization interval. The 
calculations presented include wavelengths as small as 1.05 times the crack length and 
are for a Poisson ratio of 0.25. The static solution was approximated by taking an 
incident wavelength equal to 100 times the crack length. 

The third test addresses the case in which the diffracting surfaces are represented 
by boundary elements over which the Green's functions are integrated. The medium, 

shown in Figure 4a, consists of a flat layered crustal structure overlaying a mantle 
half-space. The source is a line of horizontal shear dislocation occurring on a vertical 
plane and located at 10 km depth. The receivers are placed along a linear profile 
which extends in a direction perpendicular to the line of dislocation. The time 
dependence of the dislocation is a smooth step function with a rise time of about 
half a second. Two calculations are made: For the first one we consider the problem 
as one involving a source embedded in a fiat layered medium and employ the discrete 
wave number method coupled with the reftectivity and transmissivity matrices. For  
the second calculation we consider that we have two independent layered media 
separated by a fictitious vertical interface located 200 km from the source. We thus 

treat the problem as if the crustal-mantle structure on both sides of the 200 km mark 
was different. We divide the fictitious vertical boundary into surface elements. We 
calculate the mathematical expressions of the Green's functions G and G' for the 
crust-mantle structure applying the discrete wave number method. We analytically 
integrate the resulting expressions over each surface element (equation (6)). We 
finally invert the linear system of equations and obtain the two source distributions 
cr and o-', from which we calculate the seismic ground velocity produced at the 
receivers. In carrying out this procedure we assume that the fictitious surface of 
separation between the two media extends from the free surface down to a finite 
depth (chosen as 45 kin) below which little seismic energy is present. 

The comparison between the two sets of results is displayed in Figure 4a. The 

frequency range considered extends from 0 Hz (static) to 4 Hz. The periodicity length 
L used in the discrete wave number method for the two calculations is 850 km. The 
agreement between the two solutions proves the validity of  the approach. A similar 
comparison is presented in Figure 4b for the surface displacement. In this case a 
slight discrepancy exists between the very long period near-static displacement fields 
of the two solutions beyond 200 km. This is due to the limited extent in depth 
considered (45 km) for the theoretically semi-infinite diffracting boundary. 

Examples of Simulation 

The first example of simulation is presented in Figure 5. The geological structure 
considered is an irregularly layered medium, with an irregular topography. The 
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surface and the three interfaces are discretized with an equal spatial interval along 
the horizontal direction, and diffracting sources are applied at each discretized 
point. The seismic source is a surface explosion with a pressure time dependence 
given by a Ricker wavelet centered around 50 Hz. Frequencies from 0 Hz to 100 Hz 
are included in the calculation. Only the downgoing wave field radiated by the 
explosion is considered here (that is, the direct arrivals at the receivers have been 
removed) in order to emphasize the reflected and diffracted arrivals. The resulting 
vertical displacement is recorded at an array of surface receivers. Figure 2 provides 
a comparison of these results with the case where the surface and the interfaces are 
flat. 

The second example is taken from a study of diffraction of elastic waves by 
fluid-filled cracks conducted by COUTANT (1989), and is depicted in Figure 6. A 
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Figure 4 (a) 
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Figure 4(b) 
(a) Comparison of the ground velocity traces obtained using boundary elements with the flat layers solution 
for the configuration depicted at the bottom of the figure. The star indicates the earthquake location. The 
time dependence of the dislocation is a smooth step function defined by: f(t) = [1 + atan(t/to)]/2 with a 
rise time t o equal to 0.5 s. The fictitious diffracting surface along which the sources are distributed is 
represented by the dotted line. A reduced time equal to the epicentral distance divided by the mantle shear 

wave velocity has been applied to the traces. (b) The same as (a) for the ground displacement. 

plane S-wave pulse is incident  on a fractured region embedded in an otherwise elastic 

homogeneous  medium.  The fractured area considered extends over 100 m in length 

and  3 m in width, and  it i s  made up of 10 identical 20-m-long cracks with 2 m m  

thickness and  filled with water. The compressional  and shear-wave velocities and 

density of  the elastic format ion  are respectively 3000 m/s, 1732 m/s and 2.69 g/cm 3, 

while the compressional  wave velocity and density of the fluid are 1090 m/s and  

1.0 g/cm 3. The source pulse is a Ricker wavelet with a 150 Hz central frequency. The 

receivers are placed a round  the cracks at a mean  distance of 150m. The 
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Figure 5 
Simulation of a shallow surface seismic survey. The explosion location is indicated by a star. The traces 

show the vertical surface displacement. The direct wave field has been removed from the solution. 
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Figure 6 
Simulation of the diffraction of an S-wave pulse by a fluid-filled fracture zone. The receiver locations are 
depicted by triangles. Displacements are shown for the horizontal h and vertical v components. (After 

COUTANT, 1989) 

seismograms at stations 1, 2 and 3 display the incident (S) and the reflected (SP and 
SS) wave fields, while those at stations 4, 5 and 6 display the transmitted (S) wave 
field. The coda following the reflected and transmitted arrivals represents multiple 
scattering between the individual cracks. 

For  the third example, we use the boundary element formulation. The medium 
considered (Figure 7) is a layered crustal structure, except for the presence of a fault 
which affects the Moho and the lower crust. We define a diffracting boundary 

which follows the fault surface and separates the flat layered medium on the 
right-hand side of  the fault from the one on the left-hand side of  the fault. We 

truncate this boundary at a depth of 45 km, and we divide it into surface elements. 

We then calculate the expressions of  the Green's functions for the two flat layered 
media, and integrate them over each surface element. We finally set up the linear 
system of equations which expresses the continuity of  displacement and stress along 
the defined boundary,  and we invert this system iteratively. The earthquake source 
is modeled as a line of  horizontal shear dislocation occurring on a vertical plane at 
a depth of 10 km and is located about 200 km from the fault. The time dependence 
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Figure 7 
Simulation of the effect of a dipping fault in the lower crust on regional wave propagation. The 
earthquake location is indicated by a star. The boundary along which the diffracting source elements are 
distributed follows the fault and the dotted line. A reduced time equal to the epicentral distance divided 

by the mantle shear wave velocity has been applied to the traces. 

of  the dislocation is the same as the one used in Figure 4, and  the frequency range 

extends from 0 Hz (static) to 4 Hz. The receivers are placed along a linear array 

perpendicular  to the line dislocation and to the fault. The presence of  a back 

scattered wave field originat ing from the fault is clearly seen. One may  also observe 

a decrease in ampli tude and  a shift in arrival time of the refracted mant le  shear 

wave at the crossing of the fault. 

The final i l lustrat ion of the method is the diffraction of an incident  P wave by 

a three-dimensional  topographic  feature. The topography considered is a 100-m- 
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Figure 8 
Simulation of the surface vertical displacement produced by a P wave vertically incident on a 3D hill 
topography. ]he  calculation is made for a linear receiver profile crossing the top of the hill. The 

corresponding topographic profile is depicted. 

high hill with a circular base of 400 m radius, and with cosine-shape flanks. The P 
wave velocity of the medium is 3000 m/s and the Poisson ratio is 0.25. The incident 
wave is a plane vertically incident Ricker-type pulse of 5 Hz central frequency. The 
surface is discretized into a two-dimensional array of points distributed a t  equal 
interval along two Cartesian horizontal directions x and y. Periodicity of the 
topography is assumed along these two directions for the frequency domain 
calculation, although its effect is not present in the time domain solution. For  the 
present simulation, the periodicity length is 2000 m along both directions, and the 
number of  discretized surface points is 33 x 33 at low frequencies. At higher 
frequencies the discretization interval is chosen to be about one third of the 
shear-wave wavelength. The resulting vertical displacement calculated along a linear 
profile crossing the top of the hill is displayed in Figure 8. The major feature is the 
presence of a diffracted Rayleigh wave which is generated near the top of the hill. 
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Conclusion 

We have presented the application of the discrete wave number method to 
problems of scattering of seismic waves formulated in terms of boundary integral 
equation and boundary element methods. The approach is well suited when the 
medium comprises relatively homogeneous layers separated by interfaces of arbi- 
trary shape, or contains cracks or inclusions embedded in an otherwise relatively 
homogeneous geological formation. We have reviewed the physical principles and 
the mathematical developments of the method, and we have demonstrated its 
accuracy by comparing the results with existing solutions for configurations in 
which such solutions are known. Fields of application of the method that we have 
investigated include the simulation of seismic exploration data, the study of regional 
seismic wave propagation in laterally-varying crustal structures and the diffraction 
of elastic waves by fractures and by 3D topography. 
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