
Journal of Automated Reasoning 13: 189-210, 1994. 189
© 1994 by Kluwer Academic Publishers. Printed in the Netherlands.

Upside-Down Meta-Interpretation of the Model
Elimination Theorem-Proving Procedure for
Deduction and Abduction

MARK E. STICKEL
Artificial Intelligence Center, SRI International, Menlo Park, California, U.S.A. and Institute for New
Generation Computer Technology, Tokyo, Japan

(Received: 26 June 1991; accepted in final form: 11 March 1993)

Abstract. Typical bottom-up, forward-chaining reasoning systems such as hyperresolution lack goal-
directedness, while typical top-down, backward-chaining reasoning systems like Prolog or model elimi-
nation repeatedly solve the same goals. Reasoning systems that are goal-directed and avoid repeatedly
solving the same goals can be constructed by formulating the top-down methods meta-theoretically for
execution by a bottom-up reasoning system (hence, we use the term upside-down recta-interpretation).
This formulation also facilitates the use of flexible search strategies, such as merit-ordered search, that
are common to bottom-up reasoning systems. The model elimination theorem-proving procedure, its
extension by an assumption rule for abduction, and its restriction to Horn clauses are adapted here for
such upside-down meta-interpretation. This work can be regarded as an extension of the magic-sets or
Alexander method for query evaluation in deductive databases to both non-Horn clauses and abductive
reasoning.

Key words. Caching, abduction, meta-interpretation, model elimination.

1. I n t r o d u c t i o n

Bottom-up, forward-chaining reasoning systems derive new facts from already estab-

lished ones. The implication A 1/~ . . . /~ Am D C is interpreted procedurally by such

systems to derive the fact C from the facts A I , . . . ,Am. Hyperresolution [41, 51] is

a typical bottom-up reasoning system. Top-down, backward-chaining reasoning

systems, on the other hand, derive new subgoals from existing goals. The impli-

cation A~ A. . . /~ A m D C is interpreted procedurally by such systems to derive

each of the subgoals A 1 , . . . , A m from the goal C. Ordered input resolution (for

Horn clauses, used by Prolog) and the model elimination procedure [23, 24]

(for arbitrary clauses, used by the Prolog Technology Theorem Prover (PTTP) [46])

are typical top-down reasoning systems. We assume the reader is already familiar
with these inference procedures.

Both bottom-up and top-down methods have well-known weaknesses. Bottom-up

reasoning is often not goal-directed. For example, if the initial goal is translated for

refutation into a negative clause, hyperresolution can use the goal only in the final

step of a proof. Nevertheless, simply using a bottom-up reasoning method is often

190 MARK E. STICKEL

the right approach. For example, group theory or condensed detachment problems
benefit little from a top-down approach, since irrelevant axioms are absent and top-
down reasoning quickly produces very general goals that fail to constrain the search.
On the other hand, in deductive database, logic programming, and artificial intelli-
gence applications, the lack of goal-directedness of pure bottom-up reasoning is a
crucial defect. In principle, such reasoning would require enumeration of all conse-
quences of the axioms until a fact matching the query is derived, a foolish approach
in the presence of many irrelevant axioms.

The major problem with top-down reasoning is that it often results in goals being
derived and proved more than once, which may result in large, redundant search
spaces. For example, when Prolog tries to prove P A Q, backtracking search will
cause it to try to prove Q once for every proof of P it finds. This repeated work
can be extraordinarily costly. Intelligent backtracking (e.g., see ref. [22]) can reduce
the problem but not eliminate it. Redundancy can also occur in bottom-up methods
as facts are derived more than once. However, there the redundancy is controlled by
subsumption, which deletes duplicate or less general facts. Although methods such as
subsumption are costly and can drastically reduce the rate of inference, reduced size
of the search space often compensates for the lower inference rate.

A second problem with top-down reasoning systems is that they typically have
much less flexibility in specifying order of search than bottom-up reasoning
systems. Prolog and PTTP, for example, use depth-first search with backtracking
for an efficient implementation with minimal storage requirements by representing
only the goals on a single branch of the search space at a time; this, however, makes
it impossible to direct search by jumping to a more favorable branch. Hyperresolu-
tion, on the other hand, can maintain a list of facts in order of preference for infer-
ence. Lack of control over search is not a necessary limitation of top-down reasoning
systems, but rather an observation about typical ones. It is thus possible to adapt
either bottom-up or top-down reasoning methods to produce a goal-directed reason-
ing system with a nonredundant search space and a flexible search strategy. We
choose to adapt bottom-up reasoning methods because their implementations
appear to be closer to this ideal already. Hyperresolution is a prototypical
bottom-up reasoning system for which there are effective methods for controlling
redundancy (subsumption) and ordering the search space (merit-ordered search).
As we shall see, it is feasible to make this bottom-up reasoning method more
goal-directed.

The approach we adopt is basically an extension of the magic-sets [4, 49] or
Alexander [42] method for query evaluation in deductive databases. We translate
Horn clauses similarly to the magic-sets or Alexander method, and then extend
the translation to abductive reasoning and non-Horn clauses.

The extension to non-Horn clauses is based on the model elimination theorem-
proving procedure. Model elimination is a complete theorem-proving procedure
for the full first-order predicate calculus that possesses the desirable properties of
linear proofs, literal ordering, set of support, and no need for factoring. PTTP's

UPSIDE-DOWN META-INTERPRETATION 191

implementation of the model elimination procedure has a high inference rate with
minimal storage requirements. The largest problem with model elimination and
PTTP is the failure to control search-space redundancy. Here, we demonstrate
how, while unfortunately sacrificing PTTP's implementation approach with its
high inference rate and minimal storage requirements, we can make search much
less redundant by means of upside-down meta-interpretation, that is, by executing
the top-down model elimination procedure by a bottom-up reasoning system.

Our approach is to start with top-down, backward-chaining input resolution and
translate the clauses for execution by a bottom-up reasoning system such as hyper-
resolution. Instead of a goal-subgoal tree being created, literals of the form goal(G)
are derived. Use of the implication A 1 A. . . A A m D C to derive the fact C from facts
AI , . . . , Am is made dependent on the existence of goal(C) by use of the translated
clause goal(C) A fact(A1) A . . . A fact(Am) -+fact(C). The translation is extended
to impose a requirement of left-to-right solution, as in Prolog and the model elimi-
nation procedure. In many cases, this can substantially reduce the search space as
solutions for earlier goals instantiate later goals.

The model elimination procedure augments input resolution with an additional
inference rule that allows solving a goal by unifying it with the complement of an
ancestor goal. For the model elimination procedure, goal literals are augmented
with information about the ancestor goals of the goal; fact literals are augmented
with information about what ancestor goals must be present to solve a goal that
matches the fact.

Abductive reasoning (abduction) is becoming an important application of
extended Prolog and model elimination systems. Abduction extends deduction to
the case of partial proofs with assumptions that, if they could be proved, would
allow a proof to be completed. We extend our translation method to abduction.
The added possibility in abduction of assuming as well as proving formulas makes
the search space for abduction problems larger than for deduction problems with
the same axioms. This, plus the fact that many applications of abduction demand
rich knowledge bases with many irrelevant clauses, means that there may be an
even bigger payoff for this method in the case of abduction than deduction.

Clauses used in Prolog and model elimination inference are translated for execu-
tion by a bottom-up reasoning system using meta-predicates goal, fact, and cont (for
'continuations', which concisely encode what goals we are trying to solve, which of
their subgoals have been solved, and which subgoals remain). New facts, goals, and
continuations are derived by bottom-up inference in a faithful encoding of the
Prolog or model elimination search tree, possibly in a different order depending
on the chosen search strategy, and with redundant subtrees eliminable by the reuse
of facts derived earlier and by subsumption. The time complexity in the worst case,
when there is no eliminable redundancy, should be the same order as that of Prolog
or model elimination when the model elimination search strategy is imitated (a three-
fold increase in length of the proof may occur, as a single literal in the search tree
may be represented by goal, fact, and cont literals in the encoding). In the case of

192 MARK E. STICKEL

Horn clauses, the procedure closely resembles hyperresolution in behavior, except
that hyperresolution operations are allowed only if they derive a fact that matches
a top-down derived goal.

Because this method is a new approach to implementing standard theorem-
proving procedures (Prolog, model elimination, and their extensions for abduction)
instead of a new theorem-proving procedure, we will omit soundness and complete-
ness results. The benefit of the new approach in eliminating redundancy should be
obvious. Gains from eliminating redundancy can be arbitrarily large.

In Section 2 we recount past approaches to the problem of redundancy in the
model elimination procedure and cite their disadvantages, which are absent from
the new approach. In Section 3 we describe upside-down meta-interpretation of
Prolog-style deduction with Horn clauses. This, except for the remarks on gen-
eralizing subsumption and generalizing derived facts, is essentially the magic-sets
or Alexander method. In Section 4 the method is extended to abduction by allowing
conditional facts accompanied by assumptions sufficient to establish them. In
Section 5 the method for abduction with Horn clauses is transformed by different
handling of assumptions into a method for upside-down meta-interpretation of
model-elimination-style deduction with non-Horn clauses. Deduction with non-
Horn clauses is then extended to abduction with non-Horn clauses in Section 6.
Related work is described in Section 7.

2. Other Methods for Eliminating Redundancy

There are several other approaches to eliminating redundancy in model elimination
and similar procedures. Factoring is the earliest method for eliminating duplicate
goals and is required for completeness in many resolution procedures, though not
for Prolog or model elimination. It is clearly beneficial and can be made mandatory
in the propositional case. However, in the first-order case, when goals must be
unified during factoring, factoring must be optional, and proofs with and without
the goals factored must both be sought. This results in an increase in the breadth
of the search space; the depth of the search space is reduced in compensation only
if a shorter proof can be found with factoring than without, which is too rarely
the case. Unifying goals often results in clauses that are overinstantiated and not

usable in a proof.
The graph construction procedure [44] adds the C-reduction operation to the

model elimination procedure. C-reduction resembles factoring except that it unifies
an unproved goal with a proved goal instead of another unproved goal. This is an
improvement because unprovable goals are never factored. For example, if a pair
of factorable goals do not happen to have a common provable instance, factoring
them will ultimately result in failure. If, as in the graph construction procedure, it
is necessary for one to be proved before being factored with the other, the goals
will no longer be factorable after one of them is instantiated by its proof.

Both factoring and C-reduction affect only the descendants of the factored clause.

UPSIDE-DOWN META-INTERPRETATION 193

Information about provable goals is not made available elsewhere in the search
space. Lemmas [23, 24] are extra clauses derivable by the model elimination pro-
cedure that contain proved goals. They are not required for completeness, but their
use can shorten proofs by matching a goal with a lemma instead of reproving it.
Unlike factoring and C-reduction, lemmas are available throughout the search space
after they are derived, not just in descendant clauses. However, like factoring and
C-reduction, lemmas increase the breadth of the search space, by allowing proofs
from lemmas as well as axioms. Lemmas in the model elimination procedure save
information about successful but not unsuccessful proof attempts. There neverthe-
less is the obvious notion of 'failure lemmas' - remembered goals that could not
be proved. Lemmas have been used in database query evaluation [6, 13, 48] methods
and in other theorem-proving procedures [14, 29, 34]. Use of lemmas has often been
called caching, although we prefer to use that term for a slightly different concept.

Caching is the most complete approach for eliminating redundancy in top-down
reasoning systems. By saving goals as well as solutions, caching can record informa-
tion about both success and failure. In a depth-bounded reasoner like PTTP, the
cache would contain goals and associated depth bounds asserting that the cache con-
tains all solutions to the goal discoverable with that depth bound. When attempting
to prove a goal with a depth bound, if the goal or a more general one with the same
or greater depth bound is stored in the cache, solutions are retrieved from the cache
instead of being searched for by backward chaining. The difference between lemmas
and caching is that lemmas are treated as extra axioms and broaden the search while
caching replaces the search for solutions of a goal by cache lookup. Only caching of
the methods we have described uniformly replaces search instead of adding alterna-
tives to it in the hope of finding a shorter proof. Caching can easily reduce the size of
the search space even if the proof found is not shorter. Many successful experiments
with lemmas and caching are reported on in [1, 2].

Caching will surely be more complicated and less effective for the full model
elimination procedure than for the Prolog subset on which it has been successfully
tested. In the full procedure, solutions to a goal no longer depend on the goal
formula alone, but also on its ancestor goals. Even if goals recur frequently, they
may rarely recur with a set of ancestor goals that can be found in the cache. A
refinement of the model elimination procedure that uses negative but not positive
ancestor goals may make looking up solutions in the cache succeed more frequently
[35], but probably still not often enough. Although caching can eliminate redundant
search, it can contribute little to solving the other problem of top-down reasoning
systems, the inflexibility of their search strategy.

3. Deduction with Horn Clauses

A Horn-clause problem is composed of a set of facts F, a set of rules
A 1 A . . . A Am D C with rn > 1, and a goal G, where F, Ai, C, and G are all atomic
formulas. Requiring the goal to be atomic is not a significant restriction. A

194 M A R K E. STICKEL

conjunctive goal G1 A . . . A Gn can be converted into the rule G1 A . . . A Gn D G for
atomic goal G.

A rule A 1 A . . . A A m D C can be interpreted in top-down or bottom-up fashion.
The top-down interpretation is

From the goal C derive the goals A1, . . . , Am.

A problem is solved when one can recursively derive from the goal G a set of sub-
goals all of which match initial facts F. Input resolution, as in Prolog, is a standard
top-down reasoning method. The bottom-up interpretation is

Derive the fact C from the facts A1, . . . , Am.

A problem is solved when a fact matching the goal G is derived from the initial facts
F. Hyperresolution, for example, is a standard bottom-up reasoning method.

In the following, we assume a bottom-up reasoning system such as hyperresol-
ution with subsumption. The rule A 1 A . . . A A m --+ C is interpreted as: if
A1, . . . ,A m are present, then C can be derived. 1 The separate roles of an atomic
formula L as a fact or goal will be distinguished by putting L as an argument of
the fact or goal metapredicate.

Top-down and bottom-up interpretations of A1 A . . . A A m D C are expressed by

goal(C) ~ goal(A1)

goal(C) ~ goal(Am)

and

fact(A1) A . . . A fact(Am) --+fact(C),

respectively.
We now connect the goal and fact rules. The fact rule can be modified and used

in conjunction with the goal rules to provide bottom-up execution with top-down

filtering:

goal(C) ---+ goal(A1)

goal(C) ---+ goal(Am)

goal(C) A fact(A1) A . . . A fact(Am) ---+fact(C)

Goals are generated in simulated top-down fashion, but bottom-up reasoning is con-
strained: fact(C) can be derived only if goal(C) is present. The clauses resulting from
this translation and all the extensions we present are Horn clauses. Thus, a bottom-
up reasoning system such as hyperresolution will derive only unit clauses using them.

Subsumption is used to eliminate duplicate or less general facts or goals. Facts,
once derived, can be used again in the solution of other goals. The goal derivation
rules employ upside-down meta-interpretation, since the meaning of the rules is

UPSIDE-DOWN META-INTERPRETATION 195

the top-down generation of subgoals, but the rules themselves are executed bottom-

up. Each initial fact F is translated to fact(F) and the initial goal is translated to

goal(G). Proofs are completed by deriving instances of fact(G).
This translation of the problem is often sufficient. However, it is sometimes better

in the case of clauses with more than one antecedent literal to create subgoals se-
quentially, e.g., to generate (an appropriate instance of) goal(Ai) only after goals
A 1 , . . . , A i q have been solved. This is especially important in logic programming,
in which some subgoals compute values used as inputs to later subgoals. For
example, the rule fib(x,y) Afi'b(s(x),z)Aplus(y,z,w)Dfib(s(s(x)),w) for com-
puting Fibonacci numbers could be used to create the subgoals fib(3,y), fib(4, z),
and plus(y, z, w) from the goal fib(5, w). It would be better to delay creating the

subgoal plus(y, z, w) until after fib(3, y) and fib(4, z) are solved, thus instantiating

y and z.
To impose a left-to-right execution order for subgoals so that goal(Ai+l) is not

introduced until a solution to goal(Ai) has been found, the rule A I A . . . A Am D C
with m > 2 can be translated as follows:

goal(C) ~ goal(A1)

goal(C) A fact(A1) -+ goal(A2)

goal(C) A fact(A1) A fact(A2) ~ goal(A3)

goal(C) A fact(A1) A . . . A fact(Am_l) -+ goal(Am)

goal(C) A fact(A1) A . . . A fact(Am) ~ fact(C)

Continuation predicates [42] can be used to encode the state of matching ante-
cedent literals of a rule to eliminate the repeated matching of goal(C),
fact(A1),..., fact(A i-i) at the cost of deriving additional literals that represent inter-
mediate results. Let k be a unique number for the rule A 1 A . . . A A m D C with m _> 2,
and let V be a term that contains variables of the rule except those in the head. 2 The
rule is translated as follows: 3

goal(C) ---+ goal(A1)

goal(C) A fact(A1) ~ contk,2(C , V) A goal(A2)

contk,2(C , V) A fact(A2) ~ contk,3(C , V) A goal(A3)

contk,m_ I (C, V) A fact(Am 1) --+ cont~,m(C, V) A goal(Am)

cont£m(C, V) A fact(Am) --+fact(C)

The literals contk,i(C, V) identify which subgoal is being solved with what substitution.
This method will be generalized to abduction with Horn clauses and to deduction

and abduction with non-Horn clauses in Sections 4, 5, and 6. For brevity, only the

196 MARK E. STICKEL

translation to the form with continuation predicates will be shown in detail there.

Simpler translations that introduce goals in left-to-right order without using conti-
nuation predicates or that introduce all the subgoals at once are always possible.

A classic example of poor, highly redundant, top-down execution behavior is the
computat ion of Fibonacci numbers. The computat ion can be defined by

a. plus(O, x, x)
b. plus(x, y, z) D plus(s(x), y, s(z))
c. fib(O, O)
d. fib(s(O),s(O))
e. fib(x, y) A fib(s(x), z) A plus(y, z, w) D fib(s(s(x)), w)

which can be translated into 4

1. fact(plus(O, x, x))
2. goal(plus(s(x), y, s(z))) ~ goal(plus(x, y, z))
3. goal(plus(s(x), y, s(z))) A fact(plus(x, y, z)) ~ fact(plus(s(x), y, s(z)))
4. fact(fib(O, 0))
5. fact(fib(s(O), s(0)))

6. goal(fib(s(s(x)), w)) ---+ goal(fib(x, y))
7. goal(fib(s(s(x)), w)) A fact(fib(x, y)) -+

conte,z(fib(s(s(x)) , w), y) A goal(fib(s(x), z))
8. conte,z(fib(s(s(x)), w), y) A factOCib(s(x), z)) ---+

conte,3 (fib(s(s(x)), w), y, z) A goal(plus(y, z, w))
9. conte,3(fib(s(s(x)), w), y, z) A fact(plus(y, z, w)) -+ fact(fib(s(s(x)), w))

whose execution is substantially less redundant because Fibonacci numbers do not

need to be recomputed.

3.1. GENERALIZING SUBSUMPTION

Subsumption is the principal mechanism for eliminating redundancy in bot tom-up
reasoning. If fact(L) and fact(La) are both derived, then fact(La) can be deleted.

Likewise, if goal(L) and goal(L~r) are both derived, then goal(L@ can be deleted.
Similarly for contk,i(C, V) and contk,i(C~r, Va). These deletions can be accomplished

by ordinary subsumption.
It is beneficial to generalize this. The following instances of generalized subsump-

tion are possible:

fact(L) subsumes goal(L'), where L t = Lcr for some substitution or. Goals can be

deleted if they are the same as or more specific than a fact. 5
fact(L) subsumes contk,g(C, V), where C = L a for some substitution ~r. Continua-
tions can be deleted if they lead only to the derivation of facts the same as or more

specific than an existing one.

U P S I D E - D O W N M E T A - I N T E R P R E T A T I O N 197

A stronger deletion strategy would also delete subgoals of deleted goals. G o a l -

subgoal relationships would have to be recorded so that a subgoal is deleted only
if all the goals of which it is a subgoal have been deleted.

3.2. G E N E R A L I Z I N G DE R IVE D FACTS

Although unnecessary recomputation of Fibonacci numbers is successful eliminated
in the example, bottom-up execution unfiltered by goals could yield a still shorter
proof that uses fewer, more general, derived facts. The problem is that facts derived
with top-down filtering can be overly specific.

It is possible to derive plus(1,y,s(y)) from clauses a and b, and it is likewise
possible to derive it from 1 3 when given the general goal goal(plus(1,y, z)). How-
ever, if more specific goals such as goal(plus(l, 1,z)), goal(plus(1,2, z)), and
goaI(plus(1,3,z)) are given, as they are when these rules are used to compute
Fibonacci numbers, only the more specific facts such as fact(plus(I,1,2)),
fact(plus(l, 2, 3)), and fact(plus(l, 3, 4)) will be derived. Computing larger
Fibonacci numbers results in many more repeated instances of computing x + Yl,
x + Y2, • ..- The length of each of these derivations is linear in the size of x.

When goal(L) leads to the derivation of fact(Let 1), the problem of possible over-
specificity of fact(Lcr~) can be overcome by reexecuting the same inference steps
starting with goal(x) - i.e., with a free variable as goal formula instead of
goal(L) and ending with fact(xcr2), which is stored instead offact(Lo- 1). The result
fact(x~@ is an equally valid conclusion that is either a generalization of or equi-
valent to fact(Let1). There is no danger in deriving these more general facts. They
are more easily used, but top-down filtering still prevents their use except in the pre-
sence of a relevant goal.

The problem of deriving overly specific facts is not universal. From ground
facts and range-restricted rules (those in which every variable in a positive literal also
appears in a negative literal), which are customary in databases, bottom-up reason-
ing can derive only ground facts, and top-down filtering cannot result in anything
more specific. Thus, there is no need for fact generalization for range-restricted
databases.

3.3 G E N E R A L I Z I N G GOALS

It is always sound to use more general goals than this method specifies. It may be
beneficial to do so in order to reduce the number of goals at the possible cost of
deriving more facts since bottom-up reasoning is less constrained. Term depth
abstraction [48, 43] automatically generalizes goals that exceed a specified depth
by replacing subterms that are too deep by variables; it thus restricts the set of
possible goals to be finite. Without generalizing goals somehow, upside-down
meta-interpretation may have an infinite search space, even when bottom-up execu-
tion has a finite one. For example, goal(p(a)) and goal(p(x)) ~ goal(p(f(x))) can

198 MARK E. STICKEL

be used to derive an infinite set of goals of the form p(fn(a)) , although only a finite
set of facts might be derivable from the other clauses.

4. Abduction with Horn Clauses

We shall now extend the method to abduction with Horn clauses. First, we give a
general description of abduction, not restricted to Horn clauses. We then extend
the method in Section 3 to a method for abduction with Horn clauses. Section 6
describes abduction with non-Horn clauses.

Abduction is the form of reasoning that allows us to hypothesize that P is true if
we know that P D Q is true and we are trying to explain why Q is true [33]. It can
naturally be viewed as an extension of deduction. Instead of requiring us to prove
a formula, abduction allows us to identify sets of hypotheses that, if they could be
proved, would allow a proof of the formula to be completed. This style of reasoning
has been applied to diagnosis [9, 31, 32, 38], design synthesis [16], theory formation
[37], default and circumscriptive reasoning [37, 39], and natural language interpre-
tation [8, 18, 30, 47].

A widespread approach for implementing abduction is top-down, backward-
chaining reasoning, with some literals being allowed to be assumed instead of
proved [9, 18, 19, 37, 38, 39, 45, 47], i.e., an inference rule that assumes a literal is
added to Prolog-like inference (in the case of Horn clauses) or the model elimination
procedure. Standard top-down reasoning can be viewed as operating on a list of
goals, removing goals when they match facts, adding subgoals when a goal matches
the head of a rule, and succeeding only when the list becomes empty. Abductive
reasoning allows this process to skip certain goals [19]. An abductive proof or
explanation is found when only skipped goals remain. These are the assumptions
that would allow completion of the proof.

The presence of an additional inference rule that allows literals to be either
assumed or proved makes the search space for abduction even larger than that for
deduction. This provides a strong motivation for upside-down meta-interpretation
of the top-down inference rules for abduction in order to eliminate search-space
redundancy. Recent work on using an ATMS [10, 11] to cache results of abductive
reasoning [28] has the same objective as ours of eliminating redundant work on
duplicate goals and has already demonstrated significant improvement. This is
done for the case of Horn clauses with some limitation on unification as a result
of using an ATMS.

For some theory T and goal G, abduction consists of finding sets of assumptions H
and substitutions 0 such that GO is a consequence of T U H, that is, H D GO is a con-
sequence of T. We require that H consist of assumable atomic formulas with desig-

nated predicate symbols.
We focus on only one element of abduction here, namely, finding H and GO. It is a

nearly universal requirement that H be consistent with T, but this must be deter-
mined by some other means (e.g., by attempting to refute TU H and failing) and

UPSIDE-DOWN META-INTERPRETATION 199

is undecidable in general. Many abductive proofs can usually be found, and selection

of a preferred abductive proof is a vital part of abduction. One criterion is that an
abductive proof that requires a subset of the assumptions required by another proof

is preferred. Generalized subsumption of derived facts allows us to discard less
general proofs. Assigning costs to assumable formulas is a popular method to
help choose among alternative proofs and is the focus of much recent work on
abduction [7, 18, 47]. We believe the top-down meta-interpretation approach for
abduction can be adapted to such cost-based abduction, but this is outside the scope

of the present work.
To support abductive reasoning, the meta-theoretic predicate fact is extended to

two arguments: an atomic formula and a set of assumptions sufficient to prove it.
The bottom-up interpretation of the rule A1 A . . . A Am D C can be expressed by

fact(Al, HI) A . . . A fact(Am, gm) ---+ fact(C, H 112... U Hm)

If each Ai is true, assuming Hi, then C is true, assuming the union of the assump-
tions. Each initial fact F is translated to fact(F, 0). If atomic formula L is assum-
able, fact(L, {L}) is included in the initial facts; its meaning is that L is allowed
to be proved by assuming L. Thus, fact(X, {X}) is a tautology, that is, L D L or
LV ~L.

Our rules for Horn-clause deduction by bottom-up execution with top-down filter-

ing and left-to-right solution of goals can also be easily adapted to Horn-clause
abduction. The general case of the translation of A1 A . . . A Am ~ C is

goal(C) ---+ goal(A 1)
goal(C) A fact(A1, H1) --+ contk,2(C, H1, V) A goal(A2)
contk,2(C , H, V) A fact(A2,//2) --+ contk, 3 (C, H 1.3 H2, V) A goal(A3)

contk,m_l(C,H, V) ~\fact(Am 1,Hm 1) ~ contk,m(C, HU Hm 1, V) Agoal(Am)
contk,m(C, H, V) A fact(Am, Hm) ---+ fact(C, HU Hm)

where H, H1,.. . ,Hm are variables whose values during execution will be sets of
assumptions used in deriving a continuation or fact.

The procedure is complete: for any H and GO such that H is composed of assum-
able literals, H D GO is a consequence of theory T, and H is consistent with T, 6 this
procedure can derive some fact(G ~, H ~) such that Grea = GO and Hrea C H for some
substitution ea.

Subsumption can be further generalized to take account of assumptions. The
following instances of generalized subsumption are possible:

• fact(L, H) subsumes fact(L', H'), where L' = Lea and H' D_ Ha for some substi-
tution ca.

• fact(L, H) subsumes contk,i(C, H I, V), where C = Lea and H' D_ Hea for some sub-
stitution or.

200 MARK E. STICKEL

• fact(L, t3) subsumes goal(L'), where L' = La for some substitution a.
• contk,i(C,H, V) subsumes contk,i(C',H t, V'), where C'= Ca, H'D_ Ha, and

V I = Va for some substitution a.

As an example, consider the following theory used to explain a bicycle's wobbly
wheel [21]. Here, broken-spokes, punctured-tube, and leaky-valve are assumable pre-

dicates that can be used to create an explanation.

a. fiat-tire D wobbly-wheel
b. broken-spokes D wobbly-wheel
c. punctured-tube D fiat-tire

d. leaky-valve D fiat-tire

The translation is

1. fact(broken-spokes, {broken-spokes})

2. fact(punctured-tube, {punctured-tube})

3. fact(leaky-valve, {leaky-valve})
4. goal(wobbly-wheel) ~ goal(fiat-tire)
5. goal(wobbly-wheel) A fact(fiat-tire, H) --+ fact(wobbly-wheel, H)
6. goal(wobbly-wheel) --+ goal(broken-spokes)
7. goal(wobbly-wheel) A fact(broken-spokes, H) --+ fact(wobbly-wheel, H)

8. goal(fiat-tire) -+ goal(punctured-tube)
9. goal(fiat-tire) A fact(punctured-tube, H) --+ fact(fiat-tire, H)
10. goal(fiat-tire) --~ goal(leaky-valve)
11. goal(fiat-tire) A fact(leaky-valve, H) ---+ fact(fiat-tire, H)

These rules can be used to explain a wobbly wheel. Explanations are found on lines
16, 19, and 21 below; for example, if there was a punctured tube, then there would be

a wobbly wheel. The execution is as follows:

12. goal(wobbly-wheel)

13. goal(fiat-tire)
14. goal(punctured-tube)
15. fact(fiat-tire, {punctured-tube})
16. fact(wobbly-wheel, {punctured-tube})

17. goal(leaky-valve)

18. fact(fiat-tire, {leaky-valve})
19. fact(wobbly-wheel, {leaky-valve})
20. goal(broken-spokes)
21. fact(wobbly-wheel, {broken-spokes})

initial goal

subgoal of 12 by 4

subgoal of 13 by 8

solution of 13 by 2, 9

solution of 12 by 15, 5

subgoal of 13 by 10

solution of 13 by 3, 11

solution of 12 by 18, 5

subgoal of 12 by 6

solution of 12 by 1, 7

UPSIDE-DOWN META-INTERPRETATION 201

5. Deduction with Non-Horn Clauses

Using the method for abduction with Horn clauses as a starting point, we now
extend our upside-down meta-interpretation method to deduction with possibly
non-Horn clauses. Abduction will be added again in Section 6. Facts, goals, and
rules can be written with literals instead of just atomic formulas. We require that
contrapositives of the rules be present. That is, if A1 A . . . A Am D C is a rule, then
m other rules of the form B i D ~ A i must also be provided, where Bi is the con-

junction of A1, . . . , Ai_ l , A i + l , . . . ,Am, ~ C, and, for any literal L, -~L denotes its
complement.

The model elimination (ME) theorem-proving procedure has a single inference
rule in addition to Prolog's:

If the current goal is unifiable with the complement of one of its ancestor
goals, then apply the unifying substitution and treat the current goal as if
it were solved.

This added inference operation is the ME reduction operation. The normal Prolog
inference operation is the ME extens ion operation. The two together constitute a
complete inference procedure for the full first-order predicate calculus, not just the
Horn-clause subset. Unless the unifying substitution (unifer) is empty (i.e., the
goal and its ancestor goal are exactly complementary), the reduction operation is
used as an alternative to, not a substitute for, solving the goal by extension or by
reduction with a different ancestor goal.

As in abduction with Horn clauses, we begin by formulating the model elimination
procedure in terms of deriving facts that follow from a set of assumptions.

The meta-theoretic predicate f a c t has two arguments: a literal and a set of
assumptions sufficient to prove it. The bottom-up interpretation of the rule
A1 A . . . A A m D C can be expressed by

f ac t (A1 , H1) A . . . A f ac t (Am, Hm) ~ f a c t (C , (H1 U . . . U Hm) - -~ C)

If each A i is true, assuming Hi, then C is true, assuming the union of the assump-
tions, excluding ~ C. This description is accurate for the ground case. In the non-
ground case, it is necessary to consider unifying ~ C with other assumptions to
derive alternative results. In that way, different instances of C can be shown to
follow from different sets of assumptions. For example, suppose -~ C is not a mem-

ber of H~ U . . . U H m. We conclude that C is true, assuming H1 U . . . U H m. If ~ C is
unifiable (by unifier o-) with a member of H 1 U . . . U Hm, we can also conclude that
Co- is true, assuming the smaller set (Hlo- U . . . U Hmo-) - -~ CO-.

Single-literal facts F are translated to f a c t (F , ~0). The single literal f a c t (x , {x}) is
also included. Its interpretation is that any literal x is a consequence of its own
assumption. Aga in , f a c t (x , {x}) is a tautology, that is, x D x or x V ~x .

This differs from upside-down meta-interpretation of abduction with Horn clauses
because all literals are treated as assumable (because any literal might be solvable by

202 MARK E. STICKEL

reduction with a complementary ancestor goal) and because ~ C can be omitted from
the set of assumptions used.

Top-down filtering by goals along with left-to-right execution order for subgoals
can be accomplished almost exactly as in the case of abduction for Horn clauses:

goal(C) ~ goal(A1)

goal(C) A fact(A1, H1) --* contk,2(C, H1, V) A goal(A2)

contk,2(C , H, V) A fact(A2, H2) ---+ contk,3(C , H U H2, V)/k goal(A3)

contk,m_l(C,/4, V) A fact(Am_l, Hm-~) ~ co~tk,m(C, n u i-lm 1, v) A goal(Am)

contk,m(C, H, V) A fact(Am, I4m) ~ fact(C, (H Unm) - -~ C)

Note the use of ~ C in the final clause.
Performance of this code is likely to be very poor. Assumptions can be made easily

but can be removed only in the presence of a complementary ancestor goal; a proof
is complete only when the assumption-free fact(Go-, O) is derived for goal(G). It is
apparent that more control over the generation of facts is required. Top-down filter-
ing is done above using only the form of the goal; we propose that top-down filtering
also take account of the goal's ancestors, so that a fact will not be derived unless a
goal exists whose ancestor list includes all the fact's assumptions.

For top-down meta-interpretation of the model elimination procedure for deduc-
tion, we include another argument, P, in goals and continuations that specifies the
set of assumptions (obtained from negations of ancestor goals) that are permitted
to be made in the solution of a goal. Siegel likewise replaced model elimination's
representation of goal-subgoal relationship in chains by directly associating a goal
with its set of ancestors [45]. The following translated rules will not be able to derive
facts that require assumptions outside the permitted set:

goal(C, P) ---+ goal(A1, P U {-~ C})

goal(C, P) A fact(A1, Hi) A H1 C_ p U {7 C} -+
contk,2(C, H1, P, V) A goal(A2, P U {-7 C})

contL2(C , H, P, V) A fact(A2, H2) A H 2 C_ P U {-~ C}

contL3(C , HU H2, P, V) A goal(A3, P U {7 C})

contLm_I(C,H,P , V)Afact(Am_l,Hm_l)AHm_l C_ PU {=C} ---+

contk,m(C, H U Hm-1, P, V) A goal(Am, P U {7 C})

contk,m(C, H, P, V) A fact(Am, Hm) A H m C_ P LJ {-7 C} --+

fact(C, (H U Om) - ~ C)

A single-literal goal is translated to goal(G, 0), that is, an assumption-free proof of G
is sought. Unification of members of Hi and P U {-7 C} may be necessary to make C_
hold and unification of members of H U Hm with ~ C may be necessary to derive

UPSIDE-DOWN META-INTERPRETATION 203

facts with fewer assumptions. If this rule is invoked by goal(G, P), it will derive

literals of the formfac t (G' ,H) , where G' = Go- and H C_ Per for some substitution

o-. Derived facts include only assumptions that are used (those in Hi), not all those

that are permitted to be used (those in P). Thus, equally general facts can be derived

even if P has extra members.

The following instances of generalized subsumption are possible:

• fact(L, H) subsumes fact(L', H'), where L' = Lo- and H ~ D Ho- for some substi-

tution o-. Facts that are less general or require more assumptions can be deleted.

• fact(L, H) subsumes goal(C, P) or contk, i(C, H', P, V), where C = Lo- and P 2 Ho-

for some substitution o-. Such facts solve the goal without instantiating it.

• contk,i(C, H, P, V) subsumes contk,i(C',H',P' , V~), where C ~ = Co-, H ' D Ho-,

P ' = Po-, and V ~ = Vo- for some substitution o-. Continuations that are less gen-

eral or have made more assumptions can be deleted.

In addition, standard model elimination pruning rules imply that

• goal(C, P) or contk,i(C, H, P, V) can be deleted if C c P, ~ C ~ P, or P contains
complementary literals.

As an example, consider the proof that a A b follows from a V b, -~a V b, and

a V ~ b. The problem is formulated with contrapositives as

a. -~a D b

b. ~ b D a

c. a D b

d. - ~ b D ~ a

e. -~a D ~b

f. b D a

g. a A b D q

and the translation is

1: fact(x, {x})

2: goal(b, P) ---+ goal(-~ a, e U {7 b})

3: goal(b, P) A fact(-~ a, H) A H C P U {-7 b) ---+ fact(b, H - {-~ b})

4: goal(a, P) ~ goal(~ b, e U {-, a})

5: goal(a, P) A fact(~ b, H) A H C P U {~ a} --~ fact(a, H - {~ a})

6: goal(b, P) ---* goal(a, P U {7 })

7: goal(b, P) A fact(a, H) A H C P U {--7 b} --~ fact(b, H - {7 b})

8: goal(~ a, P) ---+ goal(~ b, P U {a})

9: goal(~ a, P) A fact(-~ b, H) A H C P U {a} -+ fact(-~ a, H - {a})

10: goal(~ b, P) --+ goal(-~ a, P U {b})

204 MARK E. STICKEL

11: goal(~b,P) A fact(~a,H) A H C_ PU {b} --+ fact(Tb, H - {b})

12: goal(a, P) --+ goal(b, P U {-, a})

13: goal(a, P) A fact(b, H) A H C P U {7 a} --+ fact(a, H - {7 a})

14: goal(q, P) ---+ goal(a, P U {7 q})

15: goal(q, P) A fact(a, H) A H C P U {7 q} -+ contg,2(q, H, P)
16: contg,z(q, H, P) -+ goal(b, P U {7 q})

17: contg,z(q, H, P) A fact(b, H2) A//2 C P U {-7 q} ---+ fact(q, (HU//2) - {7 q})

Execution of these rules leads to the following proof:

18: initial goal

19: subgoal of 18 by 14

20: subgoal of 19 by 12

21: solution of 20 by 3, 1

22: solution of 19 by 13, 21

23: solution of 20 by 7, 22

24: continuation of 18 by 15, 22

25: solution of 18 by 17, 23, 24

goal(q, O)
goal(a, {7 q})

goal(b, {7 a, 7 q})

fact(b, {7 a})

fact(a, O)
fact(b, O)
contg,2(q, ~), O)

fact(q, O)

Derived facts correspond exactly to lemmas in the model elimination procedure:
they are conditionally solved goals, where the conditions are negations of ancestor
goals used in their solution. Contrapositives of derived facts are also valid conse-
quences, so facts like fact(Tb,{a,c}) can be automatically derived from
fact(a, {b, c}), or the procedure can be reformulated to use a neutral clause form
fact({a, 7 b, ~ c}) instead (this is done in Demolombe's similar method [12]).

6. Abduction with Non-Horn Clauses

The case of abduction with non-Horn clauses is nearly identical to that of deduction.
The only change required is that assumptions are no longer restricted to those listed
in goals as being permitted because their negations appeared in ancestor goals. This
restriction is imposed by the test H i C_ P. The test is modified in the case of abduction
to apply only to literals that are not abductively assumable: nonass(Hi) c p U {9 C},
where nonass(Hi) is the largest subset of Hi that cannot be abductively assumed
(those with nonassumable predicate names). In other words, any abductively assum-
able literal in Hi need not appear in P U {7 C}, but others must.

We summarize the treatment of assumptions in these procedures. In the Horn case
of abduction, fact(L, {L}) exists only for abductively assumable literals, so only they
can be assumed. In the non-Horn case of deduction, fact(x, {x}) exists and any
literal can be assumed, although top-down filtering permits only assumptions
that match negated ancestor goals to be used. In the non-Horn case of abduction,
we again allow any literal to be assumed, but omit the requirement to match

UPSIDE-DOWN META-INTERPRETATION 205

assumptions with negated ancestor goals in the case of abductively assumable

literals.

Derivation offact(Gc~, H) is an abductive proof of G, provided H consists entirely

of abductively assumable literals. The procedure is complete: for any H and GO such
that H is composed of abductively assumable literals, H D GO is a consequence of
theory T, and H is consistent with T, this procedure can derive some fact(G I, H r)
such that Glcr = GO and H~o - C H for some substitution ~r.

7. Related Work

Demolombe [12] also developed an upside-down meta-interpretation of the model
elimination theorem-proving procedure. His method resembles the procedure in
Section 5, but differs in that

• It uses literals like goal(aV-TbV~c) and fac t (av-~bV~c) instead of
goal(a, {b, c}) and fact(a, {b, c}); contrapositives of facts are thus always
available.

• It uses rules like goal(C) A fact(A1) A . . . A fact(Ai_l) --~ goal(Ai) to generate sub-
goals, instead of using more concise continuation predicates.

• It does not keep track of which permitted assumptions are actually used, so

goal(a V b V c) can lead only to instances of fact(a V b V c) being derived, instead
of the more general fact(a), fact(a V b), etc., that can be derived if not all per-
mitted assumptions are used.

Plaisted and Greenbaum [36] developed an upside-down meta-interpretation
method for non-Horn clauses that is not based on the model elimination pro-
cedure. It does not require contrapositives and represents clauses by

A 1 A . . . A A m D C I V . . . V C n , where A1,...,Am, C1,. . . ,C ~ are all atomic
formulas. However, only negative clauses are used as initial goals. A key difference
between their method and ours is that our translation yields a Horn set of clauses.
The advantage of this is that if hyperresolution is used to execute the clauses, only
singlerliteral results will be derived (although these single-literal facts or goals may
contain multiple literals from the problem and thus would still have a clause inter-
pretation). Plaisted and Greenbaum's method requires derivation of nonunit
positive clauses, such as fact(a)V fact(b). They also developed an extension for
equality, based on Brand's modification method [5].

Upside-down meta-interpretation has been applied to Horn-clause theorem prov-

ing in Neiman's subgoal extraction method [27]. It closely resembles rewriting
methods for query evaluation, as do the Horn-clause case in Section 3 and the
Demolombe and the Plaisted and Greenbaum methods restricted to Horn clauses.
Neiman describes special data structures for more efficient execution.

There is a vast literature on such upside-down meta-interpretation methods for
query evaluation in Horn-clause databases. These methods generally resemble

206 MARK E. STICKEL

each other abstractly, differing in details of the compilation and the extent to which
the input rules are partially evaluated. Bry demonstrated that upside-down meta-
interpretation (i.e., rewriting-based methods for query evaluation) and top-down
evaluation with lemmas (i.e., resolution-based methods for query evaluation) are
essentially equivalent instances of his backward fix-point procedure [6]. There has

also been a lot of work that extends the magic-sets method to non-Horn deductive
databases with negation as failure or the closed world assumption rather than

classical semantics for negation - e.g., [3, 15, 20].
Our approach is to use bottom-up execution with top-down filtering. This is simi-

lar to the use of relevancy testing in the bottom-up SATCHMO [25] and MOTV [17] the-
orem provers that employ hyperresolution and case-splitting on nonunit derived
clauses. The use of range-restricted clauses guarantees that positive clauses are
ground and makes case-splitting practical, since no variables are shared between
cases. The relevancy test requires that some [40] - or, better yet, every [50] - literal
of a derived clause be relevant to the goal in order to be retained and split on; this
can dramatically reduce the search space. A non-Horn magic-sets method has
recently been developed for M~TV by Hasegawa, Ohta, and Inoue. 7 In their

method, the implication A 1 / ~ . . . A A m D C 1 V . . . V Cn, where A1, . . . , A m , C a , . . . , Cn

are all atomic formulas, is translated to

g o a l (C 1) A . . . A g o a l (C n) ~ g o a l (A 1)

g o a l (C 1) A . . . /~ g o a l (C n) -+ g o a l (A m)

g o a l (C 1) A . . . /~ g o a l (C n) /~ f a c t (A 1) A . . . /~ f a c t (A m) --+

f a c t (C 1) V . . . V f a c t (C n)

or a variant that uses continuation predicates. This is a nice extension of the method
for Horn clauses in Section 3 to non-Horn clauses that uses hyperresolution and
case-splitting instead of model elimination. They prove their method is equivalent
to relevancy testing in which every literal of a derived clause must be relevant, which

is formulated quite differently. The SATCHMO/MCTV approach appears to work very
well on naturally range-restricted problems - better than model elimination. Prob-
lems that are not range-restricted can easily be converted into those that are, but
this entails adding clauses that can generate all the terms of the Herbrand uni-
verse, and the SATCHMO/M~TV approach is usually ineffective for such problems.

8. Conclusions

The model elimination procedure is an effective theorem-proving prcedure whose
principal defect is the redundancy of its search space. Despite this defect, it has
been used effectively for theorem proving and recently for abductive and related
inference. Model elimination is a highly restrictive inference procedure that includes
compatibility with set of support. This goal-directedness is crucial in the presence of

UPSIDE-DOWN META-INTERPRETATION 207

many irrelevant axioms, as in deductive database, logic programming, and artificial
intelligence applications.

Upside-down meta-interpretation, the execution of the top-down model elimi-
nation procedure by a bottom-up reasoning system such as hyperresolution with
subsumption, can basically reproduce the model elimination search space while
eliminating much of its redundancy. Four variants of the method have been
shown. The basic method for deduction with Horn clauses resembles the magic-
sets or Alexander method for query evaluation in datatbases. Extensions deal with
non-Horn clauses and with abduction as well as deduction.

Upside-down meta-interpretation can be regarded as adding top-down filtering to
a bottom-up reasoning system, thus making it more goal-directed. Its principal con-
tribution is in applications with many irrelevant axioms, not for mathematical prob-
lems. Although non-goal-directed methods such as hyperresolution might seem naive
even for mathematical problems, they can actually be quite effective: when all the
axioms are accessible from the initial goal and general subgoals are quickly gener-
ated, the top-down filtering provided by upside-down meta-interpretation is able
to offer little or no goal-directedness.

Deriving and storing goal literals allow liberalization of the search strategy of top-
down reasoning systems. Literals can be ordered for preference in future inference
operations by type (fact or goal), by size, by number of assumptions or ancestor goals,
and other criteria. Upside-down meta-interpretation makes merit-ordered search
feasible for top-down reasoning systems like input resolution and model elimination.

The high inference rate and low memory consumption of top-down reasoning
systems such as Prolog and PTTP are lost in this move to upside-down meta-
interpretation. This loss seems inevitable, since controlling redundancy requires stor-
ing more information about goals, solutions, etc., and the volume of information
stored demands efficient, although slow, indexing. Efforts to make the inference
rate of bottom-up reasoning systems more closely approach that of top-down
reasoning systems will make the upside-down meta-interpretation approach more
attractive. Writing a bottom-up reasoning system specialized to the rules used in
upside-down meta-interpretation can also improve performance. Neiman did this
in the case of deduction with Horn clauses when implementing his subgoal extrac-
tion method. The translated clauses for Horn-clause deduction are executable by
standard hyperresolution reasoning systems such as OTTER [26]. Such systems need
be extended only slightly to support generalized subsumption and generalizing
derived facts as well; these features can significantly improve the method's
behavior. More substantial extensions are necessary for the abductive and non-
Horn cases; these require handling sets of assumptions in the fact and goal literals.

Acknowledgements

I am extremely grateful to the Institute for New Generation Computer Technology
(ICOT) for providing a friendly and productive environment for this research as well

208 MARK E. STICKEL

as discussion and investigation of many other aspects of theorem proving and also to
the National Science Foundat ion that gave me the opportunity to visit ICOT as part
of their NSF-ICOT Visitors Program. I would like to thank Donald Loveland,
Katsumi Inoue, Masayuki Fujita, Ryuzo Hasegawa, and Francois Bry for our dis-
cussions of this work and their comments on earlier drafts of this paper.

Notes

* This research was supported by the National Science Foundation under Grant CCT-8922330 and by the
Defense Advanced Research Projects Agency under Office of Naval Research Contract N00014-90-C-
0220. The views and conclusions contained herein are those of the author and should not be interpreted
as necessarily representing the official policies, either expressed or implied, of the National Science Foun-
dation, the Defense Advanced Research Projects Agency, or the United States Government.
1 Note the use of ~ for executable rules versus D for assertions.
2 Not all variables need be included in every continuation. For contk,i, it is sufficient to include
(Vars({A1,... ,Ai_a}) Cq Vars({Ai Am})) - Vars(C), where Vars(X) is the set of variables appearing
in literal or set of literals X.
3 Some of these rules have multiliteral consequents contk,i(C, V)A goal(Ai), which means that both
contk,i(C , V) and goal(Ai) are to be derived. If standard, clausal hyperresolution is used as the bottom-
up reasoning system, they can be split into separate rules . . . ~ contk,i(C, V) and contk,i(C, V) ~ goal(Ai).
4 Instead of a variable-containing term V, we write all the variables as separate arguments of contk, i.
5 Although derived facts are always instances of the goals that lead to them, an initial fact might be more
general than a goal. It is also possible to modify the method to derive more general facts (see Section 3.2).
6 Although the procedure may generate abductive proofs whose hypotheses are inconsistent with T, it is
not guaranteed to do so, and we would not want it to generate all possible sets of inconsistent hypotheses.
7 Personal communication from R. Hasegawa, 1993.

References

1. Astrachan, O. L., 'Investigations in model elimination based theorem proving', Ph.D. dissertation,
Department of Computer Science, Duke University, Durham, North Carolina (1992).

2. Astrachan, O. L. and Stickel, M. E., 'Caching and lemmaizing in model elimination theorem provers',
Proceedings of the llth International Conference on Automated Deduction, Sarasota Springs, N.Y.
(June 1992).

3. Balbin, I., Port, G. S. and Ramamohanarao, K., 'Magic set computation for stratified databases',
Technical Report 87/11, Department of Computer Science, University of Melbourne, Melbourne,
Australia (1987).

4. Bancilhon, F., Maier, D., Sagiv, Y. and Ullman, J., 'Magic sets and other strange ways to implement
logic programs', Proceedings of the Fifth ACM Symposium on Principles of Database Systems, pp. 53
56 (1986).

5. Brand, D., 'Proving theorems with the modification method', SlAM J. Computing 4, 412-430 (1975).
6. Bry, F., 'Query evaluation in recursive databases: Bottom-up and top-down reconciled', Data &

Knowledge Engineering 5, 289-312 (1990).
7. Charniak, E. and Husain, S., ' A new admissable heuristic for minimal-cost proofs', Proceedings of the

AAAI-91 National Conference on Artificial Intelligence, Anaheim, California (July 1991).
8. Charniak, E. and Goldman, R., 'A logic for semantic interpretation', Proceedings of the 26th Annual

Meeting of the Association for Computational Linguistics, Buffalo, New York, pp. 87-94 (June 1988).
9. Cox, P. T. and Pietrzykowski, T., 'Causes for events: their computation and applications', Proceedings

of the 8th Conference on Automated Deduction, Oxford, England, pp. 608 621 (July 1986).
10. deKleer, J., 'An assumption-based TMS', Artificial Intelligence 28, 127 162 (1986).
11. deKleer, J., 'Extending the ATMS', Artificial Intelligence 28, 163-196 (1986).

UPSIDE-DOWN META-INTERPRETATION 209

12. Demolombe, R., 'An efficient strategy for non-Horn deductive databases', Theoretical Computer
Science 78, 245-259 (1991).

13. Dietrich, S. W., 'Extension tables: Memo relations in logic programming', Proceedings of the 1987
Symposium on Logic Programming, San Francisco, California, pp. 264 272 (August 1987).

14. Elkan, C., 'Conspiracy numbers and caching for searching and/or trees and theorem proving', Pro-
ceedings of the Eleventh International Joint Conference on Artificial Intelligence, Detroit, Michigan,
pp. 341 346 (August 1989).

15. Fernfindez, J. A. and Minker, J., 'Bottom-up evaluation of hierarchical disjunctive deductive data-
bases', Proceedings of the Eighth International Conference on Logic Programming, Paris, France, pp.
660-675 (1991).

16. Finger, J. J., 'Exploiting constraints in design synthesis', Ph.D. dissertation, Department of Computer
Science, Stanford University, Stanford, California (February 1987).

17. Hasegawa, R. and Fujita, M., 'Parallel theorem provers and their applications', Proceedings of' the
International Conference on Fifth Generation Computer Systems 1992, Tokyo, Japan, pp. 132-154
(June 1992).

18. Hobbs, J. R., Stickel, M., Appelt, D. and Martin, P., 'Interpretation as abduction', Technical Note
499, Artificial Intelligence Center, SRI International (December 1990). Revised version to appear in
Artificial Intelligence.

19. Inoue, K., 'Linear resolution for consequence finding', Artificial Intelligence 56, 301-353 (1992).
20. Kemp, D. B., Stuckey, P. J. and Srivastava, D., 'Magic sets and bottom-up evaluation of well-founded

models', Proceedings of the 1991 International Symposium on Logic Programming, San Diego, Califor-
nia, pp. 337-354 (1991).

21. Kowalski, R. A., 'Problems and promises of computational logic', Proceedings of the First Symposium
on Computational Logic, pp. 1 36 (1990).

22. Kumar, V. and Lin, Y.-J., 'An intelligent backtracking scheme for Prolog', Proceedings of the 1987
Symposium on Logic Programming, San Francisco, California, pp. 406-414 (Augnst-Septernber
1987).

23. Loveland, D. W, 'A simplified format for the model elimination procedure', J. ACM 16, 349-363
(1969).

24. Loveland, D. W., Automated Theorem Proving: A Logical Basis, North-Holland, Amsterdam, the
Netherlands (1978).

25. Manthey, R. and Bry, F., 'SATC~MO: A theorem prover implemented in Prolog', Proceedings of the 9th
International Conference on Automated Deduction, Argonne, Illinois, pp. 415-434 (May 1988).

26. McCune, W., 'OTTER 2.0 Users' Guide', Technical Report ANL-90/9, Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne, Illinois (March 1990).

27. Neiman, V. S., 'Refutation search for Horn sets by a subgoal-extraction method', J. Logic Program-
ming 9, 267-284 (1990).

28. Ng, N. T. and Mooney, R. J., 'An efficient first-order abduction system based on the ATMS', Proceed-
ings of the AAAI-91 National Conference on Artificial Intelligence, Anaheim, California (July 1991).

29. Nie, X. and Plaisted, D. A., 'A complete semantic back chaining proof system', Proceedings of the lOth
International Conference on Automated Deduction, Kaiserslautern, Germany, pp. 16-27 (July 1990).

30. Norvig, P., 'Inference in text understanding', Proceedings of the AAAL87 National Conference on
Artificial Intelligence, Seattle, Washington (July 1987).

31. Peng, Y. and Reggia, J. A., 'A probabilistic causal model for diagnostic problem solving - Part I:
Integrating symbolic causal inference with numeric probabilistic inference', IEEE Transactions on
Systems, Man, and Cybernetics SMC-17, 2, 146-162 (1987).

32. Peng, Y. and Reggia, J. A., 'A probabitistic causal model for diagnostic problem solving Part II:
Diagnostic strategy', IEEE Transactions on Systems, Man, and Cybernetics SMC-17, 3, 395-406
(1987).

33. Pierce, C. S., 'Abduction and induction', in Buchler, J. (ed.), Philosophical Writings of Charles Sanders
Pierce, Dover Books, New York, pp. 150-156 (1955).

34. Plaisted, D. A., 'Non-Horn clause logic programming without contrapositive', J. Automated Reason-
ing 4(3), 287-325 (1988).

35. Plaisted, D. A., 'A sequent-style model elimination strategy and a positive refinement', J. Automated
Reasoning 6(4), 389 402 (1990).

210 MARK E. STICKEL

36. Plaisted, D. A. and Greenbaum, S., 'Problem representations for chaining and equality in resolution
theorem proving', Proceedings of the First Conferernce on Artificial Intelligence Applications, Denver,
Colorado, pp. 417-423 (December 1984).

37. Poole, D., 'Explanation and prediction: An architecture for default and abductive reasoning', Com-
putational Intelligence 5, 97 110 (1989).

38. Pople, H. E., Jr, 'On the mechanization of abductive logic', Proceedings of the Third International Joint
Conference on Artificial Intelligence, Stanford, California, pp. 147-152 (August 1973).

39. Przymusinski, T. C., 'An algorithm to compute circumscription', Artificial Intelligence 38(1), 49-73
(1989).

40. Ramsey, A., 'Generating relevant models', J. Automated Reasoning 7(3), 359 368 (1991).
41. Robinson, J. A., 'Automated deduction with hyper-resolution', Int. J. Computer Mathematics 1, 227

234 (1965).
42. Rohmer, J., Lescoeur, R. and Kerisit, J. M., 'The Alexander method - a technique for the processing

of recursive axioms in deductive databases', New Generation Computing 4, 273-285 (1986).
43. Seki, H., 'On the power of Alexander templates', Proceedings of the Eighth ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, Philadelphia, Pennsylvania, 150-159 (March
1989).

44. Shostak, R. E., 'Refutation graphs', Artificial Intelligence 7(1), 51-64 (1976).
45. Siegel, P., Reprdsentation et Utilisation de la Connaissance en Calcul Propositionnel, Th+se d'Etat, Uni-

versit6 de Aix-Marseille, II, Marseille, France (1987).
46. Stickel, M. E., 'A Prolog technology theorem prover: Implementation by an extended Prolog com-

piler', J. Automated Reasoning 4(4), 353-380 (1988).
47. Stickel, M. E., 'A Prolog-like inference system for computing minimum-cost abductive explanations in

natural-language interpretation', Annals of Mathematics and Artificial Intelligence 4, 89 106 (1991).
48. Tamaki, H. and Sato, T., 'OLD resolution with tabulation', Proceedings of the Third International

Conference on Logic Programming, London, England, pp. 84-98 (1986).
49. Ullman, J. D., Principles of Database and Knowledge-Base Systems, Computer Science Press, Rock-

ville, Maryland (1989).
50. Wilson, D. S. and Loveland, D. W., 'Incorporating relevancy testing in SATCHMO', Technical Report

CS-1989-24, Department of Computer Science Duke University, Durham, North Carolina (Novem-
ber 1989).

51. Wos, L., Overbeek, R., Lusk, E. and Boyle, J., Automated Reasoning: Introduction and Applications,
2nd edn, McGraw-Hill, New York (1992).

