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Abstract. A theory of recursive definitions has been mechanized in Isabelle's Zermelo--Fraenkel (ZF) 
set theory. The objective is to support the formalization of particular recursive definitions for use in 
verification, semantics proofs, and other computational reasoning. 
Inductively defined sets are expressed as least fixedpoints, applying the Knaster-Tarski theorem over 
a suitable set. Recursivefunctions are defined by well-founded recursion and its derivatives, such as 
transfinite recttrsion. Recursive data structures are expressed by applying the Knaster-Tarski theorem 
to a set, such as V~o, that is closed under Cartesian product and disjoint sum. 
Worked examples include the transitive closure of a relation, lists, variable-branching trees, and mutu- 
ally recursive trees and forests. The SchrOder-Bernstein theorem and the soundness of propositional 
logic are proved in Isabelle sessions. 
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1. Introduction 

Recursive definitions pervade theoretical computer science. Part I of this work [22] 
has described the mechanization of a theory of functions within Zermelo-Fraenkel 
(ZF) set theory using the theorem prover Isabelle. Part II develops a mechanized 
theory of recursion for ZF: least fixedpoints, recursive functions, and recursive 
data structures. Particular instances of these can be generated rapidly, to support 
verifications and other computational proofs in ZF set theory. 

The importance of this theory lies in its relevance to automation. I describe the 
Isabelle proofs in detail, so that they can be reproduced in other set theory provers. 
It also serves as an extended demonstration of how mathematics is developed by 
using Isabelle. Two Isabelle proofs are presented: the SchrOder-Bernstein theorem 
and a soundness theorem for propositional logic. 

1.1. OUTLINE OF THE PAPER 

Part I [22] contains introductions to axiomatic set theory and Isabelle. Part II, which 
is the present document, proceeds as follows. 
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- Section 2 presents a treatment of least fixedpoints based upon the Knaster- 
Tarski theorem. Examples include transitive closure and the Schrrder-  
Bemstein theorem. 

- Section 3 treats recursive functions. It includes a detailed derivation of well- 
founded recursion. The ordinals, •-recursion, and the cumulative hierarchy 
are defined in order to derive a general recursion operator for recursive data 
structures. 

- S e c t i o n  4 treats recursive data structures, including mutual recursion. It 
presents examples of various types of lists and trees. Little new theory is 
required. 

- Section 5 is a case study to demonstrate all of the techniques. It describes 
an Isabelle proof of the soundness and completeness of propositional logic. 

- Section 6 outlines related work and draws brief conclusions. 

1.2. PRELIMINARY DEFINITIONS 

For later reference, I summarize below some concepts defined in Part I [22], 
mainly in §7.5. Ideally, one should read the whole of Part I before continuing. 

A binary relation is a set of ordered pairs. Isabelle's set theory defines the 
usual operations: converse, domain, range, etc. The infix operator " denotes 
image. 

<y,x) • c o n v e r s e ( r )  ++ <x,y> • r 

x e domain(r)  ++ 3y.<x,y> • r 

y • range(r) <-~ 3x.(x,y> • r 

f ield(r) -= domain(r) Ura ge(r) 
y • ( r " d )  ~ 3zeA.<x,y> • r 

The definite description operator ~x.¢(x) denotes the unique a satisfying %b(a), 
if such exists. See §7.2 of Part I for its definition and discussion. 

Functions are single-valued binary relations. Application and A-abstraction 
are defined as follows: 

f ' a  -- ~y.(a,y} • f 

AxeA.b(x) -- { (x ,b(x)} .x  • A}.  

2 .  L e a s t  F i x e d p o i n t s  

One aspect of the Isabelle ZF theory of recursion concerns sets defined by least 
fixedpoints. I use an old result, the Knaster-Tarski theorem. A typical application 
is to formalize the set of theorems inductively defined by a system of inference 
rules. The set being defined must be a subset of another set already available. 
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Later (§4.2) we shall construct sets large enough to contain various recursive 
data structures, which can be "carved out" using the Knaster-Tarski theorem. 

This section gives the Isabelle formulation of the theorem. The least fixedpoint 
satisfies a general induction principle that can be specialized to obtain structural 
induction rules for the natural numbers, lists and trees. The transitive closure of 
a relation is defined as a least fixedpoint, and its properties are proved by induc- 
tion. A least fixedpoint argument also yields a simple proof of the Schrrder-  
Bernstein theorem. Part of this proof is given in an interactive session, to demon- 
strate Isabelle's ability to synthesize terms. 

2.1. THE KNASTER-TARSKI THEOREM 

The Knaster-Tarski theorem states that every monotone function over a complete 
lattice has a fixedpoint. (Davey and Priestley discuss and prove the theorem [7].) 
Usually a greatest fixedpoint is exhibited, but a dual argument yields the least 
fixedpoint. 

A partially ordered set P is a complete lattice if, for every subset S of P,  
the least upper bound and greatest lower bound of S are elements of P.  In 
Isabelle's implementation of ZF set theory, the theorem is proved for a special 
case: powerset lattices of the form go(D), for a set D. The partial ordering is C_; 
upper bounds are unions; lower bounds are intersections. 

Other complete lattices could be useful. Mutual recursion can be expressed 
as a fixedpoint in the lattice go(D1) × " "  × go(Dn), whose elements are n-tuples, 
with a component-wise ordering. But proving the Knaster-Tarski theorem in its 
full generality would require a cumbersome formalization of complete lattices. 
The Isabelle ZF treatment of mutual recursion uses instead the lattice go(Dl + 
... + Dn), which is order-isomorphic 1 to go(D1) x . . .  x fo(Dn). 

The predicate bnd_mono(D, h) expresses that h is monotonic and bounded 
by D, while l f p ( D ,  h) denotes h's least fixedpoint, a subset of D: 

bnd_mono(D,h)  =_ h(D) C D A (Vxy.x C y A y C D ~ h(x) C_ h(y)) 

l f p ( D , h )  =- ( ' ]{X e go(D).h(X) C X}. 

These are binding operators; in Isabelle terminology, h is a meta-level function. I 
originally defined l f p  for object-level functions, but this needlessly complicated 
proofs. A function in set theory is a set of pairs. There is an obvious correspon- 
dence between meta- and object-level functions with domain go(D), associating 
h w i t h  AxE~(D).h(X ). The latter is an element of the set go(D) -+ go(D), but 
this is irrelevant to the theorem at hand. What matters is the mapping from X 
to h(X). 

Virtually all the functions in this paper are meta-level functions, not sets 
of pairs. One exception is in the well-founded recursion theorem below (§3.1), 
where the construction of the recursive function simply must be regarded as 
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the construction of a set of pairs. Object-level functions stand out because they 
require an application operator: we must write f ' x  instead of f ( x ) .  

The Isabelle theory derives rules asserting that l f p ( D ,  h) is the least pre- 
fixedpoint of h, and (if h is monotonic) a fixedpoint: 

h(A) C A A C_ D bnd_mono(D, h) 

l f p ( D ,  h) _C A l f p ( D ,  h) = h ( l f p ( D ,  h))" 

The second rule above is one form of the Knaster-Tarski theorem. Another 
form of the theorem constructs a greatest fixedpoint; this justifies coinductive 
definitions [23] but will not concern us here. 

2.2. THE BOUNDING SET 

When justifying some instance of l f p ( D ,  h), showing that h is monotone is 
generally easy, if it is true at all. Harder is to exhibit a bounding set, namely, some 
D satisfying h(D) C_ D. Much of the work reported below involves constructing 
bounding sets for use in fixedpoint definitions. Let us consider some examples. 

- The natural numbers. The axiom of infinity (see §3.3) asserts that there is a 
bounding set I n f  for the mapping ,~X.{0} U {succ( i ) . i  E X}.  This justifies 
defining the set of natural numbers by 

n a t  - l f p ( I n f ,  ~X.{0} U {succ( i ) . i  • X}).  
- Lists and trees. Let A + B denote the disjoint sum of the sets A and B 

(defined below in §4.1). Consider defining the set of lists over A, satisfying 
the recursion equation 

l i s t ( A )  = + A × l i s t ( A ) .  
This requires a set closed under the mapping AX.{@} + A × X. Section 4.2 
defines a set un iv (A)  with useful closure properties: 

A c un iv (A)  = i v ( A )  × un iv (A)  C un iv (A)  
n a t  C_ u n i v ( g )  un iv (A)  + u n i v ( d )  c_ un iv (A) .  

This set contains all finitely branching trees over A and will allow us to 
define a wide variety of recursive data structures. 

- The Isabelle ZF theory also constructs bounding sets for infinitely branching 
trees. 

- The powerset operator is monotone but has no bounding set. Cantor's the- 
orem implies that there is no set D such that p (D)  C_ D. 

2.3. A GENERAL INDUCTION RULE 

Because l f p ( D ,  h) is a least fixedpoint, it enjoys an induction rule. Consider 
the set of natural numbers, na t .  Suppose ~b(0) holds and that ~b(x) implies 
¢ ( s u c c ( z ) )  for all x E na t .  Then the set {x C nat4b(x)}  contains 0 and is 
closed under successors. Because n a t  is the least such set, we obtain n a t  C 
{x E nat4b(x)} .  Thus, x E n a t  implies ~b(x), 
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To derive an induction rule for an arbitrary least fixedpoint, the chief problem 
is to express the rule's premises. Suppose we have defined A - l f p ( D ,  h) and 
have proved bnd_mono(D,  h). Define the set 

A¢ -- {x e A.¢(x)}.  

Now suppose x E h(A¢) implies ¢(x)  for all x. Then h(A¢) c A¢, and we 
conclude A C A¢. This derives the general induction rule 

A -  l f p ( D , h )  a E A bnd_mono(D,h)  
¢(a) 

Ix E h(A¢)]x 

The last premise states the closure properties of ~, normally expressed as 
separate "base cases" and "induction steps". (As in Part I of this paper, the 
subscripted variable in the assumption stands for a proviso on the rule: z must 
not be free in the conclusion or other assumptions.) 

To demonstrate this rule, we consider again the natural numbers. The appro- 
priate h satisfies 

h (na t¢ )  = {0} U {succ( i ) . i  E na t¢} .  

Now x E h (na t¢ )  if and only if x = 0 or x = succ( i )  for some i E n a t  such 
that ¢( i ) .  We may instantiate the rule above to 

[x E h(nat¢)]x  

n E nat ¢(X) 

and quickly derive the usual induction rule 

e ¢(x)]x 

n ¢(o) ¢(succ(x)) 

2.4. MONOTONICITY 

The set l f p ( D ,  h) is a fixedpoint if h is monotonic. The Isabelle ZF theory 
derives many rules for proving monotonicity; Isabelle's classical reasoner proves 
most of them automatically. Here are the rules for union and product: 

A C C  B C D  A c C  BC_D 
AUBC__CUD A x B C C × D "  



172 

Here are the rules for set difference and image: 

AC_C DC_B rC_s AC_B 
A - B C _ C - D  r"ACs"B 

And here is the rule for general union: 

Ix e A]x 

d c_ C B(x) c_ D(x) 

(Ux~A .B(x)) C_ (U~o .D(~))" 

There is even a rule that l i p  is itself monotonic. 2 This justifies nested applications 
of lip: 

IX C_ D]x 

bnd_mono(D,h) bnd_mono(E,i) h(X) C_ i(X) 
l i p ( D ,  h) C_ l i p ( E ,  i) 

LAWRENCE C. PAULSON 

2.5• APPLICATION: TRANSITIVE CLOSURE OF A RELATION 

Let id(A) denote the identity relation on A, namely {(x, x).x E A}. Then the 
reflexive/transitive closure r* of a relation r may be defined as a least fixed- 
point: 

r* -- l f p ( f i e l d ( r )  x f i e l d ( r ) ,  As . id ( f ie ld( r ) )  U (r o s)). 

The mapping As . id ( f i e ld ( r ) )U (ros) is monotonic and bounded by f i e l d ( r )  x 
f i e ld ( r ) ,  by virtue of similar properties for union and composition. The Knaster- 
Tarski theorem yields 

r * = i d ( f i e l d ( r ) ) U ( r o r * ) .  

This recursion equation affords easy proofs of the introduction rules for r*: 

a E f i e l d ( r )  (a,b} E r* (b,c) E r 
<a, a> C r* <~, c> ~ r* 

Because r* is recursively defined, it admits reasoning by induction. By using the 
general induction rule for l i p ,  the following rule can be derived simply: 

Ix e Iield(r)]~ [¢(<x,y>) <~,y> e r* <y,z> e r]x,y,z 
: 

<~, b> e r* ¢(<~, x>) ¢(<x, z>) ¢(<a,b>) (1) 
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This is the natural elimination rule for r* because its minor premises reflect the 
form of its introduction rules [25]; it is however cumbersome. A simpler rule 
starts from the idea that if (a, b) E r*, then there exist ao, a l ,  . . . ,  an such that 
(writing r as an infix relation) 

a = a o r a  l r . . .  r a n  = b. 

If ¢ holds at a and is preserved by r, then ~b must hold at b: 

[¢(y) <a,y> e < <y,~> e dy,z 

(a,b) e r* ¢(a)  ¢(z)  
¢(b) (2) 

Formally, the rule follows by assuming its premises and instantiating the original 
induction rule (1) with the formula Cr(z), where 

c r ( ~ )  _ W . z  = (a,,.,) - ~  ¢(~). 

Reasoning about injectivity of ordered pairing, we eventually derive 

Vw.(a, b> = (a, w> --~ tb(w) 

and reach the conclusion, ¢(b). 
To demonstrate the simpler induction rule (2), let us show that r* is transitive. 

Here is a concise proof of (c, b} C r* from the assumptions (c, a) E r* and 
(a, b) C r*: 

(a ,b )  e r *  (c,a) e r *  ( c , y > E r *  ( y , z )  e r  
(c, z> ~ ~* 

(c, b) c < 

The transitive closure r + of a relation r is defined by r + -- r o r*, and its usual 
properties follow immediately. 

2.6. APPLICATION: THE SCHRODER-BERNSTEIN THEOREM 

The Schrrder-Bernstein theorem plays a vital role in the theory of cardinal 
numbers. If there are two injections f :  X --+ Y and 9: Y --+ X,  then the 
theorem states that there is a bijection h: X --+ Y. Halmos [11] gives a direct 
but complicated proof. Simpler is to use the Knaster-Tarski theorem to prove a 
key lemma, Banach's decomposition theorem [7]. 

Recall from § 1.2 the image and converse operators. These apply to functions 
also, because functions are relations in set theory. If f is an injection, then 
c o n v e r s e ( f )  is a function, conventionally written f-1. Write f f A for the 
restriction of function f to the set A ,  defined by 

f I A -= A z c A . f ' x .  
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Fig. 1. Banach's decomposition theorem. 

2.6.1. The Informal Proof 

Suppose f : X ~ Y and g : Y -+ X are functions. Banach's decomposition 
theorem states that both X and Y can be partitioned (see Figure 1) into regions A 
and B, satisfying six equations: 

X A n X B -= 

Y A N Y B  =fJ 
X A U X B  = X 

Y A U Y B  = Y 

f " X A  = YA 
g"YB = XB.  

To prove Banach's theorem, define 

X A  =-- l f p ( X ,  AW.X- g " ( g -  f " W ) )  

X B  ~ X -  X A 

YA =- f " X A  

YB = Y - - Y A  . 

Five of the six equations follow at once. The mapping in l f p  is monotonic and 
yields a subset of X. Thus Tarski's theorem yields XA = X - 9"(Y - f"XA),  
which justifies the last equation: 

g"YB = 9 " ( Y  - f " X A )  

= X - (X - 9"(Y - f " X A ) )  

= X - X A  

= XB.  

To prove the SchrSder-Bernstein theorem, let f and g be injections (for the 
Banach theorem, they only have to be functions). Partition X and Y as above. 
The desired bijection between X and Y is ( f  t XA)  U (9 ~ YB) -1. 
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2.7. PROVING THE SCHRODER-BERNSTEIN THEOREM IN ISABELLE 

This section sketches the Isabelle proof of the SchrOder-Bernstein theorem; 
Isabelle synthesizes the bijection automatically. See Part I for an overview of 
Isabelle [22, §2]. As usual, the proofs are done in small steps in order to demon- 
strate Isabelle's workings. 

2.7.1. Preliminaries for Banach's Decomposition Theorem 

Most of the work involves proving Banach's theorem. First, we establish mono- 
tonicity of the map supplied to l fp :  

bnd_mono(X, %W. X - g''(Y - f"W)) 

The proof is trivial, and omitted; the theorem is stored as decomp bnd_mono. 

Next, we prove the last equation in Banach's theorem: 

val [gfun] = goal Cardinal.thy 

"g: Y->X ==> 

\ g,,(y _ fc, ifp(X, %W. X - g''(Y - f''W))) = 

\ X - Ifp(X, %W. X - g~C(y _ fc,W) ) ,,; 

Isabelle responds by printing an initial proof state consisting of one subgoal, the 
equation to be proved. 

Level 0 

g ~ (Y - f '' ifp(X,ZW. X - g ~ (Y - f '~ W))) = 

X - ifp(X,ZW. X - g '' (Y - f '~ W)) 

i. g ~c (y _ f ~, Ifp(X,ZW. X - g '' (Y - f '' W))) = 

X - Ifp(X,%W. X - g '' (Y - f '' W)). 

The first step is to use monotonicity and Tarski's theorem to substitute for 
i f p ( . -  .). Unfortunately, there are two occurrences of l f p ( - . . ) ,  and the substitu- 
tion must unfold only the second one. The relevant theorems are combined and 
then instantiated with a template specifying where the substitution may occur. 

by (res_inst_tac [("P", "%u. ?v = X-u")] 

(decomp_bnd_mono RS ifp_Tarski RS ssubst) I); 

Level i 

g ,, (y _ f ,, Ifp(X,%W. X - g '' (Y - f ,c W))) = 

x - l~p(x,zw, x- g " (Y- f " w)) 
0 

i. g '' (Y - f '' Ifp(X,ZW. X - g ,, (y _ f ~, W))) = 

X - (X - g cc (y _ f cc Ifp(X,ZW. X - g ~c (y _ f " w)))). 
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Observe the substitution's effect upon subgoal 1. We now invoke Isabelle's sim- 
plifier, supplying basic facts about subsets, complements, functions and images. 
This simplifies X - (X - 9"(Y - f " l f p ( . . . ) ) )  to 9"(Y - f " l f p ( . . . ) ) ,  which 
proves the subgoal. 

by (simp_tac 

(ZF_ss addsimps [subset_refl, double_complement, Dill_subset, 

gfun RS fun_is_rel RS image_subset]) i); 

Level 2 
g c c (y_ f c, Ifp(X,~W. X- g c c (y_ f c c W))) = 

X - Ifp(X,~W. X - g cc (y _ f ,c W)) 

No subgoals! 

The proof is finished. We name this theorem for later reference during the proof 
session. 

val Banach_last_equation = result(); 

2.7.2. The Proof of Banach's Decomposition Theorem 

We are now ready to prove Banach's theorem proper: 

val prems = goal Cardinal.thy 

"[[ f: X->Y; g: Y->X I] ==> \ 

\ EX XA XB YA YB. (XA Int XB = 0) a (XA Un XB = X) ~ \ 

\ (YA Int YB = O) ~ (YA Un YB = Y) ~ \ 

\ fccXA=YA ~ gCCYB=XB"; 

Level 0 

EX XA XB YA YB. 

XA Int XB = 0 

XA Un XB = X 

YA Int YB = 0 a YA Un YB = Y ~ f cc XA = YA ~ g ' '  YB = XB 

i. EX XA XB YA YB. 

XA Int XB = 0 

XA [In XB = X 

YA Int YB = 0 a YA Un YB = Y a f cc XA = YA a g cc YB = XB 

Starting in the initial proof state, we apply a command to strip the existential 
quantifiers and conjunctions repeatedly. The result is a proof state consisting of 
six subgoals: 
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by (REPEAT (FIRSTGOAL (resolve_tac [exl, conjI]))); 

Level 1 

EX XA XB YA YB. 

XA Int XB = 0 & 

XA Un XB = X 

YA Int YB = 0 ~ YA Un YB = Y a f ~' XA = YA ~ g ' '  Y B  = X B  

i. ?XA Int ?XBI = 0 

2. ?XA Un ?XBI = X 

3:?YA2 Int ?YB3 = 0 

4. ?YA2 Un ?YB3 = Y 

5. f '' ?XA = ?YA2 

6. g cc ?YB3 = ?XBI 

The next command solves five of these subgoals by repeatedly applying facts 
such as A N (B - A) = 0. Observe how the unknowns are instantiated; only ?XA 
is left. 

by (REPEAT 

(FIRSTGOAL (resolve_tac [Dill_disjoint, Diff_partition, refl]))); 

Level 2 

EX XA XB YA YB. 

XA Int XB = 0 

XA Un XB = X 

YA Int YB = 0 ~ YA Un YB = Y ~ f ~' XA = YA ~ g cc YB = XB 

1. ?XA <= X 
2 .  f ' '  ?XA <= Y 
3. g " (Y - f " ?XA) = X - ?XA 

We apply the result proved in the previous section to subgoal 3. This instantiates 
the last unknown to l f p ( . . . ) :  

by (resolve_tac [Banach_last_equation] 3); 

Level 3 

EX XA XB YA YB. 

XA Int XB = 0 

XA Un XB = X 

YA Int YB = 0 ~ YA Un YB = Y ~ f '' XA = YA a g ' '  Y B  = X B  

i. Ifp(X,XW. X - g " (Y - f " W)) <= X 
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2. f '' Ifp(X,%W. X - g '' (Y - f '' W)) <= Y 

3. g:Y->X 

The remaining subgoals are verified by appealing to lemmas and the premises. 

by (REPEAT (resolve_tac (prems@[fun_is_rel, image_subset, 

ifp_subset, decomp_bnd_mono]) i)); 

Level 4 

EX XA XB YA YB. 

XA Int XB = 0 & 
XA Un XB = X 

YA Int YB = 0 ~ YA Un YB = Y a f 

No subgoals! 

~' XA = YA a g cc YB = XB 

2.7.3. The SchrOder-Bernstein Theorem 

The Schr6der-Bemstein theorem is stated as 

f E i n j ( X , Y )  g E i n j ( Y , X )  
3h.h C b i j  (X, Y) 

The standard Isabelle proof consists of an appeal to Banach's theorem and a call 
to the classical reasoner (f ast_tac). B anach's theorem introduces an existentially 
quantified assumption. The classical reasoner strips those quantifiers, adding new 
bound variables XA, XB, YA, and YB to the context; then it strips the existential 
quantifier from the goal, yielding an unknown; finally it instantiates that unknown 
with a suitable bijection. 

The form of the bijection is forced by the following three lemmas, which 
come from a previously developed library of permutations: 

f C b i j  (A, B) g E b i j  (C, D) A M C = (0 B N D : 0 
f U 9 C bij (A u C, B U D) (bij_disjoint_Un) 

f E b i j ( A , B )  (bij_converse_bij) 
f -1  E bij(B,A) 

f e b i j ( A , B )  C_CA 

f F C E b i j  (C, f"C)  
(restrict_bij). 

To demonstrate how the bijection is instantiated, let us state the theorem using 
an unknown rather than a existential quantifier. This proof requires supplying as 
premises the conclusions of Banach's theorem without their existential quanti- 
tiers: 

val prems = goal Cardinal.thy 

"[i f : inj(X,Y) ; g : inj(Y,X) 
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\ XA Int XB = 0 ; 

\ YA Int YB = 0 ; 

\ f''XA = YA ; 

XA Un XB = X ; \ 

YA [In YB = Y ; \ 

g''YB = XB I] ==> ?h: bij(X,Y)"; 

Level 0 

?h : bij(X,Y) 

i. ?h : bij(X,Y) 

The first step inserts the premises into subgoal 1 and performs all possible sub- 
stitutions, such as Y to YA [J YB and YA to f"Xa. 

by (cut_facts_tac prems i THEN 

REPEAT (hyp_subst_tac i) THEN flexflex tac); 

Level i 

7h69 : bij(X,Y) 

i. [I f : inj(XA Un g ~' YB,f ' '  XA Un YB); 

g : inj(f '' XA Un YB,XA Un g ~' YB); XA Int g 

f cc XA Int YB = 0 i] ==> 

?h69 : bij(XA Un g '' YB,f ,c XA Un YB) 

~c YB = O; 

The second step applies bij _disj oint_Un, instantiating the bijection to consist 
of some union. 

by (resolve_tac [bij_disjoint_Un] i THEN REPEAT (assume_tac 3)); 

Level 2 

?f70 Un ?g70 : bij(X,Y) 

I. [I f : inj(XA Un g ' '  YB,f " XA Un YB); 

g : inj(f ,c XA Un YB,XA Un g c c YB); XA Int g 

f ~c XA Int YB = 0 i] ==> 

?f70 : bij(XA,f cc XA) 

~' YB = 0 ;  

2. [I f : inj(XA Un g ~ YB,f '' XA Un YB); 

g : inj(f ,c XA Un YB,XA Un g ~' YB); XA Int g 

f ~ XA Int YB = 0 i] ==> 

?g70 : bij(g '' YB,YB) 

~ YB = O; 

The third step applies b i j _ c o n v e r s e _ b i j  to subgoal 2, instantiating the bijec- 
tion with a c o n v e r s e  term. This rule should only be used in the last resort, since 
it can be repeated indefinitely. 

by (resolve_tac [bij_converse_bij] 2); 
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Level 3 

7f70 Un converse(TfTl) : bij(X,Y) 

i. [I f : inj(XA Un g '' YB,f '' XA Un YB); 

g : inj(f c~ XA Un YB,XA Un g '' YB); XA Int g 

f c~ XA Int YB = 0 [] ==> 

7f70 : bij(XA,f ~' XA) 

~' YB = O; 

2. [l f : inj(XA Un g '' YB,f '' XA Un YB); 

g : inj(f '' XA Un YB,XA Un g '' YB); XA Int g '' YB = O; 

f ~' XA Int YB = 0 1] ==> 

?fTl : bij(YB,g '' YB) 

The fourth step applies restrict_bij, instantiating the bijection with restric- 
tions. We obtain ( f  [ XA) U (9 [YR) -1- 

by (REPEAT (FIRSTGOAL (eresolve_tac [restrict_bij]))); 

Level 4 

restrict(f,XA) Un converse(restrict(g,YB)) : bij(X,Y) 

1. [i g : inj(f cc XA Un YB,XA Un g c, YB); XA Int g 

f cc XA Int YB = 0 l] ==> 

XA <= XA Un g c~ YB 

, c  YB = O; 

2. [i f : inj(XA Un g '' YB,f '' XA Un YB); XA Int g '' YB = O; 

f ~ XA Int YB = 0 l] ==> 

YB <= f c c XA Un YB 

Finally we appeal to some obvious facts. 

b y  (REPEAT ( r e so lve_ tac  [Un upperl ,Un_upper2] 1)) ;  

Level  5 
restrict(f,XA) Un converse(restrict(g,YB)) : bij(X,Y) 

No subgoals ! 

The total execution time to prove the Banach and SchrOder-Bemstein theorems 
is about three seconds. 3 

The Schr/Sder-Bemstein theorem is a long-standing challenge problem; both 
Bledsoe [3, page 31] and McDonald and Suppes [14, page 338] mention it. The 
Isabelle proof cannot claim to be automatic - it draws upon a body of lemmas 
- but it is short and comprehensible. It demonstrates the power of instantiating 
unknowns incrementally. 

This mechanized theory of least fixedpoints allows formal reasoning about 
any inductively-defined subset of an existing set. Before we can use the theory 
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to specify recursive data structures, we need some means of constructing large 
sets. Since large sets could be defined by transfinite recursion, we now consider 
the general question of recursive functions in set theory. 

3. Recursive Functions 

A relation -< is well founded if it admits no infinite decreasing chains 

• "" -~ X n  -~ " ' "  -'~ X 2  -'~ X l .  

Well-founded relations are a general means of justifying recursive definitions and 
proving termination. They have played a key role in the Boyer-Moore theorem 
prover since its early days [4]. Manna and Waldinger's work on deductive pro- 
gram synthesis [12] illustrates the power of well-founded relations; they justify 
the termination of a unification algorithm using a relation that takes into account 
the size of a term and the number of free variables it contains. 

The rise of type theory [6, 9, 13] has brought a new treatment of recursion. 
Instead of a single recursion operator justified by well-founded relations, each 
recursive type comes equipped with a structural recursion operator. For the natural 
numbers, structural recursion admits calls such as d o u b l e ( n +  1) = d o u b l e ( n ) +  
2; for lists, it admits calls such as rev(Cons(x,  l)) = rev(l)@[x]. 

These recursion operators are powerful - unlike computation theory's prim- 
itive recursion, they can express Ackermann's function - but they are some- 
times inconvenient. They can express only recursive calls involving an immedi- 
ate component of the argument. This excludes functions that divide by repeated 
subtraction or that sort by recursively sorting shorter lists. Coding such func- 
tions using structural recursion requires ingenuity; consider Smith's treatment of 
Quicksort [26]. 

NordstrOm [19] and I [21] have attempted to reintroduce well-founded rela- 
tions to type theory, with limited success. In ZF set theory, well-founded rela- 
tions reclaim their role as the foundation of induction and recursion. They can 
express difficult termination arguments, such as for unification and Quicksort; 
they include structural recursion as a special case. 

Suppose we have defined the operator l i s t  such that l i s t ( A )  is the set of 
all lists of the form 

C o n s ( x l , C O n s ( x 2 , . . .  , c O n s ( x n , N i l ) . . . ) )  X l , X 2 , . . . , * n  E A. 

We could then define the substructure relation is_tail(A) to consist of all 
pairs/ l ,  Cons(x, l)) for x E A and l E l i s t ( A ) ,  since l is the tail of Cons(x, l). 
Proving that i s _ t a i l ( A )  is well founded justifies structural recursion on lists. 

But this approach can be streamlined. The well-foundedness of lists, trees 
and many similar data structures follows from the well-foundedness of ordered 
pairing, which follows from the foundation axiom of ZF set theory. 4 This spares 
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us the effort of defining relations such as is_tail(A). Moreover, recursive func- 
tions defined using i s _ t a i l ( A )  have a needless dependence upon A; exploiting 
the foundation axiom eliminates this extra argument. 

Achieving these aims requires considerable effort. Several highly technical 
set-theoretic constructions are defined in succession: 

- A well-founded recursion operator, called wfrec ,  is defined and proved to 
satisfy a general recursion equation. 

- The ordinals are constructed. Transfinite recursion is an instance of well- 
founded recursion. 

" The natural numbers are constructed. Natural numbers are ordinals and 
inherit many of their properties from the ordinals. Primitive recursion on 
the natural numbers is an instance of transfinite recursion. 

- The rank operation associates a unique ordinal with every set; it serves as 
an absolute measure of a set's depth. In order to define this operation, trans- 
finite recursion is generalized to a form known as E-recursion ( t r a n s r e c  
in Isabelle ZF). The construction involves the natural numbers. 

- The cumulative hierarchy of ZF set theory is finally introduced, by transfinite 
recursion. As a special case, it includes a small 'universe' for use with l f p  
in defining recursive data structures. 

- The general recursion operator Vrec justifies functions that make recursive 
calls on arguments of lesser rank. 

3.1. WELL-FOUNDED RECURSION 

The ZF derivation of well-founded recursion is based on one by Tobias Nipkow 
in higher-order logic. It is much shorter than any other derivation that I have 
seen, including several of my own. It is still complex, more so than a glance at 
Suppes [27, pages 197-198] might suggest. Space permits only a discussion of 
the definitions and key theorems. 

3.1.1. Definitions 

First, we must define "well-founded relation." Infinite descending chains are 
difficult to formalize; a simpler criterion is that each nonempty set contains a 
minimal element. The definition echoes the axiom of foundation [22, §4]. 

wf(, ~) ---- V Z . Z = O V ( 3 z ~ z . V y . { y , x )  ~ r - + v C Z )  

From this, it is fairly easy to derive well-founded induction: 

[vv.<v, r -+ ¢(v)]x 
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Proof. Put {z E doma±n(r)U{a}.~b(z)} for Z in wf(r).  If Z = 0, then ~b(a) 
follows immediately. If Z is nonempty, then we obtain an x such that ~b (x )  
and (by the definition of domain) gy.(y, x) ¢ r --+ ~b(y), but the latter implies 
¢(x) .  The Isabelle proof is only seven lines. 

Well-founded recursion, on the other hand, is difficult even to formalize. If f 
is recursive over the well-founded relation r, then f ' x  may depend upon x and, 
for (y, x) E r, upon f ' y .  Since f need not be computable, f ' x  may depend upon 
infinitely many values of f ' y .  The inverse image r - l ' ' {x}  is the set of all y such 
that (y, x) E r: the set of all r-predecessors of x. Formally, f is recursive over r 
if it satisfies the equation 

f ' x  = H(x,  f [ ( r - l "{x}) )  (3) 

for all x. The binary operation H is the body of f .  Restricting f to r - l " { x }  
ensures that the argument in each recursive call is r-smaller than x. 

Justifying well-founded recursion requires proving, for all r and H, that 
the corresponding recursive function exists. It is constructed in stages by well- 
founded induction. Call f a restricted recursive function for x if it satisfies 
equation (3) for all y such that (y, x) ¢ r. For a fixed x, we assume there exist 
restricted recursive functions for all the r-predecessors of x, and construct from 
them a restricted recursive function for x. We must also show that the restrict- 
ed recursive functions agree where their domains overlap; this ensures that the 
functions are unique. 

Nipkow's formalization of the construction makes several key simplifications. 
Since the transitive closure r + of a wellfounded relation r is well founded, he 
restricts the construction to transitive relations; otherwise it would have to use r 
in some places and r + in others, leading to complications. Second, he formalizes 
' f  is a restricted recursive function for a'  by a neat equation: 

i s _ r e c f u n ( r ,  a, H, f )  ~ ( f  = Ax e r- l"{a} .H(x ,  f I ( r - l "{x}) ) )  • 

Traditional proofs define the full recursive function as the union of all restricted 
recursive functions. This involves tiresome reasoning about sets of ordered pairs. 
Nipkow instead uses descriptions: 

t h e _ r e c f u n ( r ,  a, H)  = Lf . i s_ rec : fun( r ,  a, H, f )  

 etrec(r, a, Lr) --_-- H(a, t e_receI (r, a, H)). 

Here t h e _ r e c f u n ( r ,  a, H)  denotes the (unique) restricted recursive function 
for a. Finally, w f t r e c  gives access to the full recursive function; w f t r e c ( r ,  a, H)  
yields the result for the argument a. 

3.1.2. Lemmas 

Here are the key lemmas. Assume wf(r) and t r a n s ( r )  below, where t r a n s ( r )  
expresses that r is transitive. 
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Two restricted recursive functions f and g agree over the intersection of their 
domains - by well-founded induction on x: 

i s _ r e c f u n ( r ,  a, H, f )  i s _ r e c f u n ( r ,  b, H, g) 

<x,a) • r A <x,b) • r --+ f ' x  = g'x 

In consequence, the restricted recursive function at a is unique: 

i s _ r e c f u n ( r ,  a, H, f )  i s _ r e c f u n ( r ,  a, H, 9) 

f = g  

Another consequence justifies our calling such functions "restricted", since they 
are literally restrictions of larger functions: 

i s _ r e c f u n ( r ,  a, H, f )  i s _ r e c f u n ( r ,  b, H, 9) (b, a) • r 

f F ( r - ' " { b } ) =  9 

Using well-founded induction again, we prove the key theorem. Restricted recur- 
sive functions exist for all a: 

is_recfun(r, a, H, the_recfun(r, a, H)). 

It is now straightforward to prove that w f t r e c  unfolds as desired for well- 
founded recursion: 

w f t r e c ( r , a , H )  = H(a, Ax E r - l " {a} .w f t rec ( r , x ,H) ) .  

The abstraction over r - l " { a }  is essentially the same as restriction. 

3.1.3. The Recursion Equation 

It remains only to remove the assumption t r a n s ( r ) .  Because the transitive clo- 
sure of a well-founded relation is well-founded, we can immediately replace r 
by r + in the recursion equation for w f t r e c .  But this leads to strange compli- 
cations later, involving transfinite recursion. I find it better to remove transitive 
closure from the recursion equation, even at the cost of weakening it. 5 The oper- 
ator w f r e c  applies w f t r e c  with the transitive closure of r but restricts recursive 
calls to immediate r-predecessors: 

wf rec ( r ,  a, H)  -- w f t r e c ( r  +, a, Axf .H(x ,  f F ( r - l " { x ) ) ) )  • 

Assuming wf(r)  but not tra_ns(r),  we can show the equation for wfrec :  

wf rec ( r ,  a, H)  = H(a, Ax E r-n '{a}.wfrec(r ,  x, H)). 

All recursive functions in Isabelle's ZF set theory are ultimately defined in terms 
of wfrec. 
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3.2. ORDINALS 

My treatment of recursion requires a few properties of the set-theoretic ordinals. 
The development follows standard texts [27] and requires little further discussion. 
By convention, the Greek letters c~,/3, and "-/range over ordinals. 

A set A is transitive if it is downwards closed under the membership relation: 
y E x E A implies y E A. An ordinal is a transitive set whose elements are 
also transitive. The elements of an ordinal are therefore ordinals also. The finite 
ordinals are the natural numbers; the set of natural numbers is itself an ordinal, 
called w. Transfinite ordinals are those greater than w; they serve many purposes 
in set theory and are the key to the recursion principles discussed below. 

The Isabelle definitions are routine. The predicates T r a n s s e t  and 0rd  define 
transitive sets and ordinals, while < is the less-than relation on ordinals: 

Memrel(A) _= { z E A × A . ~ x y . z :  ( x , y )  A x E y }  

T r a n s s e t ( i )  ~ VxEi.X C i 

0rd(i)  5 r r a n s s e t ( i )  A ( V z c i . T r a n s s e t ( x ) )  

i < j =_ i E j A Ord( j ) .  

The set Memrel(A) internalizes the membership relation on A as a subset of 
A x A. If A is transitive, then Memrel(A) internalizes the membership relation 
everywhere below A. For then 

xI ~ x2 E . . .  E xn E A 

implies that Xl, x2, . . . ,  xn are all elements of A; we have ( xk , xk+ l )  E 
Memrel(A) for 0 < k < n. 

A common use of wf r ec  has the form wfrec(Memrel(A),  x, H),  where A is 
a transitive set and x E A. The recursion equation for wfrec(Memrel(A),  x, H)  
supplies Memrel(A) as the well-founded relation in the recursive calls. We must 
use Mere.tel(A) because well-founded induction and recursion take their well- 
founded relation as a set, not as a binary predicate such as E. 

If we use the foundation axiom, it is straightforward to show that Memrel(A) 
is well founded. This fact, together with the transitivity of ordinals, yields trans- 
finite induction: 

lord(/3) W/c¢~.¢ (@] z 

¢(/3) 

Many properties of the ordinals are established by transfinite induction. For exam- 
ple, the ordinals are linearly ordered: 

Ord(c~) Ord(/3) 

< / 3 v  o, = / 3 v / 3  < 
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The s u c c e s s o r  of x, written succ(x) ,  is traditionally defined by succ(x)  = 
{x} U x. The Isabelle theory makes an equivalent definition using cons: 

_= cons( ,x). 

Successors have two key properties: 

s u e t ( x )  = sue t (y )  succ(x)  # 0. 
x = y  

Proving that succ  is injective seems to require the axiom of foundation. Proving 
succ(x)  # 0 is trivial because zero is the empty set; let us write the empty set 
as 0 instead of @ when it serves as zero. 

The smallest ordinal is zero• The ordinals are closed under the successor 
operation. The union of any family of ordinals is itself an ordinal, which happens 
to be their least upper bound: 

[x e A]x 

Ord(/3(x)) 
Ord(O) Ord(succ(oO) Ord(Ux~A.fl(X))" 

By the first two rules above, every natural number is an ordinal• By the third, so 
is the set of natural numbers. This ordinal is traditionally called w; the following 
section defines it as the set na t .  

Transfinite recursion can be expressed using wf rec  and Memrel; see n a t _ r e c  
below• Later (§3.4) we shall define a more general form of transfinite recursion, 
called E-recursion. 

3.3. THE NATURAL NUMBERS 

The natural numbers are a recursive data type, but they must be defined now (a 
bit prematurely) in order to complete the development of the recursion principles. 
The operator n a t _ c a s e  provides case analysis on whether a natural number has 
the form 0 or succ(k) ,  while n a t _ r e c  is a structural recursion operator similar 
to those in Martin-L6f's type theory [13]. 

nat 
nat_ case(a, b, k) 
nat_rec(a, b, k) 

-- l f p ( I n f ,  XX.{0} u {succ(i).i 6 X}) 
; ~y . (k  = 0 A y = ~) v ( ~ i . ~  = s u e t ( i )  A y = b ( i ) )  

= wfrec(Memrel(nat), k, A n / m a t _  case(a, Am.b(m, I'm), n)). 

Each definition is discussed below• They demonstrate the Knaster-Tarski theo- 
rem, descriptions, and well-founded recursion. 



SET THEORY FOR VERIFICATION: II 187 

3.3.1. Properties of n a t  

The mapping supplied to l f p ,  which takes X to {0} U {succ( i ) . i  E X},  is 
obviously monotonic. The axiom of infinity supplies the constant I n f  for the 
bounding set: 6 

(0 e Inf) A (VyeInf.SUCC(y) E In f ) .  

The axiom gives us a set containing zero and closed under the successor opera- 
tion; the least such set contains nothing but the natural numbers. 

The Knaster-Tarski theorem yields 

n a t  = {0} m {succ ( i ) . i  E n a t }  

and we immediately obtain the introduction rules 

n E nat 
0 E nat 

succ(n) E nat" 

By.instantiating the general induction rule of l f p ,  we obtain mathematical induc- 
tion (recall our discussion in §2.3 above): 

nat 

e nat  (succ(x)) 

3.3.2. Properties of nat_case 

The definition of n a t _ c a s e  contains a typical definite description. Given the- 
orems stating s u c c ( m )  ¢ 0 and succ (m)  = succ(n)  --+ m = n, Isabelle's 
f a s t _ t a e  automatically proves the key equations: 

nat_case(a ,b ,  0) = a  nat_case(a ,b ,  

3.3.3. Properties o f n a t _ r e c  

Because n a t  is an ordinal, it is a transitive set. Well-founded recursion on 
Memrel(nat ) ,  which denotes the less-than relation on the natural numbers, can 
express primitive recursion. Unfolding the recursion equation for wf rec  yields 

n a t _ r e c ( a ,  b, n) = n a t _ c a s e ( a ,  Ara.b(m, f ' m ) ,  n) 

where f - Az E Memrel(nat)- l"{n} .nat_rec(a,b ,z) .  We may derive the 
equations 

m E n a t  
n a t _ r e c ( a ,  b, 0) = a 

n a t _ r e c ( a ,  b, succ (m) )  = b(m, n a t _ r e c ( a ,  b, m))" 
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The first equation is trivial, by the similar one for n a t _  case.  Assuming m E na t ,  
the second equation follows by/3-conversion. This requires showing 

m E Memrel(nat)-l"{succ(m)}, 

which reduces to 

@% succ(f~%)> E Memrel(nat), 

and finally to the trivial 

6 suce(m) m 6 nat succ(m) 6 nat. 

The Isabelle proofs of these rules are straightforward. Recursive definitions of 
lists and trees will follow the pattern established above. But first, we must define 
transfinite recursion in order to construct large sets. 

3.4. THE RANK FUNCTION 

Many of the ZF axioms assert the existence of sets, but all sets can be generated 
in a uniform manner. Each stage of the construction is labeled by an ordinal o~; 
the set of all sets generated by stage o~ is called V~. Each stage simply gathers 
up the powersets of all the previous stages. Define 

= U 
,SEo~ 

by transfinite recursion on the ordinals. In particular we have V0 = (~ and 
Vsucc@) = p(V~). See Devlin [8, pp. 42-48] for philosophy and discussion. 

We can define the ordinal rank(a) ,  for all sets a, such that a C Vrank(a)- This 
attaches an ordinal to each and every set, indicating the stage of its creation. When 
seeking a large "bounding set" for use with the l f p  operator, we can restrict our 
attention to sets of the form Vc~, since every set is contained in some Vc~. 

Taken together, the V~ are called the cumulative hierarchy. They are funda- 
mental to the intuition of set theory, since they impart a structure to the universe 
of sets. Their role here is more mundane. We need rank(a)  and V~ to apply l f p  
and to justify structural recursion. The following section will formalize the defi- 
nition of Vs. 

3.4.1. Informal Definition of r a n k  

The usual definition of rank  requires E-recursion: 

rank(a) = U succ(rank(x)). 
xCa 

The recursion resembles that of V~, except that it is not restricted to the ordinals. 
Recursion over the ordinals is straightforward because each ordinal is transitive 
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(recall the discussion in §3.2). To justify E-recursion, we define an operation 
e c l o s e ,  such that e c l o s e ( a )  extends a to be transitive. Let U'~(X) denote the 

n-fold union of X,  with U°(X)  = X and USUCC(m)(X) = U(Um(X)) .  Then 

put 

eclose(a) : U Un(a) 
n6nat 

and supply Memrel(eclose({a})) as the well-founded relation for recursion 
on a. 

3.4.2. The Formal Definitions 

Here are the Isabelle definitions of e c l o s e ,  t r a n s r e c  (which 
~-recursion) and rank: 

eclose(a) ---- U nat_rec(a, ,~tn,'r.U(r), n) 
~Enat 

transrec(a,H) -- wfrec(Memrel(eclose(a)),a,H) 
rank(a) _---- transrec(a, Axf. U succ(f'y)). 

yEz 

performs 

3.4.3. The Main Theorems 

Many results are proved about e c l o s e ;  the most important perhaps is that 
e c l o s e ( a )  is the smallest transitive set containing a. Now Mernrel (eclose({a}))  
contains enough of the membership relation to include every chain zl E . . .  E 
xn E a descending from a. As an instance of well-founded induction, we obtain 
E-induction: 

'¢(~) 
~b(a) " 

NOW E-recursion follows similarly, but there is another technical hurdle. In 
t r a n s r e c ( a ,  H) ,  the well-founded relation supplied to w f r e c  depends upon a; 
we must show that the result of w f r e c  does not depend upon the field of the 
relation Memre l (ec lose ( .  • -)), if it is big enough. Specifically, we must show 

k E i  
wfrec(Memrel(eclose({i})), k~ H) : wfrec(Memrel(eclose({k})), k, H) 

in order to derive the recursion equation 

t r a n s r e c ( a ,  H)  = H (a, AzEa.transrec(m, H) ). 
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Combining this with the definition of r ank  yields 

r ank(a )  = U succ( rank(y) ) .  
y e a  

Trivial transfinite inductions prove Ord(rank(a))  and r ank(a )  = a for ordi- 
nals a.  

We may use r a n k  to measure the depth of a set. The following facts will 
justify recursive function definitions over lists and trees by proving that the 
recursion is well founded: 

aEb 
rank(a )  < rank(b) rank(a)  < rank((a ,b))  rank(b) < rank((a ,b)) .  

Let us prove the last of these from the first. Recall from Part I [22, §7.3] 
the definition of ordered pairs, (a,b) =_ {{a},{a,b}}. From b E {a,b} we 
obtain rank(b) < rank({a,  b}). From {a,b} E (a,b) we obtain rank({a,b})  < 
rank((a ,  b)). Now < is transitive, yielding rank(b) < rank((a ,  b)). 

We need E-recursion only to define rank,  since this operator can reduce every 
other instance of E-recursion to transfinite recursion on the ordinals. We shall 
use t r a n s r e c  immediately below and r a n k  in the subsequent section. 

3.5. THE CUMULATIVE HIERARCHY 

We can now formalize the definition V~ = U ~  ~(V~), which was discussed 
above. A useful generalization is to construct the cumulative hierarchy starting 
from a given set A: 

V[A]~ = A U U ~(V[A]~). (4) 
;3Ea 

Later, V[A]~ will serve as a "universe" for defining recursive data structures; it 
contains all finite lists and trees built over A. The Isabelle definitions include 

V[A]  -  ,af.A U U 
flea 

- -  

3.5.1. Closure Properties of V[A]~ 

The Isabelle ZF theory proves several dozen facts involving V [A]~. Because its 
definition uses E-recursion, V[A]x is meaningful for every set z, But the most 
important properties concern V[A]~, where a is an ordinal. Many are proved by 
transfinite induction on a. 
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To justify the term "cumulative hierarchy", we note that V[A]x is monotonic 
in both A and x: 

A C B  xC_y 
V[A]x c_ V[B]y 

For ordinals we obtain V[A],~ c_ V[A]succ(,~) as a corollary. 
The cumulative hierarchy satisfies several closure properties. Here are three 

elementary ones: 

a c_ V[A]  
x c_ V[A]x A c_ V[A]x 

a E V[A]succ(~)" 

By the third property, increasing the ordinal generates finite sets: 

al E V[A]. ... an E V[A]~ 
{al , . . . ,an}  e V[d]succ(~) 

Since (a,b) =_ {{a}, {a, b}}, increasing the ordinal twice generates ordered 
pairs: 

a E V[A]~ b E V[A]~ 
(a,b) E V[A]~ucc(succ(~))" 

Now put a = co, recalling that co is just the set n a t  of all natural numbers. Let 
us prove that V[A]~ is closed under products: 

V[A]~ x V[A]~ c_ V[A]~. 

Suppose we have a, b E V[A]~. By Equation (4), there exist i, j E n a t  such 
that a E V[A]~ and b E V[A]j. Let k be the greater of i and j ;  then a, b E 
v[g]k. Since (a, b) E Y[A]succ(succ(k)) and succ(succ(k) )  E na t ,  we conclude 
(a,b) E V[A]~. 

By a similar argument, every finite subset of V[A],j is an element of V[A]~. 
These ordered pairs and finite subsets are ultimately constructed from natural 
numbers and elements of A, since V[A]~ contains n a t  and A as subsets. 

A limit ordinal is one that is nonzero and closed under the successor opera- 
tion: 

L i m i t ( a )  = 0 rd (a )  A 0 < a A ( V y . y < a - - + s u c c ( y )  < a )  

The smallest limit ordinal is co. The closure properties just discussed of V[A]~ 
hold when co is replaced by any limit ordinal. We shall use these closure properties 
in §4.2. 

3.6. RECURSION ON A SET'S RANK 

Consider using recursion over lists formed by repeated pairing. The tail of the 
list Ix, l) is l. Since 1 is not a member of the set (x, I), we cannot use E-recursion 
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to justify a recursive call on I. But l has smaller rank than (x, 1); since ordinals 
are well founded, this ensures that the recursion terminates. 

The following recursion operator allows any recursive calls involving sets 
of lesser rank. It handles the list example above, as well as recursive calls for 
components of deep nests of pairs: 

V r e c ( a , H )  -- t r a n s r e c ( r a n k ( a ) ,  

Aig.Az E Vsucc(i).H(z, Ay E Vi.g'rank(y)'y)) 'a. 

This definition looks complex, but its formal properties are easy to derive. The 
rest of this section attempts to convey the underlying intuition. 

3.6.1. The Idea behind V r e c  

To understand the definition of Vrec, consider a technique for defining general 
recursive functions over the natural numbers. The definition is reduced to one 
involving a primitive recursive functional. Suppose we wish to define a function f 
satisfying the recursion 

f ' x  ---- H(x, f).  

Suppose that, for all x in the desired domain of H, the number k(x) exceeds 
the depth of recursive calls required to compute f 'x .  Define the family of func- 
tions fn by primitive recursion over n: 

f0 ------- /~xEnat .x 

fn+, = Axenat.H(x, L ) .  

Clearly, fn behaves like f if the depth of recursive calls is smaller than n; the 
definition of f0 is wholly immaterial, since it is never used. We can therefore 
define f = AxEnat.fk(~)'x. 

3.6.2. The Workings of Vrec 

The definition of Vrec follows a similar idea. Using transfinite recursion, define 
a family of func t ions /~  such that 

^ V 1  ^ fa 'x  = H(x, Ay E rank(x).frank(y) Y) (5) 

for all x in a sufficiently large set (which will depend upon o0, and define 

Vrec(x,  H)  -- /rank(x)'  x .  (6) 

Here, r ank(x)  serves as an upper bound on the number of recursive calls required 
to compute Vrec(x,  H).  Combining Equations (5) and (6) immediately yields the 
desired recursion: 

Yrec(x,  H)  ---- H(x, )~y E Vrank(x)./rank(y)'Y) 

= H ( x , / ~ y  e Vrank(x ) .Vrec (y ,  H)).  
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Fig. 2. Domain for recursive calls in Vrec(x, H) .  

The key fact y E V a  ++ rank(y)  E oz states that the set V~ consists of all sets 
whose rank is smaller than oz. For a given x, Vrec(x, H)  may perform recursive 
calls for all g of smaller rank than z (see Figure 2). This general principle can 
express recursive functions for lists, trees, and similar data structures based on 
ordered pairing. 

We may formalize fc~ using t r a n s r e c :  

f~ -- t r a n s r e e ( a ,  Aig.Az E Vsucc(i).H(z, Ay E Vi.g'rank(y)'y)). 

Unfolding t r a n s r e c  and simplifying yields Equation (5), with Vsucc(c~) as the 
"sufficiently large set" mentioned above. Joining this definition with Equation (6) 
yields the full definition of Vrec. 

The recursion equation for Vrec can be recast into a form that takes a defi- 
nition in the premise: 

h(a) : H(a, Ay E Vrank(a).h(Y))" 

This expresses the recursion equation more neatly. The conclusion contains only 
one occurrence of H instead of three, and H is typically complex. 

The following sections include worked examples using Vrec to express recur- 
sive functions. 

4. Recursive Data Structures 

This section presents ZF formalizations of lists and two different treatments 
of mutually recursive trees/forests. Before we can begin, two further tools are 
needed: disjoint sums and a "universe" for solving recursion equations over 
sets. 
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4.1. DISJOINT SUMS 

Let 1 - -  s u c c ( 0 ) .  Disjoint sums have a completely straightforward definition: 

A + B  =_ ({0} x A )  U({1} x B )  

xnx(a) - <O,a> 

 nr(b) = <l,b>. 

We obtain the obvious introduction rules 

aEA bcB 

and other rules to state that Inl and Inr are injective and distinct. A case 
operation, defined by a description, satisfies two equations: 

case(c,d, Inl(a)) = c ( a )  case(c,d, Inr(b)) = d(b). 

This resembles the when  operator of Martin-Lrf's type theory [20]. 

4.2. A UNIVERSE 

The term universe generally means the class of all sets, but here it refers to 
the set univ(A),  which contains all finitely branching trees over A. The set is 
defined by 

univ(A)  -= V[A]~. 

By the discussion of V[A]~ in §3.5, we have 

univ(A)  x u n i v ( g )  c_ univ(A).  

From the simpler facts A c C_ univ(A) and na t  C univ(A),  we obtain 

univ(A)  + univ(A)  C_ univ(A).  

So univ(A)  contains A and the natural numbers and is closed under disjoint 
sums and Cartesian products. We may use it with l f p  to define lists and trees 
as least fixedpoints over univ(A),  for a suitable set A. 

Infinitely branching trees require larger universes. To construct them requires 
cardinality reasoning. Let ~ be an infinite cardinal. Writing the next larger car- 
dinal as ~;+, a suitable universe for infinite branching up to ~ is V[A]~+. I have 
recently formalized this approach in Isabelle's ZF set theory, proving the theorem 

-+ V[A]~+ C V[A]~+ and constructing an example with countable branching. 
The cardinality arguments appear to require the axiom of choice and involve a 
large body of proofs. I plan to report on this work in a future paper. 
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4.3. LISTS 

Let l i s t ( A )  denote the set of all finite lists taking elements from A. Formally, 
l i s t ( A )  should satisfy the recursion l i s t ( A )  = {9} + A x l i s t ( A ) .  Since 
univ(A) contains 9 and is closed under + and x, it contains solutions of this 
equation. We simultaneously define the constructors Nil  and Cons: 7 

l i s t ( A )  -- l fp(univ(A),  AX.{9} + A × X) 

N i l  - -  Inl(9) 
Cons(a,/) -- Inr(<a,/)). 

The mapping from X to {9} + A × X is trivially monotonic by the rules shown 
in §2.4, and univ(A) is closed under it. Therefore, the Knaster-Tarski theorem 
yields l i s t ( A )  = {9} + A × l i s t ( A ) ,  and we obtain the introduction rules: 

a E A 1 E l i s t ( A )  
Nil E list(A) Cons(a, l) E list(A)" 

With equal ease, we derive structural induction for lists: 

l C l i s t ( A )  ¢(Ni l )  

[x C A y E l i s t ( A )  ¢(Y)]z,y 

¢(Cons(x,v)) 
¢(0 

4.3.1. Operating upon Lists 

Again following Martin-L6f's type theory [13], we operate upon lists using case 
analysis and structural recursion. Here are their definitions in set theory: 

l i s t _ c a s e ( c , h , l )  ~ case(Au.c, s p l i t ( h ) , t )  
l i s t _ r e c ( c , h ,  1) -- Vrec(/, A /g . l i s t_case (c ,  Axv.h(x ,y ,g 'V) ,  l)). 

Recall from Part I [22] that s p l i t  satisfies s p l i t ( h ,  (a,b)) = h(a,b). The 
equations for l i s t _ c a s e  follow easily by rewriting with the those for case and 
split. 

l i s t _ c a s e ( c ,  h, Nil)  = case(Au.c, s p l i t ( h ) ,  Inl(9))  
: 

C. 

list_case(c,h, Cons(z,y)) = case(Au.c, split(h),Inr(<x,y})) 

: split(h, <x, y}) 
: 
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To summarize, we obtain the equations 

l i s t _ c a s e ( c , h ,  Ni l )  = c  l i s t_case (c ,h ,  Cons(x,y)) =h(x ,y ) .  

Proving the equations for l i s t _ r e c  is almost as easy. Unfolding the recursion 
equation for Vrec yields 

l i s t _ r e c ( c ,  h, l) = l i s t _ c a s e ( c ,  )ix y.h(x, y, 9'y), l) (7) 

where g = Az 6 Vrank(1).list_rec(c, h, z). We instantly obtain the Nil case, 
and with slightly more effort, the recursive case: 

l i s t _ r e c ( c ,  h, N i l )  = c 

l i s t _ r e c ( c ,  h, Cons(x,y))  = h(x,y, l i s t _ rec (c ,  h, y) ). 

In deriving the latter equation, the first step is to put l - Cons(x, y) in (7) and 
apply an equation for l i s t _ c a s e :  

l i s t _ r e c ( c , h ,  Cons(x,y))  = l i s t _ c a s e ( c ,  Axy.h(x,y,g 'y) ,Cons(x,y))  
= h ( x , v , g ' v ) .  

All that remains is the/3-reduction of 9'Y to l i s t _ r e c ( c ,  h, y), where g'Y is 

(AZ E Vrank(Cons(x,y)).list-rec(c, h, z)) ' y. 

This step requires proving y E Vrank(Cons(x,y)). Note that Cons(x,y) = 
<1, <x, y>>; by properties of r ank  (§3.4), we must show 

r a n k ( y )  < rank(<l,  <x,y)>). 

This is obvious because rank(b) < rank(<a, b)) for all a and b, and because the 
relation < is transitive. 

Recursion operators for other data structures are derived in the same man- 
ner. 

4.3.2. Defining Functions on Lists 

The Isabelle theory defines some common list operations, such as append and 
map, using l i s t _ t e e :  

map(h,/) -- list_rec(Nil, Axyr.Cons(h(x),r),  l) 
xs@y8 ----- l i s t _ r e c ( y s ,  Axyr.Cons(x,r),  xs). 

The usual recursion equations follow directly. Note the absence of typing condi- 
tions such as l E l i s t ( A ) :  

map(h, N i l ) =  N i l  map(h, Cons(a,l)) = Cons(h(a),map(h,l)) 

Nil w = vs Cons(a, 0 e W  : Cons(a, l e W )  
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The familiar theorems about these functions have elementary proofs by list induc- 
tion and simplification. Theorems proved by induction have typing conditions; 
here is one example out of the many proved in Isabelle: 

xs e l i s t ( A )  

map(h, xs@ys) = map(h, xs)@map(h, ys) " 

We can also prove some unusual type-checking rules: 

I e l i s t ( A )  

map(h,/) e l i s t ( { h ( x ) . x  e A})" 

Here, l i s t ( { h ( x ) . x  E A}) is the set of all lists whose elements have the form 
h(x) for some x E A. Using l i s t ( - . - )  in recursive definitions raises interesting 
possibilities, as the next section will illustrate. 

4.4. USING list ( . -  .) IN RECURSION EQUATIONS 

Recursive data structure definitions typically involve x and +, but sometimes it 
is convenient to involve other set constructors. This section demonstrates using 
l i s t ( . . . )  to define another data structure. 

Consider the syntax of terms over the alphabet A. Each term is a function 
application f ( t l , . . .  ,in), where f E A and tl, . . . ,  tn are themselves terms. 
We shall formalize this syntax as term(A),  the set of all trees whose nodes are 
labelled with an element of A and which have zero or more subtrees. It is natural 
to regard the subtrees as a list; we solve the recursion equation 

term(A) = A × list(term(A)). (8) 

Before using list(..-) with the I~laster-Tarski theorem, we must show that it 
is monotonic and bounded: 

A C B  
l i s t ( A )  _C list(B) l i s t ( u n i v ( A ) )  C_ univ(A) .  

The proofs are simple using lemmas such as the monotonicity of l f p  (§2.4). If 
we now define 

term(A) - lfp(univ(A), AX.A × l i s t (X))  
Apply(a, ts) 

then we quickly derive (8) and obtain the single introduction rule 

a E A ts E list(term(A)) 

Apply(a, ~s) e term(A) 
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The structural induction rule takes a curious form: 

[x e A zs e l i s t ( { z  e term(A).%b(z)})]z,zs 

t e t e rm(A)  ¢(Apply(x ,  zs)) 
¢(t) 

Because of the presence of l i s t  in the recursion equation (8), we cannot 
express induction hypotheses in the familiar manner. Clearly, zs C l i s t ( { z  E 
term(A).%b(z)}) if and only if every element z of zs satisfies ¢(z)  and belongs 
to te rm(A) .  Proofs by this induction rule generally require a further induction 
over the term list zs. 

4.4.1• Recursion on Terms 

Let us define analogues of l i s t _ c a s e  and l i s t _ r e c .  The former is trivial: 
because every term is an ordered pair, we may use s p l i t .  

A recursive function on terms will naturally apply itself to the list of subterms, 
using the list functional map. Define 

t e r m _ r e c ( d ,  ~) 

-- Vrec(~, A t g . s p l i t ( A x  zs.d(x, zs, map(Az.g'z, zs)), t)). 

Note that map was defined above to be a binding operator; it applies to a meta- 
level function, not a ZF function (a set of pairs). Since g denotes a ZF function, 
we must write map(Az.g'z, zs) instead of map(g, zs). Although the form of map 
causes complications now, it leads to simpler equations later. 

Put t -- Apply(a,  ts) in the definition of t e r m _ r e c .  Unfolding the recursion 
equation for Vrec and applying the equation for s p l i t  yield 

t erm_rec(d ,  Apply(a, ts)) ---- s p l i t ( A x z s . d ( x ,  zs,map(Az.g'z,  zs)), <a, ts>) 

= d(a,~s,map(Az.g'z,~s)) 

where g - Ax E Vrank(<a,ts)).term-rec(d,x). The map above applies 
t e r m _ r e c ( d , x ) ,  restricted to x such that rank(x)  < rank((a ,  ts)), to each 
member of ts. Clearly, each member of ts  has lesser rank than ~s, and therefore 
lesser rank than (a, ts}; the restriction on x has no effect, and the result must 
equal map(Az.term_ r e c  (d, z), ts). We may abbreviate this (by ~7-contraction) to 
map(term_rec(d), ts). 

To formalize this argument, the ZF theory proves the more general lemma 

l e l i s t ( A )  0rd(o~) rank(1) e o l  

map(Az.(Ax e V~.h(x))'z,  l ) =  map(h,/)  

by structural induction on the list 1. The lemma simplifies the t e r m _ r e c  equation 
to 

list(A) 
term_rec(d, Apply(a, ~s)) = d(a, is, map(term_rec(d), is))" 
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The curious premise ts E l i s t ( A )  arises from the map lemma just proved; A 
need not be a set of terms and does not appear in the conclusion. Possibly, this 
premise could be eliminated by reasoning about the result of map when applied 
to non-lists. 

4.4.2. Defining Functions on Terms 

To illustrate the use of t e r m _ r e c ,  let us define the operation to reflect a term 
about its vertical axis, reversing the list of subtrees at each node. First we define 
rev,  the traditional list reverse operation. 8 

rev(l) -- list_rec(Nil, Axvr.r@Cons(x,r) ,  I) 

r e f l e c t ( t )  -- term_rec(Ax zs rs.Apply(x, rev(rs)) ,  t). 

Unfolding the recursion equation for t e r m _ r e c  instantly yields, for ts E 
l i s t ( A ) ,  

r e f l e c t ( A p p l y ( a ,  ts)) = Apply(a, r e v ( m a p ( r e f l e c t ,  ~s))). (9) 

Note the simple form of the map application above, since r e f l e c t  is a meta- 
level function. Defining functions at the meta-level allows them to operate over 
the class of all sets. On the other hand, an object-level function is a set of pairs; 
its domain and range must be sets. 

4.4.3. An Induction Rule for Equations between Terms 

']?he Isabelle ZF theory defines and proves theorems about several term opera- 
tions. Many term operations involve a corresponding list operation, as r e f l e c t  
involves rev.  Proofs by term induction involve reasoning about map. 

Since many theorems are equations, let us derive an induction rule for proving 
equations easily. First, we derive two rules: 

1 e l i s t ( { x  E A.¢(x)})  l E l i s t ( { x  e A.h,(x)  = hi(x)})  

l E l i s t ( A )  map(hi, l)  = map(h2,/) 

The first rule follows by monotonicity of l i s t .  To understand the second rule, 
suppose 1 E l i s t ( { x  E A.hl(x)  = h2(x)}). Then hi(x)  = hi(x) holds for 
every member x of the list l, so map(hi, l) = map(h2, 1). This argument may be 
formalized by using list induction. 

Combining the two rules with term induction yields the derived induction 
rule: 

[x E A zs E l i s t ( t e r m ( A ) )  map(hi, zs) = map(h2, zs)]z,zs 

t E term(A) hl(Apply(x, zs)) = hi(Apply(x, zs)) 

h i ( t )  = h i ( t )  
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The induction hypothesis, map(hl,zs) = map(h2, zs), neatly expresses that 
hi (z) = h2(z) holds for every member z of the list zs. 

4.4.4. Example of Equational lnduction 

To demonstrate the induction rule, let us prove r e f l e c t ( r e f l e c t ( t ) )  = t. The 
proof requires four lemmas about r e v  and map. If we ignore the premise l E 
l i s t ( A ) ,  the lemmas are 

rev(map(h , l ) )  = map(h, rev( l ) )  (10) 

map(hi,  map(h2, l)) = map(Au.hl (h2(u)), l) (11) 

map(Au.u, 1) = I (12) 

rev(rev(1)) = I .  (13) 

To apply the derived induction rule, we may assume the induction hypothesis 

m a p ( A u . r e f l e c t ( r e f l e c t ( u ) ) ,  zs) = map(Au.u, zs) (14) 

and must show 

r e f l e c t ( r e f l e c t ( A p p l y ( x ,  zs))) = Apply(x, zs). 

Simplifying the left hand side, we have 

reflect(reflect(Apply(x, zs) ) ) 
= re f l ec t (Apply (x ,  rev(map(ref leet ,  zs)))) 
= re f l ec t (Apply (x ,map(re f l ec t ,  rev(zs)))) 
= Apply(x,  
= Apply(x,  
: Apply(x, 
= Apply(x,  
= Apply(x,  
= Apply(x,  

rev(map(ref lect, map(reflect, rev(zs))))) 
rev(map (Au.ref lect (reflect(u)), rev (zs)))) 
map( )ku.refl ect(refl ect (u)), rev(rev(zs)))) 
map(Au.reflect (reflect (u)), ZS)) 
map(A . , zs)) 
zs) 

by (9) 
by (10) 
by (9) 
by (11) 
by (10) 
by (13) 
by (14) 
by (12) 

The use of map may be elegant, but the proof is rather obscure. The next section 
describes an alternative formulation of the term data structure. 

This section has illustrated how l i s t  can be added to our repertoire of set 
constructors permitted in recursive data structure definitions. It seems clear that 
other set constructors, including t e r m  itself, can be added similarly. 

4.5. MUTUAL RECURSION 

Consider the sets t r e e ( A )  and f o r e s t ( A )  defined by the mutual recursion equa- 
tions 

t r e e ( A )  = A x f o r e s t ( A )  

forest(A) = {~}+tree(A)x forest(A). 
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Observe that t r ee (A)  is essentially the same data structure as term(A), since 
f o r e s t ( A )  is essentially the same as l i s t ( t e rm(A)) .  Mutual recursion avoids 
the complications of recursion over the operator l i s t ,  but introduces its own 
complications. 

4.5.1. The General Approach 

Mutual recursion equations are typically solved by applying the Knaster-Tarski 
theorem over the lattice go(A) x go(B), the Cartesian product of two powersets. 
But we have proved the theorem only for a simple powerset lattice. Because 
the lattice go(A + t3) is order-isomorphic to go(A) x go(B), we shall instead 
apply the theorem to a lattice of the form go(A + B). We solve the equations by 
constructing a disjoint sum comprising all of the sets in the definition - here, a 
set called TF(A), which will contain t ree (A)  and fo re s t (A)  as disjoint subsets. 
This approach appears to work well, and TF(A) turns out to be useful in itself. 
A minor drawback: it does not solve the recursion equations up to equality, only 
up to isomorphism. 

To support this approach to mutual recursion, define 

Pa r t (A ,h )  - {x E A.3z.x = h(z)}. 

Here Par t (A,  h) selects the subset of A whose elements have the form h(z). 
Typically h is I n l  or Inr ,  the injections for the disjoint sum. Note that P a r t ( A +  
B, In l )  equals not A but {Inl(x) .x E A}. The disjoint sum of three or more sets 
involves nested injections. We may use Par t  with the composition of injections, 
such as Ax.Inr(Inl(x)) ,  and obtain equations such as 

Part(A + (/} + C), Ax.Inr(Inl(x))) = {Inr(Inl(x)).x E B}. 

4.5.2. The Formal Definitions 

Now TF(A), t r ee (A)  and fo re s t (A)  are defined by 

TF(A) = l fp(univ(A) ,  AX.A x Par t (X,  Inr) + 

+({~)} + Par t (X,  Inl) × Par t (X,  Inr)))  

t r ee (A)  = Part(TF(A), In l )  

f o r e s t ( A )  - Part(TF(A),Xnr). 

The presence of Par t  does not complicate reasoning about l fp .  In particular, 
Par t (A,  h) is monotonic in A. We obtain 

TF(A) = A x Part(TF(A), Inr)  + 

+({~} + Part(TF(A), In l )  x Part(TF(A), Inr))  

= A x fo r e s t (A)  + ({0} + t ree (A)  x fo res t (A)) .  
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This solves our recursion equations up to isomorphism: 

tree(A) ---- { I n l ( x ) . x  • A x forest(A)} 

forest(A) ---- {Inr(x).x• {9}+tree(A) X forest(A)}. 

These equations determine the tree and forest constructors, Tcons, Fnil and 
Feons. Because of the similarity to list(A), we can use the list constructors to 
abbreviate the definitions: 

Tcons(a, f)  = Inl(<a, f))  

Fnil -- Inr(Nil) 

Fcons(t, f )  -- Inr(Cons(t, f)).  

A little effort yields the introduction rules: 

a 6 A f E forest(A) 
Tcons(a,f) 6 tree(A) Fnil 6 forest(A) Fcons(t,f) 6 forest(A) 

The usual methods yield a structural induction rule for TF(A): 

t e tree(A) f E  forest(A) 

(15) 

F t e t r ee (A)  ] [xEA ] , f 6 forest(A) 
f C forest(A) | ~(t) 
¢(f) ~,: [ ¢(f) ~,: 

z 6 TF(A) ¢(Fcons(t ,  f))  ¢ ( F n i l )  ¢(Tcons(x,  f))  

¢(z) 

(The assumptions are stacked vertically to save space.) Although this may not 
look like the best rule for mutual recursion, it is surprisingly simple and useful• 
It affords easy proofs of several theorems in the Isabelle theory. For the general 
case, there is a rule that allows different induction formulae, ¢ for trees and ¢ 
for forests: 

x,f t,f 

¢(Fnil) 

x E A  ] 
f • fo r e s t (A)  
¢( f )  

¢(Tcons(x, f))  

t • t r ee (A)  
f • fo re s t (A)  
¢(t) 
¢(f )  

¢(Faons( t , / ) )  
(16) 

(Vtetree(A)•¢(t)) A (Vfeforest(A).¢(f)) 

This rule follows by applying the previous one to the formula 

(z e t r ee (A)  -+ "¢(z)) A (z e fo re s t (A)  --+ ¢(z)). 
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Its derivation relies on the disjointness of t r e e ( A )  and f o r e s t ( A ) .  Both rules 
are demonstrated below. 

4.5.3. Operating on Trees and Forests 

The case analysis operator is called TF_ case ,  and the recursion operator is called 
TF_rec :  

TF_case(b,  c, d, z) =-- 

TF_rec(b ,  c, d, z) = 

case(split(b),  l i s t _  case(c, d), z) 
Vrec(z, Az r.TF_ case(Am f.b(x, f, r 'f) ,  
c, At f.d(t, f ,  r't, r ' f ) ,  z)). 

Note the use of the case analysis operators for disjoint sums (case),  Cartesian 
products ( s p l i t ) ,  and lists ( l i s t _ c a s e ) .  Unfolding Vrec, we now derive the 
recursion rules, starting with the one for trees: 

TF_rec(b, c, d, Tcons(a, f)) 
: TF_rec(b,c,d, Inl((a , f ) ) )  
= TF_case(Ax f.b(x, f, r'f), c, At f.d(t, f, r't, r 'f) ,  Inl(<a, f>)) 
= case(split(Am f.V(x, f, ~'f)), 

l i s t_case(c ,  At f.d(t, f, r't,  r'f)), Inl(<a, f))) 
= s p l i t ( A x  f.b(x, f ,  r ' f ) ,  <a, f>) 

: b(a, f , r ' f )  

where r = Am E Vrank( In l ( (a , f ) ) ) .TF_rec(b ,  c, d, x). The usual lemmas prove 

r a n k ( f )  < rank(Inl((a, f ) ) ) ,  

allowing the/3-reduction of r ' f  to b(a, f,  TF_rec(b,  c, d, f ) ) .  The other recursion 
rules for TF_rec  are derived similarly. To summarize, we have 

TF_rec(b ,  c, d, Tcons(a ,  f ) )  = b(a, f ,  TF_rec(b,  c, d, f ) )  

TF_rec(b ,  c, d, F n i l )  = c 

TF_rec(b ,  c, d, Fcons( t ,  f ) )  : d(t, f ,  TF_rec(b,  c, d, t), TF_rec(b,  c, d, f ) ) .  

4.5.4. Defining Functions on Trees and Forests 

Some examples may be helpful. Here are three applications of TF_rec :  
- TF_map applies an operation to every label of a tree. 
- T F _ s i z e  returns the number of labels in a tree. 
- T F _ p r e o r d e r  returns the labels as a list, in preorder. 
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Each operation is defined simultaneously for trees and forests: 

TF_map(h,z) -- TF_rec(Ax f r.Tcons(h(x),r), 
Fnil ,  

At f r l  T2.Fcons(T1, T2), Z) 

TF_size(h,z)  = TF_rec(Az f r.suce(r), 

0, 

At f 7~1 f 2.rl  O r2, Z) 

TF_preorder(h, z) --= TF_rec(Az f r.Cons(z,r), 
Nil, 

At f r 1 Tm.T 1 @r2, z).  

Here @ is the addition operator for natural numbers. Recall that @ is the append 
operator for lists (§4.3). 

Applying the TF_rec recursion equations to TF_map immediately yields 

TF_map(h, Tcons(a, f))  = Tcons(h(a), TF_map(h, f))  

TV_map(h, Fnil) = Fnil 
TF_map(h, Fcons(t, f)) = Fcons(TF_map(h, t), TF_map(h, f)). 

Many theorems can be proved by the simple induction rule (15) for TF(A), taking 
advantage of ZF's lack of a formal type system. Separate proofs for t ree(A)  
and fo r e s t (A)  would require the cumbersome rule for mutual induction. 

4.5.5. Example of Simple Induction 

Let us prove TF_map(Au.u, z) = z for all z E TF(A). By the simple induction 
rule (15), it suffices to prove three subgoals: 

- TF_map(Au.u, Tcons(z, f))  = Tcons(z, f)  assuming the induction 
hypothesis TF_map(Au.u, f)  = f 

- TF_map(Au.u, Fni l )  = Fn i l  
- TF_map(Au.u, Fcons(t, f))  = Fcons(t, f)  assuming the induction 

hypotheses TF_map(Au.u, t) = t and TF_map(Au.u, I)  = I 
These are all trivial, by the recursion equations. For example, the first subgoal 
is proved in two steps: 

TF_map(Au.u, Tcons(z, f))  = Tcons(z, TF_map(Au.u, f))  = Tcons(x, f).  

The simple induction role proves various laws relating TF_map, TF_size, and 
TF_preorder  with equal ease. 

4.5.6. Example of Mutual Induction 

The mutual induction rule (16) proves separate properties for t ree(A)  and 
fo res t (A) .  The simple rule (15) can show that TF_map takes elements of TF(A) 
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to TF(B), for some B; let us sharpen this result to show that TF_map takes trees 
to trees and forests to forests. Assume h(x) E B for all x E A, and apply mutual 
induction to the formula 

(gtetree(a).TF_map(h,t) e t r e e ( B ) )  

A(VfEeorest(A ).TF_map(h, f )  e forest(B)). 

The first subgoal of the induction is to show 

rF_map(h, Tcons(x, f))  e t r e e ( B )  

assuming x E A, f E f o r e s t ( A )  and TF_map(h, f )  E f o r e s t ( B ) .  The recur- 
sion equation for TF_map reduces it to 

Tcons(h(x),  TF_map(h, f))  E t r e e ( B ) ;  

the type-checking rules for Tcons and h reduce it to the assumptions x E A and 
TF_map(h, f )  E f o r e s t ( B ) .  

The second subgoal of the induction is 

TF_map(h, Fnil) E forest(B), 

which reduces to the trivial Fnil E f o r e s t ( B ) .  The third subgoal, 

TF_map(h, Fcons(t,  f ))  E f o r e s t ( B ) ,  

is treated like the first. 
We have considered two approaches to defining variable-branching trees. The 

preceding section defines term(A) by recursion over the operator l i s t ,  so that 
l i s t ( t e r m ( A ) )  denotes the set of forests over A. I prefer this to the present 
approach of mutual recursion. But this one example does not demonstrate that 
mutual recursion should always be avoided. An example to study is a program- 
ming language that allows embedded commands in expressions; its expressions 
and commands would be mutually recursive. 

5. Soundness and Completeness of Propositional Logic 

We have discussed the ZF formalization of least fixedpoints, recursive func- 
tions, and recursive data structures. Formalizing propositional logic - its syntax, 
semantics and proof theory - exercises each of these principles. The proofs of 
soundness and completeness amount to an equivalence proof between denotation- 
al and operational semantic definitions. Similar examples abound in theoretical 
computer science. 

5.1. DEFINING THE SET OF PROPOSITIONS 

The propositions come in three forms: 
1. F l s  is the absurd proposition. 
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2. #v is a propositional variable, for v E nat .  
3. p D q is an implication if p and q are propositions. 

The set p rop  consists of all propositions. It is the least solution to the recursion 
equation 

prop  = {(~} + n a t  + prop x prop. 

The definition is similar to the others described above. We obtain the introduction 
rules 

v E nat p E prop q E prop 
FIs E prop #v E prop p D q E prop 

with the usual induction rule for proving a property for every element of prop. 
Recursive functions on prop are defined in the standard way. 

Next, we define the denotational semantics of a proposition by translation to 
first-order logic. A truth valuation t is a subset of n a t  representing a set of atoms 
regarded as true (all others to be regarded as false). If p E prop and t c_ na t ,  
then i s _ t r u e ( p ,  t) states that p evaluates to true under t. Writing _1_ for the 
absurd formula in first-order logic, the recursion equations are 

is_true(Fls, t) e-> i 

is_true(#v,t) ++ V E t 

is_true(p D q~t) ++ (is_true(p,~)-+ is_true(q,t)). 

Our recursion principles cannot express i s _ t r u e ( p ,  t) directly, since it is a for- 
mula. Instead, i s _ t r u e ( p ,  t) is defined in terms of a recursive function that 
yields the truth value of p as an element of {0, 1 }. The details are omitted. 

5.2. DEFINING AN INFERENCE SYSTEM IN Z F  

Let H be a set of propositions and p a proposition. Write H ~ p to mean that 
the truth of all elements of H implies the truth of p, for every truth valuation t. 
Logical consequence is formalized in ZF by 

H ~ p =_ Vt .(Vq~H.is_true(q, t))  --+ i s _ t r u e ( p , t ) .  

The objective is to prove that H ~ p holds if and only if p is provable from H 
using the axioms (K),  (S), (DN) with the modus ponens rule (MP).  Note that 
D associates to the right: 

(K) 

P~q P (MP)  
q 
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Such inference systems are becoming popular for defining the operational seman- 
tics of programming languages. They can be extremely large - consider the def- 
inition of Standard ML [17]. The Knaster-Tarski theorem can express the least 
set of propositions closed under the axioms and roles, but we must adopt a 
:formalization that scales up to large inference systems. 

Defining a separate Isabelle constant for each axiom and rule affords some 
control over formula expansion during proof. An axiom is expressed as a union 
over its schematic variables: 

axK- U U { DqDp} 
pEprop qEprop 

axS -- U U U {(pDqDr) D(pDq)D(pDr)} 
pEprop qEprop rEprop 

axDN -- U {((PZ) Fls) DFIs) Dp}. 
pEprop 

A rule takes a set X of theorems and generates the set of all immediate conse- 
quences of X: 

ruleMP(X) ---- U {q E prop.{p D q,p} C_ X}. 
pEprop 

The axioms and rules could have been defined in many equivalent ways. Unions 
and singletons give a uniform format for the axioms. But ruleMP makes an 
ad hoc use of the axiom of separation, since its conclusion is just a schematic 
variable; this need not be the case for other rules. The use of the subset relation 
in {p D q,p} C_ X simplifies the proof that ruleMP(X) is monotonic in X. 

We now define the set thins(H) of theorems provable from H, and the con- 
sequence relation H F- p. The first part of the union, H M prop, considers only 
the propositions in H as theorems; putting just H here would make most of our 
results conditional on H C prop. 

thms(H)  ~ l f p ( p r o p ,  AX.(H Aprop)  U axK U axS U axDN U ruleMP(X)) 

H }- p -- p E thms(H).  

We immediately obtain introduction rules corresponding to the axioms; the 
premises perform type-checking: 

p E  H p E p r o p  (H) p E p r o p  q C p r o p  (/()  
H~-p H~-pDqDp 

pEprop qEprop rEprop 

HF-(pDqDr) D(pDq)D(pDr)  (S) 

p E prop (DN). 
H ((p r ls)  r ls )  D ; 
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Proving that every theorem is a proposition helps to derive a rule for modus 
ponens that is free of type-checking: 

H~-p Hf-p Dq H~-p (MP). 
p E prop H F- q 

We may use these rules, cumbersome though they are, as an Isabelle object-logic. 
They can be supplied to tools such as the classical reasoner in order to prove 
Isabelle goals involving assertions of the form H t- p. This rule is derived using 
(MP), (S) and (K): 

p E prop (I).  
Ht-pDp  

By the monotonicity result from §2.4, thins (H) is monotonic in H, which justifies 
a rule for weakening on the left. Axiom (K) justifies weakening on the right: 

Gc_C_H G~-p H~-q p E p r o p  

H~-p H~-pDq 

5.3. R U L E  INDUCTION 

Because it is defined using a least fixedpoint in ZF, our propositional logic admits 
induction over its proofs. This principle, sometimes called rule induction, does 
not require an explicit data structure for proofs; just apply the usual induction 
rule for l f p ,  Below we shall discuss this rule with two examples of its use, the 
deduction theorem and the soundness theorem (proving the latter in an Isabelle 
session). 

The rule is too large to display in the usual notation. Its conclusion is %0(p) 
and it has six premises: 

1. H ~- p, which is the major premise 
2. %0(x) with assumptions [x E p rop  x E H]~ 
3. %0(x D y D x) with assumptions [x E p r o p  y E prop]x,y 
4. % 0 ( ( x D y D z )  D ( x D y )  D x D z )  

with assumptions [x E p r o p  y E p r o p  z E prop]z,y,z 
5. %0(((x D F l s )  D F l s )  D x) with assumption Ix E prop]x 
6. %0(y) with assumptions [H F- x D y H F- x %0(x D y) %0(X)]x,y 

The rationale for this form of induction is simple: if %0 holds for all the axioms 
and is preserved by all the rules, then it must hold for all the theorems. The 
premise %0(x D y D x) ensures that %0 holds for all instances of axiom (K),  
and similar premises handle the other axioms. The last premise ensures that rule 
(MR) preserves %0; thus it takes ¢ (x  D y) and %0(x) as induction hypotheses. 9 

The deduction theorem states that {p}UH ~- q implies H ~- p D q. In Isabelle's 
set theory, it is formalized as follows (since cons(p,  H)  = {p} U H): 

cons(p,  H)  ~- q p E prop 
Ht-pDq 
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The proof is by rule induction on cons (p, H)  ~- q. Of the five remaining subgoals, 
the first is to show H ~- p D x assuming x E prop and x E cons(p, H).  From 
x E cons(p, H)  there are two subcases: 

- If x = p, then H ~- x D x follows using (I). 
- If x E H, then H ~- p D x follows using (H) and weakening. 

The next three subgoals correspond to one of the axioms (K), (S), or (DN) 
and hold by that axiom plus weakening. For the last subgoal, H F- p D y follows 
from H t- p D x D y and H t- p D x using (S) and (MP). 

Isabelle executes this proof of the deduction theorem in under six seconds. 
The classical reasoner, given the relevant lemmas, proves each subgoal automat- 
ically. 

5.4. PROVING THE SOUNDNESS THEOREM IN ISABELLE 

Another application of rule induction is the soundness theorem: 

H~-p 

The proof is straightforward. The most difficult case is showing that H ~ x D y 
and H ~ x imply H ~ y. The Isabelle proof consists of three tactics. The goalw 
command states the goal and expands the definition of logical consequence, 
l o g c o n _ d e f .  

goalw PropThms.thy [logcon_def] "!!H. H I- p ==> H I = p"; 

Level 0 

!!H. H I- p ==> H i = p 

I. !!H. H I- p ==> ALL t. 

(ALL q:H. is_true(q, t)) --> is_true(p, t) . 

Applying rule induction to the premise H ~ p returns five subgoals: 

by (eresolve_tac [PropThms.induct] i); 

Level i 

!!H. H i- p ==> H i = p 

i. !~H p. 

[i p : H; p : prop i] ==> 

ALL t. (ALL q:H. is_true(q, t)) --> is_true(p, t) 

2. !!Hp q. 

[i p : prop; q : prop I] ==> 

ALL t. (ALL q:H. is_true(q, t)) --> is_true(p => q => p, t) 
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3. !!H p q r. 

[1 p : prop; q : prop; r : prop I] ==> 

ALL t. 

(ALL q:H. is_true(q, t)) --> 

is_true((p => q => r) => (p => q) => p => r, t) 

4. !!H p. 

p : prop ==> 

ALL t. 

(ALL q:H. is_true(q, t)) --> 

is_true(((p => Fls) => Fls) => p, t) 

5. ~H p q. 

[J H J- p => q; 

ALL t. (ALL q:H. is true(q, t)) --> is_true(p => q, t); 

H J- p; ALL t. (ALL q:H. is_true(q, t)) --> is_true(p, t); 

p : prop; q : prop ]] ==> 

ALL t. (ALL q:H. is_true(q, t)) --> is_true(q, t) 

The equations for is_true, shown in §5.1 above, are called is_true_Fls, 
is_true_Var and is_true_Imp in Isabelle. Each is an 'if and only if' assertion. 

The next command converts is_true_Imp into the rule 

is_true(p D q,t) i s_ t rue (p ,  t) 
i s_ t rue (q ,  t) 

and gives it to fas t_ tac .  The rule breaks down an induction hypothesis to solve 
subgoal 5. 

by (fast_tac (ZF_cs addSDs [is_true_Imp RS iffDl RS mp]) 5); 

Level 2 

!!H. H l- p ==> H ]= p 

As above but without subgoal 5 . . .  

Rewriting by the recursion equations for i s _ t r u e ,  Isabelle's simplifier solves 
the other four subgoals. For example, the conclusion of subgoal 2 rewrites to 

i s _ t r u e ( x , t )  --+ i s _ t r u e ( y , t )  --+ i s_ t rue (x , t ) ,  

which is obviously true. 

by (ALLGOALS 

(simp_tac 

(ZF_ss addsimps [is_true_Fls, is_true_Var, is true_Imp]))); 
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Level 3 

!!H. H 1- p ==> H [= p 

No subgoals! 

This proof executes in aboutsix seconds. 

5.5.  COMPLETENESS 

Completeness means every valid proposition is provable: if H ~ p, then H ? p. 
We consider first the special case where H = 0 and later generalize H to be any 
finite set. 

A key lemma is the law of the excluded middle, 'q or not q.' Since our propo- 
sitions lack a disjunction symbol, the law is expressed as a rule that reduces p 
to two subgoals - one assuming q and one assuming --,q: 

cons (q ,H)  F-p cons(q D Fls ,  H)  ~-p q E prop 

HF-p 

5.5.1. 7['he Informal Proof 

Let t be a truth valuation, and define hyps(p, t) by recursion on p: 

hyps(Vls ,  t) = 0 

I {#v} if v E t 
hyps(#v,t)=  {#vnVls) if r e  

hyps(p  D q,t) ---- hyps(p , t )  Uhyps(q , t ) .  

Informally, hyps(p,  t) returns a set containing each atom in p, or the negation of 
that atom, depending on its value in ~. The set hyps(p, t) is necessarily finite. 

For this section, call H a basis of p if H F- p. Assume that p is valid, 0 ~ p. 
After proving a lemma by induction, we find that hyps(p, t) is a basis of p for 
every truth valuation t: 

p E prop  0 ~ p 

hyps(p,  t) ~- p 

The next step towards establishing 0 ~- p is to reduce the size of the basis. If 
hyps(p,  t) = cons(#v, H),  then the basis contains #v; removing v from t creates 
an almost identical basis that contains ~#v: 

hyps(p,  t - {v}) = cons(#v D Fls ,  H)  - {#v}. 

Applying the law of the excluded middle with #v for q yields H F- p, which is a 
basis of p not mentioning #v at all. Repeating this operation yields smaller and 
smaller bases of p. Since hyps(p, t) is finite, the empty set is also a basis. Thus 
we obtain 0 f-p, as desired. 
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5.5.2. An Inductive Definition of Finite Sets 
The formalization of this argument is complex and will be omitted here. But one 
detail is relevant to recursive definitions: what is a finite set? Finite sets could 
be defined by reference to the natural numbers, but they are more easily defined 
as a least fixedpoint. The empty set is finite; if y is finite, then cons(x, y) is 
also: 

Fin(A)-- - - l fp(p(A) ,  AZ.{(~} U (y~eZ x~A {c°ns(x'y)}) )" 
Monotonicity is shown by the usual lemmas; the Knaster-Tarski theorem imme- 
diately yields the introduction rules: 

{0) EFin(A)  a e A  b E F i n ( A )  
cons(a, b) E Fin(A)" 

We have defined a finite powerset operator; Fin(A) consists of all the finite 
subsets of A. The induction rule for Fin(A) resembles the rule for lists: 

[ x E A  y E F i n ( A )  x ~ y  ¢(Y)]z,y 

b E Fin(A) ~b(@) ~b(cons(z,y)) 

¢(b) 
This rule strengthens the usual assumption rule for l f p  by discharging the 
assumption x ~ y. Its proof notes that x E y implies cons(x, y) -- y, rendering 
the induction step trivial in this case. 

Reasoning about finiteness is notoriously tricky, but finite set induction proves 
many results about Fin(A) easily. The union of two finite sets is finite; the union 
of a finite set of finite sets is finite; a subset of a finite set is finite: 

b E Fin(A) c E Fin(A) C E Fin(Fin(A)) c C b b E Fin(A) 

b U c E Fin(A) U C E Fin(A) c E Fin(A) 

5.5.3. The Variable-Elimination Argument 
Returning to the completeness theorem, we can now prove that hyps(p, t) is 
finite by structural induction on p: 

p C prop 

hyps(p, t) E Fin(Uvcna t .{#% #v D Fls})" 

For the variable-elimination argument, we assume p E prop and ~ ~ p and 
prove 

Vt.hyps(p, t) -- hyps(p, to) }- p 
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by induction on the finite set hyps(p, to). (Here to is simply a free variable.) 
Finally, instantiating t to to and using A - A = ~, we obtain ~) t- p. 

This establishes an instance of the completeness theorem: 

(~ ~p pEprop 

To show H ~ p implies H F- p, where H may be any finite set, requires a 
further application of finite set induction. I have not considered the case where 
H is infinite, since it seems irrelevant to computational reasoning. 

6. Related Work and Conclusions 

This theory is intended to support machine proofs about recursive definitions. 
Every set theorist knows that ZF can handle recursion in principle, but machine 
proofs require assertions to be formalized correctly and conveniently. The deriva- 
tions of the recursion operators wfrec ,  t r a n s r e c  and Vrec are particularly sen- 
sitive to formal details. Let us recall the chief problems and their solutions: 

- Induc t i ve l y  defined sets are expressed as least fixedpoints, applying the 
Knaster-Tarski theorem over a suitable set. 

- Recursive functions are defined by well-founded recursion and its deriva- 
tives, such as transfinite recursion. 

- Recursive data structures are expressed by applying the Knaster-Tarski the- 
orem to a set with strong closure properties. 

I have not attempted to characterize the class of recursive definitions admitted 
by these methods, but they are extremely general. 

The overall approach is not restricted to ZF set theory. I have applied it, 
with a few changes, to Isabelle's implementation of higher-order logic. It may 
be applicable to weaker systems such as intuitionistic second-order logic and 
intuitionistic ZF set theory. Thus, we have a generic treatment of recursion for 
generic theorem proving. 

In related work, No~l [18] has proved many theorems about recursion using 
Isabelle's set theory, including well-founded recursion and a definition of lists. 
But Noel does not develop a general theory of recursion. Ontic [10] provides 
strong support for recursively defined functions and sets. Ontic's theory of recur- 
sion differs from mine; it treats recursive functions as least fixedpoints, with no 
use of well-founded relations. 

The Knaster-Tarski theorem can be dropped. If h is continuous, then 
Unew An(O) is its least fixedpoint. Induction upon n yields computation induc- 
tion, which permits reasoning about the least fixedpoint. Ontic and No61 both use 
the construction, which generalizes to larger ordinals, but I have used it only to 
define u n i v  and e c l o s e .  

The Knaster-Tarski theorem has further applications in its dual form, which 
yields greatest fixedpoints. These crop up frequently in computer science, mainly 
in connection with bisimulation proofs [16]. 
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Recently I have written an ML package to automate recursive definitions in 
Isabelle ZF [24]. My package is inspired by T. Melham's inductive definition 
packages for the Cambridge HOL system [5, 15]. It is unusually flexible because 
of its explicit use of the Knaster-Tarski theorem. Monotone operators may occur 
in the introduction rules, such as the occurrence of l i s t  in the definition of 
term(A) above. 

Given the desired form of the introduction rules, my package makes fixedpoint 
definitions. Then it proves the introduction and induction rules. It can define the 
constructors for a recursive data structure and prove their freeness. The package 
has been applied to most of the inductive definitions presented in this paper. It 
supports inductively defined relations and mutual recursion. 

The Isabelle ZF theory described in this paper is available by ftp. For more 
information, please send electronic mail to the author, lcp@cl.eam.ac.uk. 
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Notes 

1 This means the two sets are in one-to-one correspondence and have equivalent orderings. 
2 The b n d _ m o n o  premises could be weakened, but to little purpose, because they hold in 

typical uses of 1 fp .  
3 All Isabelle timings are on a Sun SPARCstation ELC. 
4 The approach could be generalized to non-well-founded set theory [2] by verifying that the 

set u n i v ( A ) ,  defined in §4.2, is well founded. 

5 There is no loss of generality: one can always apply transitive closure again. 
6 The traditional axiom of infinity has an existentially quantified variable in place of I n f .  

Introducing the constant is conservative and allows n a t  to be defined explicitly. 
v Earlier versions of Isabelle ZF defined l i s t ( A )  to satisfy the recursion l i s t ( A )  = {0} t3 

(A x l i s t ( A ) ) .  Then 13 stood for the empty list and (a,l) for the list with head a and tail l; 
note that 13 does not equal any pair. The present approach follows a uniform treatment of data 
structures. 

8 This version takes quadratic time, but it is easier to reason about than a linear time reverse. 
9 The other hypotheses, H ~- x D y and H F- x, are typical of strong rule induction [5]; they 

come for free from the induction rule for 1 fp .  
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