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Abstract. IMPS is an interactive mathematical proof system intended as a general-purpose too! '~'or 
lbrmulating and applying mathematics in a familiar fashion. The logic of IMPS is based on a version 
of simple type theory with partial functions and subtypes. Mathematical specification and inference are 
performed relative to axiomatic theories, which can be related to one another via inclusion and theory 
interpretation. IMPS provides relatively large primitive inference steps to facilitate human control of 
the deductive process and human comprehension of the resulting proofs. An initial theory library con- 
taining over a thousand repeatable proofs covers significant portions of logic, algebra, and analysis and 
provides some support for modeling applications in computer science. 
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~o Introduction 

The primary goal of  IMPS, an interactive mathematical proof  system, is to provide 
mechanized support for the traditional techniques of mathematical reasoning. The 
system consists of a data base of  mathematics (represented as a collection of inter- 
connected axiomatic theories) and a collection of  tools for exploring, applying, 
and extending the mathematics in the data base. IMPS is distinguished by its 
logic, its methodology for formalizing mathematics, and its style of  proof. 

o Logic. The IMPS logic is intended to allow the user to formulate mathematical 
concepts and arguments in a natural and direct manner. It is a simple type theory 
with strong support for specifying and reasoning about functions. Unlike classical 
logic, functions may be partial and terms may be nondenoting, but formulas 
always have a standard truth value. Section 2 describes the IMPS logic. 

® Methodology. Mathematics is formalized in IMPS as a network of axiomatic 
theories. The theories in the network are linked together by theory interpretatio~ls 
which serve as conduits to pass results from one theory to another. This way of  
~brmalizing mathematics - the 'little theories' version of axiomatic method 
has advantages for mechanized mathematics [19]. In particular, it fosters the reuse 
of theories and their constituents. Section 3 discusses the little theories approach in 
IMPS. 

* Supported by the MITRE-Sponsored Research program. 
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• Proofs. In contrast to the formal proofs described in logic textbooks, IMPS proofi 
are a blend of computation and high-level inference. Consequently, they resembl~ 
intelligible informal proofs, but unlike informal proofs, all the details of an IMP5 
proof are machine checked. IMPS emphasizes interactive proof development 
There is essentially no structural difference between completed proofs and partial 
proof attempts. The development of proofs in IMPS is the subject of Section 4. 

The remaining sections of the paper discuss the IMPS user interface (Section 5), 
the use of IMPS for mathematical analysis (Section 6), and the IMPS mathematics, 
data base (Section 7). A brief conclusion is given in Section 8. 

2. Logic 

The logic 1 of IMPS is called LUTINS, 2 a logic of undefined terms for inference in 
natural style. LUTINS is a conceptually simple implementation of higher-ordel 
predicate logic that closely conforms to mathematical practice. Partial functions 
are dealt with directly; consequently, terms may be nondenoting. The logic, 
however, is bivalent; formulas are either true or false. 

LUTINS is derived from the formal system PF* [17], which in turn is derived from 
the formal system PF [16]. PF is a version of Church's simple theory of types [1, 7] in 
which functions may be partial, and PF* is a many-sorted, multivariate simple type 
theory with partial functions, subtypes, and definite description operators. It is 
shown in [16] and [17] that PF and PF*, respectively, are complete with respect to 
a Henkin-style general models semantics [29]. LUTINS is essentially PF* plus a 
number of convenient expression constructors, which are discussed below. The 
formal semantics of LUTINS is straightforwardly derived from the (standard 
models) semantics of PF* in [17]. (See [28] for a detailed description of the syntax 
and semantics of LUTINS.) 

2.1. HIGHER-ORDER FUNCTIONS AND TYPES 

Higher-order logic (or type theory) was developed in the early part of this century to 
serve as a foundation for mathematics, but lost its popularity as a foundation for 
mathematics in the 1930s with the rise of set theory and first-order logic. Higher- 
order logic emphasizes the role of functions, in contrast to set theory, which 
emphasizes the role of sets. In type theory, functions may be quantified and may 
take other functions as arguments. In order to avoid circularity, functions are 
organized according to a type hierarchy. 

Type theory has a uniform syntax; it is based on familiar notions; and it is highly 
expressive. The use of A-notation allows functions to be specified succinctly. Since 
type theory contains second-order logic, there are many things that can be expressed 
in it which cannot be directly expressed in first-order logic. For example, the 
induction principle for the natural numbers can be expressed completely and 
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naturally by a single second-order formula. (See [4, 45] for discussion on the 

expressive power of second-order logic relative to first-order logic.) 
The type hierarchy of LUTINS consists of base types and function types. Let ~ be 

a language in LUTINS. The base types of ~ are the type of propositions prop and 
m >/1 types of individuals. 3 The function types of  2 '  are inductively defined from its 
base types: if C~l, . . . ,%,~n+l are (base or function) types where n/>1, then 
a l , . . .  % --+ c~n+l is a function type. Since m and n may be strictly greater than 1, 
the type structure is 'many-sorted' and 'multivariate', respectively. 

A higher-order logic with this sort of type hierarchy is called a simple type theory. 
The automatic theorem proving system TPS developed at CMU [2], the proof  
development system HOL developed at the University of Cambridge [25], and the 
E H D M  and PVS verification systems developed at SRI International [39, 42] are 
also based on simple type theories. However, in these systems function types contain 
only total functions, while in LUTINS,  some types may contain partial functions. 
These are the types of kind ind. We say that a type ~ is of kind ind (or ~) if c~ 
is a base type of  individuals or c~ = a l , . . . , %  ~ %+1 and %+1 is of kind ind. 
Otherwise, we say that c~ is of kindprop (or *). 

When a function type a is known to be of kind ind, we prefer to write it in the 
form c ~ i , . . . , c ~ c ~ +  l instead of c~1, . . . ,%--+c~+ I. This emphasizes that a 
contains partial functions as well as total functions. 

Every formal expression in LUTINS has a unique type. The type of an expression 
serves both a semantic and syntactic role: an expression denotes an object in the 
denotation of  its type (if the expression is defined), and the syntactic well-formedness 
of an expression is determined on the basis of the types of its components. An 
expression is said to be of  kind ind (respectively, prop) if its type is of  kind ind 
(respectively, prop). Expressions of kind ind are used to refer to mathematical 
objects; they may be undefined. Expressions of  kind prop are primarily used in 
making assertions about mathematical objects; they are always defined. 

2.2. PARTIAL FUNCTIONS 

One of the primary distinguishing characteristics of LUTINS is its direct 
approach to specifying and reasoning about partial functions (i.e., functions which 
are not necessarily defined on all arguments). Partial functions are ubiquitous in 
both mathematics and computer science. If a term is constructed from simpler 
expressions by the application of  an expression denoting a partial function f to an 
expression denoting an argument a which is outside the domain of f ,  then the 
term itself has no natural denotation. Such a term would violate the existence 
assumption of classical logic, which says that terms always have a denotation. 
Thus a direct handling of partial functions can only lie outside of classical logic. 4 

The semantics of  LUTINS is based on five principles: 

(1) Variables, constants, and A-expressions always have a denotation. 
(2) Expressions of type prop always denote a standard truth value. 
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(3) Expressions of kind ind may denote partial functions. 

(4) An application of  kind ind is undefined if its function or any of its arguments is 
undefined. 

(5) An application of type prop is false if any of  its arguments is undefined. 

As a consequence of these principles, expressions of  kind prop must be denoting. 
We have chosen this approach for dealing with partial functions because it causes 
minimal disruption to the patterns in reasoning familiar from classical logic and 
standard mathematical practice. (For a detailed discussion of various ways of 
handling partial functions in predicate logic, see [16].) 

2.3. CONSTRUCTORS 

The expressions of a language of LUTINS are constructed from variables and 
constants by applying constructors. Constructors serve as 'logical constants' that 
are available in every language. LUTINS has approximately 20 constructors. (PF 
and PF* have only two constructors, application and A-abstraction.) Logically, 
the most basic constructors are apply-operator,  lambda, iota, and equals; in 
principle, every expression of LUTINS could be built from these four. 5 The other 
constructors serve to provide economy of expression. 

There is a full set of constructors for predicate logic: constants for true and false, 
propositional connectives, equality, 6 and universal and existential quantifiers. 
LUTINS also has a definite description operator 5, an if-then-else operator if, and 
definedness constructors is-defined (denoted by the postfix symbol +) and 
defined-in (~. in between an expression and a sort). Although a few constructors 
(such as implies (infix D) and not (7)) correspond to genuine functions, most 
constructors do not. For  example, the constructor if is nonstrict in its second and 
third arguments (e.g., the expression if(0 = 0 , 0 ,  1/0) is defined in a theory of 
arithmetic even though 1/0 is undefined). Four  constructors bind variables: forall 
(V), forsome (3), ~, and A, the basic variable-binding constructor. 

The ~ constructor, the definite description operation of LUTINS,  is a constructor 
that cannot be easily imitated in other logics. Using this constructor, one can create a 
term of the form cx. P(x), where P is a predicate, which denotes the unique element 
described by P. More precisely, ~x. P(x) denotes the unique x that satisfies P if there 
is such an x and is undefined otherwise. In addition to being quite natural, this kind 
of definite description operator is very useful for specifying (partial) functions. For 
example, ordinary division (which is undefined whenever its second argument is 0) 
can be defined from the times function • by a A-expression of the form 

Ax, y .  Lz .x*  z = y. 

In logics in which terms always have a denotation, there is no completely satisfactory 
way to formalize a definite description operator (see Russell's attempt [43])~ This is 
because a definite description term ~x. P(x) must always have a denotation, even 
when there is no unique element satisfying P. 
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The IMPS implementation allows one to create macro/abbreviat ions called quasi- 

constructors which are defined in terms of the ordinary constructors. For  

example, the quasi-constructor quasi-equals (infix _~) is defined by the following 

biconditional: 

el ~- e2 ~ (el ; Ve2 ;) D el = e2. 

A quasi-constructor is used in two different modes: as a device for constructing 
expressions with a common form and as if it were an ordinary constructor. The first 
mode is needed for proving basic theorems about  quasi-constructors, while the 

second mode effectively gives the user a logic with a richer set of  constructors. 

Quasi-constructors can be especially useful for formulating generic theories (e.g., a 

theory of finite sequences) and special-purpose logics within IMPS, 

Constructors and quasi-constructors are polymorphic in the sense that they can be 
applied to expressions of  several different types. For  instance, the constructor if can 

take any three expressions as arguments as long as the type of the first expression is 

prop  and the second and third expressions are of  the same type. 

2.4. SORTS 

Superimposed on the type hierarchy of L U T I N S  is a system of subtypes. We call 

types and subtypes jointly sorts. The sort hierarchy consists of  atomic sorts and 

compound sorts. Let 5O be a language in LUTINS.  5O contains a set of  atomic sorts 

which includes the base types of  5O. The compound sorts of 5O are inductively 
defined from the atomic sorts of  5O in the same way that function types of  5O are 

defined from the base types of 5O. Every atomic sort c~ is assigned an enclosing 

sort ~(c~). -J_ is the least reflexive, transitive binary relation on the sorts of  5 ° such 
that 

• I f  c~ is an atomic sort, then ~ -< ~(c~). 

• I f  c~ 1 ~ i l l , . . . ,  c~n+l -~/3n+1, then c~1,... , c~ ~ c~+ 1 _~/31,...,/3n --~/3n+l. 

It follows from the definition of a L U T I N S  language that the enclosing sort function 
satisfies three properties: 

• The enclosing sort of  a base type is itself. 

• The enclosing sort of an atomic sort is of kind prop iff the atomic sort is itself prop. 
• _~ is Noetherian; i.e., every ascending sequence of sorts, 

c~l ~ c~2 _~ ~3 -~ . . . ,  

is eventually stationary. 

These properties imply that: 

• _~ is a partial order. 

• For  all sorts o~, there is a unique type/3, called the type of ~, such that c~ _~/3. 
• I f  two sorts have the same type, there is a least upper bound for them in _~. 
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A sort denotes a nonempty subset of the denotation of its type. Hence sorts may 
overlap, which is very convenient for formalizing mathematics. (The overlapping of 
sorts has been dubbed inclusionpolymorphism [6].) 

Since a partial function from a set A to a set B is also a partial function from any 
superset of  A to any superset of  B, compound sorts of kind ind have a very elegant 
semantics: The denotation of  c~ = al ,  • •., c~n ~ o~n+l of  type /3 of kind ind is the 

set of partial (and total) functions f of type/3 such that f ( a l , . . . ,  an) is undefined 
whenever at least one of its arguments a i lies outside the denotation of c~ i. 

Sorts serve two main purposes. First, they help to specify the value of an 
expression. Every expression is assigned a sort (called the syntactic sort of the 
expression) on the basis of its syntax. If  an expression is defined, it denotes an 
object in the denotation of its syntactic sort. Second, sorts are used to restrict the 
application of binding constructors. For  example, if a is a sort of  type/3, then a 
formula of  the form 

Vx : a .  P(x) 

(which says: for all x of sort ~, P(x) holds) is equivalent to the formula 

Vy: /3 .  (y ~ a) D P(y). 

Sorts are not directly used for determining the well-formedness of expressions. Thus, 
i f f  and a are expressions of sorts a ~ / 5  and a/, respectively, then the application 
f(a) is well formed provided only that a and a / have the same type. 

As a simple illustration of  the effectiveness of  this subtyping mechanism, consider 
the language of  our basis theory of  real numbers, Complete Ordered Field, in which 
we stipulate N is enclosed by Z, which is enclosed by Q, which is enclosed by R, 
which is enclosed by the base type ind. So N ~ R denotes the set of all partial 
functions from the natural numbers to the real numbers. This set of functions is a 
subset of the denotation of  ind ~ ind. A function constant specified to be of sort 
R ~ R would automatically be applicable to expressions of sort N. Similarly, i f f  
is a function constant declared to be of  sort N ~ N and a is an expression of  sort 

R, then f(a) is automatically well formed, but f(a) is well defined only when a 
denotes a natural number. A subtyping mechanism of this kind would be quite 
awkward in a logic having only total functions. 

Since LUTINS has a partially ordered set of sorts, it is an 'ordered-sorted' logic. 
Ordered-sorted type theory [32] (and most weaker order-sorted logics) can be 

directly embedded in LUTINS. 

2.5. SUMMARY 

LUTINS is a many-sorted, multivariate, higher-order predicate logic with partial 
functions and subtypes. It has strong support for specifying and reasoning about 
functions: A-notation, partial functions, a true definite description operator, and 
full quantification over functions. Its type hierarchy and sort mechanism are 
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convenient and natural for developing many different kinds of mathematics. 
Although LUTINS contains no polymorphism in the sense of variables over 
types, polymorphism is achieved through the use of constructors and quasi- 
constructors, sorts, and theory interpretations (see Section 3.3). 

Perhaps most importantly, the intuition behind LUTINS closely corresponds to 
the intuition used in everyday mathematics. The logical principles employed by 
LUTINS are derived from classical predicate logic and standard mathematical 
practice. This puts it in contrast to some other higher-order logics, such as 
Martin-L6f's constructive type theory [34], the Coquand-Huet  calculus of construc- 
tions [10], and the logic of the Nuprl proof development system [9]. These logics - 
which are constructive as well as higher order - employ rich type constructors 
and incorporate the 'propositions as types' isomorphism (see [31]). Motivated in 
part by a desire to model computational reasoning, they are a significant departure 
from traditional, classical mathematical practice. Moreover, they allow dependent 
types or quantification over type variables, which create more complicated type 
systems. However, the Martin-L6f-style systems provide simpler, specifically 
predicative [21], methods for defining mathematical objects, so that their domains 
are in this respect less complicated than those for classical simple type theories. 
The restriction to predicative definitions may or may not be an advantage; from 
the point of view of developing classical analysis, for instance, it is certainly an 
impediment [21, 44, 49, 50]. 

3. Little Theories Approach 

IMPS supports the 'little theories' version of the axiomatic method [19] as well as the 
'big theory' version in which all reasoning is performed within a single powerful and 
highly expressive axiomatic theory, such as Zermelo-Fraenkel set theory. In the little 
theories version, a number of theories are used in the course of developing a portion 
of mathematics. Different theorems are proved in different theories, depending on 
the amount and kind of mathematics that is required. Theories are logically linked 
together by translations called theory interpretations which serve as conduits to 
pass results from one theory to another. We argue in [19] that this way of organizing 
mathematics across a network of linked theories is advantageous for managing 
complex mathematics by means of abstraction and reuse. 

3.1. THEORIES 

Mathematically, a theory in IMPS consists of a language and a set of axioms. At the 
implementation level, however, theories contain additional structure which encodes 
this axiomatic information in procedural or tabular form. It facilitates various kinds 
of low-level reasoning within theories that are encapsulated in the IMPS expression 
simplifier (see Section 4.4.1). 

A theory is constructed from a (possibly empty) set of subtheories, a language, 
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and a set of  axioms. Theories are related to each other in two ways: one theory can 

be the subtheory of another, and one theory can be interpreted in another by a theory 
interpretation. A theory may be enriched via the definition of new atomic sorts and 

constants and via the installation of theorems. Several examples of  theories are 
discussed in Section 7. 

3.2. DEFINITIONS 

IMPS supports four kinds of  definitions: atomic sort definitions, constant defi- 

nitions, recursive function definitions, and recursive predicate definitions. In the 
following let ¢-  be an arbitrary theory. 

Atomic sort definitions are used to define new atomic sorts from nonempty unary 

predicates. An atomic sort definition for ~- is a pair ~5 = (n, U) where n is a symbol 
intended to be the name of a new atomic sort of  Y- and U is a nonempty unary 
predicate in J -  intended to specify the extension of the new sort. ~5 can be installed 

in ~-- only if the formula 3x .  U(x) is known to be a theorem of  ~-. As an 

example, the pair 

(N, Ax : Z . 0  ~< x) 

defines N to be an atomic sort which denotes the natural numbers. Since the sort of  
an expression gives immediate information about  the value of the expression, it is 

often very advantageous to define new atomic sorts rather than work directly with 

unary predicates. 
Constant  definitions are used to define new constants from defined expressions. A 

constant definition for Y- is a pair 6 : (n, e) where n is a symbol intended to be the 
name of a new constant of  ~-- and e is an expression in 3-- intended to specify the 
value of the new constant. 6 can be installed in Y- only if the formula e ~ is verified 

to be a theorem of Y .  As an example, the pair 

(floor, A x : R . ~ z : Z . z ~ < x A x <  l + z )  

defines the floor function on reals using the c constructor. 
Recursive function definitions are used to define one or more functions by (mutual) 

recursion. They are essentially an implementation of the approach to recursive defi- 
nitions presented by Moschovakis in [38]° A recursive definition for g is a pair 
~5 = ([ni , . . .  ,nk], [F1,... ,Fkl) where k />  1, [nl,... ,nk] is a list of  distinct symbols 

intended to be the names of  k new constants, and [F1, . . . ,  Fk] is a list of  functionals 
(i.e., functions which map functions to functions) of  kind ind in J -  intended to 
specify, as a system, the values of  the new constants. 6 can be installed in Y only 
if the functionals F 1 , . . . , F k  are verified to be monotone in Y with respect to the 
subfunction order _c. 7 The names [nl , . . . ,n~] then denote the simultaneous least 

fixed point of  the functionals F1,. • •, Fk. As an example, the pair 

(factorial, Af:  Z ~ Z.,Xn : Z . i f  (n = 0, 1 , n , f ( n  - 1))) 

is a recursive definition of  the factorial function in our standard theory of the real 

numbers. 
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This approach to recursive definitions is very natural in IMPS because expressions 

of kind ind are allowed to denote partial functions. Notice that there is no require- 
ment that the functions defined by a recursive definition be total. In a logic in which 
functions must be total, a list of functions can be a legitimate recursive definition 
only if it has a solution composed entirely of total functions. This is a difficult 
condition for a machine to check, especially when k > 1. Of course, in IMPS there 
is no need for a recursive definition to satisfy this condition since a recursive defi- 
nition is legitimate as long as the defining functionals are monotone. IMPS has 
an automatic syntactic check sufficient for monotonicity that succeeds for many 
common recursive function definitions. 

Recursive predicate definitions are used to define one or more predicates by 
(mutual) recursion. They are implemented in essentially the same way as recursive 
function definitions using the order _c s on predicates. This approach is based 

on the classic theory of positive inductive definitions (see [37]). For an example, 
consider the pair 

([even, odd], IF1, F2]), 

where: 

* F1 = Ae, o :N  -+ prop .  An : N . i f ( n  = 0, truth, o ( n -  1)). 
* F2 = Ae, o :N  --+ prop.  An : N . i f ( n  = 0, falsehood, e ( n -  1)). 

It defines the predicates even and odd on the natural numbers by mutual recursion. 
As with recursive function definitions, there is an automatic syntactic check sufficient 
for monotonicity that succeeds for many recursive predicate definitions. 

3.3. THEORY INTERPRETATIONS 

One of the chief virtues of the axiomatic method is that the theorems of a theory can 
be 'transported' to any specialization of the theory. A theory interpretation is a 
syntactic device for translating the language of  a source theory to the language of 
a target theory. By definition, it has the property that the image of a theorem of 
the source theory is always a theorem of the target theory. It then follows that 
any formula proved in the source theory translates to a theorem of the target 
theory. We use this method in a variety of ways (which are described below) to 
reuse mathematical results from abstract mathematical theories. 

Theory interpretations are constructed in IMPS by giving an interpretation of the 
sorts and. constants of the language of  tl~e source theory; this is the standard 
approach which is usually seen in logic textbooks (e.g., see [14, 35, 46]). We give 
below a summary of theory interpretations in IMPS; a detailed description of theory 
interpretations for PF* is given in [17]. 

Let if- and .Y-~ be theories over languages ~ and 54 ~, respectively. A translation from 
.Y- to y t  is a pair q) = (#, u), where # is a mapping from the sorts of 5~ to the sorts of 
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~ '  and v is a mapping from the constants of £o to the expressions of  5°', such that 

(1) #(prop) = prop. 
(2) For  each sort a of  £0, a and #(c~) are of the same kind. 

(3) If a is a sort of 5(' with type/3, then #(o<) and #(/3) have the same type. 
(4) If  c is a constant of  ~ of sort a, then the type of  v(c) is the type of #(o<). 

Given an expression e of 5 a, @(e) denotes the expression of ~ ' ,  defined in the 
obvious way from # and v, that is the translation of e via q~.9 

Let q~ be a translation from Y- to g" .  An obligation o f ~  is a formula ~(qo) where ~ is: 

(1) an axiom of  J ;  
(2) a formula asserting that a particular constant of Y is defined in its sort; or 
(3) a formula asserting that a particular atomic sort of 5~ is a subset of its enclosing 

sort. 

By a theorem called the interpretation theorem (see [17]), @ is a theory interpretation 
from Y- to Y '  if each of its obligations is a theorem of Y ' .  

The IMPS system provides support for using theory interpretations in many 
different ways. The following are brief descriptions of some of  the most important 
ways theory interpretations are used in IMPS. See [19] for further discussion on 
applications of  theory interpretations in mechanical theorem proving. 

Theorem reuse. Mathematicians want to be able to formulate a result in the most 
general axiomatic framework that good taste and ease of comprehension allow. 
One major advantage of this approach is that a result proved in an abstract theory 
holds in all contexts that have the same structure as the abstract theory. In IMPS, 
theory interpretations are used foremost as a mechanism for realizing this advan- 
tage: theorems proved in abstract theories can be transported via a theory interpret- 
ation to all appropriate concrete structures. For instance, the binomial theorem may 
be proved in a theory of fields (see Figure 1). l° Because the real numbers form a field, 
we can define a theory interpretation from the theory of fields to a theory of the reals. 
As a consequence, we can then 'install' the usual binomial theorem for the real 

numbers. 

Automatic application of  theorems. Theorems can be automatically applied in IMPS 
in two ways: (1) as rewrite rules (see Section 4.4.3) and (2) as macetes (see Section 

for every  a, b : K ,  n : Z impl icat ion  
• conjunct ion  

o l < n  

o - o K )  

o = oK) 

• / a  + b) ° = Z =o 

Fig. 1. The binomial theorem in fields. 
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4.4.4). Theorems can be applied both inside and outside of  their home theories. A 

theorem is applied within a theory J -  which is outside of its home theory . ~  by, 

in effect, transporting the theorem from ~ to Y and then applying the new theorem 
directly within ~-. The mechanism is based on a kind of polymorphic matching 
called translation matching [19]; the theory interpretation used to transport  the 

theorem is either selected or constructed automatically by IMPS. See Sections 

4.4.4 and 4.4.5 for more details. 

Polymorphic operators. As we noted in Section 2.3, constructors  and quasi- 

constructors  are po lymorphic  in the sense that  they can be applied to expressions 

of  several different types. This sort of  polymorphism is not very useful unless we 
have results about  constructors and quasi-constructors that could be used in proofs 

regardless of  the actual types that are involved. For  constructors, most  of  these 
'generic' results are coded in the form of  rules, as described in Section 4.2. Since 

quasi-constructors, unlike constructors, can be introduced by IMPS users, it is 
imperative that there is some way to prove generic results about  quasi-constructors. 
This can be done by proving theorems about  quasi-constructors in a theory of 

generic types, and then transporting these results as needed to theories where the 

quasi-constructor is used. For  example, consider the quasi=constructor 

composi t ion (infix o) defined as follows, for expressions f and g of  type /3 -+ 7 
and o~ --+/3, respectively: 

f o g =_ )~x : c~ . f (g(x)) .  

The basic properties about  o, such as associativity, can be proved in a generic theory 
having four base types but no constants, axioms, or other atomic sorts. See Section 
7.2 for further discussion on using quasi-constructors as polymorphic operators. 

Symmetry and duality proofs. Theory interpretations can be used to formalize certain 
kinds of arguments involving symmetry and duality. For example, suppose we have 

proved a theorem in some theory and have noticed that some other conjecture 
follows from this theorem 'by symmetry' .  This notion of symmetry can frequently 

be made precise by creating a theory interpretation from the theory to itself which 
translates the theorem to the conjecture. As an illustration, let .Y- be a theory of 

groups where • is a binary constant denoting group multiplication. Then the trans- 
lation from Y to 3-- which takes • to Ax, y . y ,  x and holds everything else fixed 

maps the left cancellation law x ,  y = x ,  z D y = z to the right cancellation law 
y ,  x -  z ,  x c y = z. Since this translation is in fact a theory interpretation, we 
need only prove the left cancellation law to show that both cancellation laws are 
theorems of Y-. 

Parametric theories. As argued by Burstall and Goguen (e.g., in [23, 24]), a flexible 
notion of parametric theory can be obtained with the use of  ordinary theories and 
theory interpretations. The key idea is that the primitives of  a subtheory of a theory 
are a collection of parameters which can be instantiated as a group via a theory 
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interpretation. For example, consider a generic theory Y of graphs which contains a 
subtheory ~-~ of abstract nodes and edges, and another theory ~ containing graphs 
with a concrete representation. The general results about graphs in g'- can be 
transported to q./by creating a theory interpretation ~ from J~  to 0g and then lifting 
• , in a completely mechanical way, to a theory interpretation of J to an extension 
of q/. This use of theory interpretations has been implemented in OBJ3 as well as 

IMPS (but in OBJ3, which has no facility for theorem proving, translation obli- 
gations must be checked by hand). For  a detailed description of  this technique, 
see [15, 181. 

Relative consistency. If there is a theory interpretation from a theory J-  to a theory 
Y~, then J -  is consistent if Y~ is consistent. Thus, theory interpretations provide a 
mechanism for showing that one theory is consistent relative to another. One conse- 
quence of this is that IMPS can be used as a foundational system. In this approach, 
whenever one introduces a theory, one shows it to be consistent relative to a chosen 
foundational theory (such as, perhaps, our theory of real numbers: Real Arithmetic, 
described in Section 7). 

3.4. THEORY ENSEMBLES 

Ordinarily, mathematicians use the term theory in a much broader sense than we use 
in this paper, or than is used by logicians generally. In this sense 'metric space theory' 
refers not to the formal theory of a single metric space (which is from a mathematical 
point of view not very interesting) but at the very least a theory of metric spaces and 
mappings between them. For  example, the notion of  continuity for mappings 
involves two separate metric spaces, and is naturally defined in a theory which is 
the union of two copies of  a theory of an abstract metric space. A family of theories 
organized in this way is implemented in IMPS as a theory ensemble which consists of 
a base theory, copies of  the base theory called theory replicas, and unions of copies of 
the base theory called theory multiples. The various theories of a theory ensemble are 
connected by theory interpretations which rename constants. Theory interpretations 
are automatically created from the base theory to each theory replica, and theory 
interpretations between the theory multiples are created when needed by the user. 
The theory interpretations allow the user to make a definition or prove a theorem 
in just one place, and then transport the definition or theorem to other members 
of the theory ensemble as needed. 

As an illustration, consider the theory ensemble for the IMPS theory dd of an 
abstract metric space. The points and the distance function of the metric space are 
denoted in d{ by an atomic sort P and a constant dist (of sort P , P  ~ R). For 
n/> 0, let d{~ be a copy of d{ in which the set of points and distance function are 
denoted by Pn and distn, and let q/n be the union of Jd0 , . . .  ,dgn_ 1. (Usually, 
n ~< 3.) The theorem in Figure 2, which says that the composition of two continuous 
functions is itself a continuous function, is proved in q/3. The constant continuous is 
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for every  f : P0 -~ P I , g  : P1 --" P2 

• c o n j u n c t i o n  

o c o n t i n u o u s ( f )  

o con t inuous ly (g )  

• cont inuouso2(g o f ) .  

imp l i ca t i on  

for every  f : P0 ~ P I , g  : Px ~ P2 i m p l i c a t i o n  
• c o n j u n c t i o n  

o c o n t i n u o u s ( f )  

o con t inuous (g )  

• c o n t i n u o u s ( g  o f ) .  

Fig. 2. Composition preserves continuity (printed without and with overloading). 

defined in °g 2 by the user. IMPS introduces the constants continuous12 and 
continuous02 by transporting the definition of continuous to ~3 via the obvious 
theory interpretations. Normally, the user would use the mechanism in IMPS for 
overloading constants so that each of the three continuous constants would be 
written for the user as continuous and the theorem would be printed in TEX in 
the second form given in Figure 2. 

After this composition theorem is proved, it can be transported to other theory 
replicas and multiples of the theory ensemble. For example, to obtain the compo- 
sition theorem for continuous functions on a single metric space, the theorem would 
be transported from J//3 to J / v i a  the theory interpretation which maps each of Po, 
P~, P2 to P and each of dist o, diStl, dist2 to dist. The theory ensemble mechanism 
also supports the transportation of definitions and theorems from a theory multiple 
to one of its 'instances'. For example, the user can transport the definition of 
continuous to Real Arithmetic by doing little more than specifying that both Po, 
P1 map to R and both dist0,  d i s t  I map to Ax, y : R .  I x - y [  

4. Theorem Proving 

In accordance with our emphasis on mathematically natural and intuitively under- 
standable proofs, we distinguish two levels of reasoning in proving theorems in 
IMPS. Reasoning at the (lower) formula level is largely done automatically via an 
expression simplification routine. Reasoning at the proof structure level is done by 
the user and the machine interactively. IMPS is designed to provide some auto- 
mated support, but without giving free reign to the machine; the course of machine 
deduction is orchestrated and controlled by the user. 

IMPS produces formal proofs; they serve as the basis for conveying why the 
theorem is true. Because they are intended for this purpose, they are very different 
from the formal proofs that are described in logic textbooks. Usually a textbook, 
formal proof is a sequence or tree constructed using a small number of low-levei 
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rules of  inference. Formal proofs of  this kind tend to be composed of a mass of small 
logical steps. Humans usually find these proofs to be unintelligible. In contrast, the 
steps in an IMPS proof  can be large, and most low-level inference in the proof  is 
performed by the expression simplification routine. Moreover, a number of these lar- 
ger steps may be grouped together as the result of a single human-level command. 
Since inference is described at a high level, proofs constructed in IMPS resemble 
informal proofs in understandability, but unlike an informal proof, all the details 
of an IMPS proof  have been checked by machine. 

4.1. DEDUCTION GRAPHS 

Every proof  is carried out within some formal theory. In the process of constructing 
a proof, IMPS builds a data structure representing the deduction, so that during 
the proof  process the user has great freedom to decide the order in which he wants to 
work on different subgoals, and to try alternative strategies on a particular subgoal. 
At the end of a proof, this object, called a deduction graph, can be surveyed by the 
user, typeset automatically, or analyzed by software. 

The items appearing in a deduction graph are not formulas, but sequents, in a 
sense derived from Gentzen [22]; see [36] for a discussion of the advantage of 
organizing deduction in this way. A sequent consists of a single formula called the 
assertion together with a context. The context is logically a finite set of assump- 
tions, although the implementation caches various kinds of derived information 
with a context. In addition, the implementation associates each context with a 
particular theory. We will write a sequent in the form r ~ A, where r is a context 
and A is an assertion. 

A deduction graph is a directed graph with nodes of two kinds, representing 
sequents and inferences respectively. If  an arrow points from a sequent node to an 
inference node, then the sequent node represents a hypothesis to the inference. An 
inference node has exactly one arrow pointing at a sequent node, and that sequent 
node represents the conclusion of the inference. A sequent node is said to be 
grounded (i.e., known to be 'valid' or 'true') if at least one arrow comes into it 
from a grounded inference node; an inference node is grounded if, for every arrow 
coming into it, the source of the arrow is a grounded sequent node. In particular, 
an inference node with no arrows coming into it represents an inference with no 
hypotheses, and is thus 'immediately grounded'. A deduction graph has one 
distinguished sequent node as its goal; it represents the theorem to be proved. A 
deduction graph is a proof  of each sequent represented by a grounded sequent 
node in the graph. 

This representation of deductions has several advantages. First, because any 
number of inference nodes may share a common sequent node as their conclusion, 
the user (or a program) may try any number of alternative strategies for proving 
a given sequent. Second, loops in deduction graphs arise naturally; they indicate 
that either of two sequents may be derived from the other, possibly in combination 
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with different sets of additional premises. Finally, at the end of a proof, the resulting 
deduction graph serves as a transcript for analyzing the reasoning used in the proof, 
and recollecting the ideas. On the other hand, the cost to store the objects is not 
significant: in the current IMPS data base of over a thousand proofs, only 18 
contain as many as a hundred sequent nodes; the average number is 23. 

4.2. BUILDING DEDUCTION GRAPHS 

A deduction graph is begun by 'posting' the goal node, a sequent node representing a 
sequent to be proved. The deduction graph is then enlarged by posting additional 
sequent nodes and creating inferences. The building of a deduction graph usually 
stops when the goal node is marked as grounded. Inference nodes are created by 
procedures called primitive inferences. Primitive inferences provide the only means 
to add inference nodes to a deduction graph; there is no way to modify or delete 
existing inference nodes. Each primitive inference works in roughly the same way: 
Certain information is fed to the primitive inference; zero or more new sequent 
nodes are posted; and finally, an inference node is constructed that links the newly 
posted nodes with one or more previously posted nodes. 

There are about 30 primitive inferences. Two of the primitive inferences are 
special: simplification makes an inference on the basis of simplifying expressions 
(see Section 4.4.1); macete-application makes an inference by applying a macete 
(see Section 4.4.4). Each of the remaining primitive inferences embody one of the 
basic laws of LUTINS (or is a variant of simplification or macete-application). 
For example, the primitive inference direct-inference applies an analogue of an intro- 
duction rule of Gentzen's sequent calculus (in reverse). It is selected according to the 
leading constructor of the assertion of the input sequent node, which will become the 
conclusion of the inference. The system also has primitive inferences for beta- 
reduction, universal generalization, existential generalization, equality substitution, 
contraposition, cut, backchaining, eliminating iota expressions, extensionality, 
unfolding defined constants, definedness assertions, raising if-then-else expressions, 
assuming theorems, introducing choice functions, and for modifying the context 
of a sequent in various ways. Although the primitive inferences are available in 
every theory, some of them, such as simplification and defined-constant-unfolding 
depend on the axioms and theorems in the theory. 

Primitive inferences are not called directly by the user. Instead, the user invokes 
interactive proof commands which are procedures that call primitive inferences in 
useful patterns. They are akin to what are called tactics in some other systems, 
such as HOL [25], LCF [26], and Nuprl [9]. 

Commands are more useful than mere primitive inferences for three reasons. First, 
unlike primitive inferences, commands have an interface procedure for collecting 
information from the user. The interface procedure protects the user from the 
'primitive' nature of the arguments of a primitive inference. For instance, the 
command unfold-single-defined-constant collects a set of natural numbers, where 
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the number n represents the nth occurrence of the defined constant to be unfolded. 
By contrast, the primitive inference defined-constant-unfolding requires a set of 
paths 11 to the defined constant that is to be unfolded. The interface procedure calcu- 

lates a path for each natural number and then calls the primitive inference defined- 
constant-unfolding with this new information. More precisely, the interface proce- 
dure orchestrates a conversation in which information can be exchanged a number 
of times between the user and the system. For  example, when the user applies the 
command unfold-single-defined-constant to some sequent node, the system will list 
the constants that occur in the assertion of sequent, the user will select one, and 
then the system will unfold the constant if there is only one occurrence of it in the 
sequent. If there is more than one occurrence, the system will ask the user for which 
occurrences to unfold. 

Second, commands may combine primitive inferences into larger, more humanly 
understandable units. They may thus lift the user to a higher level of  inference 
than that of  primitive inferences. As an illustration, consider again the command 
unfold-single-defined-constant. After this command calls the primitive inference to 
unfold some specified occurrences of a defined constant, the beta-reduction 
primitive inference is called repeatedly until no beta-reductions are possible. This 
has the desirable effect of building in beta-reduction into constant unfolding. 

And, third, commands provide the user with new inferences that realize a certain 
pattern of primitive inferences. These kinds of commands, which we sometimes 
informally call strategies, usually add several new inference nodes to a deduction 
graph at one time. Some of the simplest and most useful strategies break down 
the logical structure of an assertion (e.g., by applying the direct-inference primitive 
inference repeatedly), or else instantiate universal assumptions, existential assertions, 

and theorems. 
An extremely important strategy is used for proving theorems by induction. The 

strategy takes, among other arguments, an inductor which specifies what induction 
principle to use, how to apply the induction principle, and what heuristics to employ 
in trying to prove the basis and induction step. IMPS allows the user to build his own 
inductors; the induction principles are axioms or theorems of an appropriate form. 
For  example, the induction principle for the integers in Real Arithmetic is just the full 
second-order induction axiom. The induction strategy is very effective on many 
theorems from elementary mathematics; in some simple cases, the strategy can 
produce a complete proof  (two such formulas are printed in Figures 3 and 4), while 
in other cases it does part of the work and then returns control to the user. 

IMPS also has 'ending' strategies, the most basic of which is called prove-by-logic- 
and-simplification. These strategies correspond to statements like 'and the theorem 
follows from the above lemmas' that are commonly given in informal proofs. 
They make complicated, but shallow inferences using lots of logical deduction and 
simplification. These strategies have the flavor of the proof  search strategies of 
classic automated theorem provers; hence, they give IMPS an automated, as well 
as interactive, theorem proving capability. 
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for  e v e r y  n : Z i m p l i c a t i o n  

e O < n  
n "6 • E i = o 3  = nr/7 + n6/2 + nS/2 - n316 + n/42. 

Fig. 3. The sum of sixth powers. 

4.3. SOUNDNESS 

We intend, of course, that the user can only make sound inferences in IMPS. Our 
scheme for guaranteeing this is rather simple: IMPS allows the user to modify a 
deduction graph only by posting sequent nodes or by calling primitive inferences 
(either directly or indirectly). Since posting a sequent node does not affect the 
inferences encoded in a deduction graph, IMPS will be sound as long as 
each primitive inference is sound. The primitive inferences have been carefully 
implemented so that there is a high degree of assurance that they do indeed only 
make sound inferences. With this scheme, there is no problem about the soundness 
of commands since they ultimately only affect a deduction graph through the appli- 
cation of primitive inferences. Hence, our machinery of deduction graphs and 
primitive inferences makes a type discipline like ML's unnecessary for assuring 
that complex reasoning does not go awry. 

4.4. THEORY-SUPPORTED REASONING 

The logical content of a theory is determined by its language and set of axioms. As 
an IMPS object, a theory also has a variety of other characteristics, such as the 
sequence of defined constants that have been introduced, and the sequence of 
theorems that have been derived so far. This section will discuss mechanisms that 
support theory-specific reasoning, by which we mean reasoning that is sound only 
relative to the axiomatic content of particular theories. 

4.4.1. Simplification 

Proofs which are understandable to a human must take relatively large steps, so that 
the reader is not overwhelmed with a forest of detail. The expression simplifier is 
crucial to achieving human-sized proof steps. It is always invoked on an expression 

for  e v e r y  f , 9  : Z --~ R ,  a ,  b :  Z i m p l i c a t i o n  

• for  e v e r y  z : Z i m p l i c a t i o n  

o a < z A z < b  
o f(z) < g(z) 

• ~b=f < ~ , g .  

Fig. 4. The monotonicity of summation. 
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relative to a context P, and serves three primary purposes: 

• to invoke a variety o f  theory-specific transformations on expressions, such as 
rewrite rules and simplification of polynomials (given that the theory has suitable 
algebraic structure, such as that of  a ring); 

• to make simplifications based on the logical structure of an expression, often at 
locations deeply nested within it; 

• to discharge the great majority of definedness and sort-definedness assertions 
needed to apply many forms of inference. 

The notion of quasi-equality, mentioned in Section 2.3, serves as the correctness 
requirement for the simplifier: If  the simplifier transforms an expression e to e' 
relative to the assumptions of a context I ~ (in a theory Y) ,  then J -  and I' must 
together entail e _~ e'. That  is to say, either e and e' are both defined and share 
the same denotation, or else they are both undefined. In LUTINS, quasi-equality 
justifies substituting e ~ in place of e at any occurrence at which e ~ is free for e. 

The algorithm traverses the expression recursively; as it traverses propositional 
connectives it does simplification with respect to a richer context. Thus, for 
instance, in simplifying an implication A D B, A may be assumed true in the 'local 
context' relative to which B is simplified. Similarly, in simplifying the last conjunct 
C of a ternary conjunction A A B A C, A and B may be assumed in the 'local 
context'. On the other hand, when a variable-binding operator is traversed, and 
there are context assumptions in which the bound variable occurs free, then 
the simplifier must either rename the bound variable or discard the offending 
assumptions. The strategy of exploiting local contexts is justified in [36] and has 
since been incorporated in other work (such as [27]). 

At any stage in this recursive descent, if a theory-specific procedure may success- 
fully be used to transform the expression, it is applied. These procedures currently 

include: 

1. algebraic simplification of polynomials, relative to a range of algebraic theories 

(see Section 4.4.3); 
2. a decision procedure for linear inequalities, based on the variable elimination 

method used in many other theorem provers, for instance by Boyer and Moore 

[5]; and 
3. rewrite rules for the current theory J ,  or for certain theories Y-0 for which IMPS 

can find interpretations from Y-0 into J (see Section 4.4.5). 

Since in LUTINS functions may be partial and terms may be undefined, term 
simplification in LUTINS must involve a considerable amount  of  definedness 
checking. For  example, simplifying expressions naively may cancel undefined 
terms, reducing a possibly undefined expression such as 1Ix-  1Ix to 0, which is 
certainly defined. In this example, the previous replacement is valid if the context 
F can be seen to entail the definedness or 'convergence' of 1Ix. In general, algebraic 
reductions of this kind produce intermediate definedness formulas to which the 
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simplifier is applied recursively. These formulas are called convergence 
requirements. 

Rewrite rules also generate convergence requirements. Suppose that we have a 
theorem of the form 

V x : ~ .  s[x] = s'[x] 

which is being used as a rewrite rule from left to right. If  a portion of an expression 
being simplified is of the form s[t], then we would like it to be rewritten to s'[t], but 
only if t + c~. If  t is undefined, or if it has a value in the type of ~ but not in c~, then 
the change is not justified as an instance of the theorem. 

Despite these apparently stringent restrictions, the IMPS simplifier is able to work 
effectively. Although allowing partial functions in theories does require checking 
definedness of  expressions, one of the significant lessons that we have learned 
from IMPS is that this difficulty can be overcome. 

If no transform is applicable, then a simplification routine determined by the 
top-most constructor or quasi-constructor of the expression to be simplified is 
applied. These routines normally invoke the simplifier recursively on sub- 
expressions, with different contexts. The routines for a few constructors, especially 
the definedness constructors (Section 4.4.2), use special routines exploiting 
information extracted from the axioms and theorems of  the context's theory. 

The simplification procedures are used systematically in the course of building 
deduction graphs. For  instance, if A simplifies to t ru th  relative to F, then the 
sequent I ~ =~ A is recognized as valid without any further inference. In addition, 
the power of the simplifier ensures that the same proof  idea may be successfully 
applied to different formulas when the differences between them are syntactic and 
superficial. 

The emphasis on a powerful simplification procedure to allow large inference 
steps in the course of  interactive proof  development is shared with Eves and its 
predecessor m-Eves [11, 12, 40], as well as the more recent PVS [39]. 

4.4.2. Reasoning about Definedness 

Because simplification involves large numbers of convergence requirements, it is 
important to automate, to the greatest extent possible, the process of checking 
that expressions are well defined or defined with a value in a particular sort. This 
kind of  reasoning must rely heavily on axioms and theorems of  the axiomatic theory 
at issue. The algorithm for simplifying definedness assertions is separated into two 
layers, according to whether recursive calls to the simplifier are involved. 

The Lower Level of  Definedness Checking. In the lower level, there are no recursive 
calls to the simplifier; two kinds of information are used: 

• Totality theorems of the form VXl : c~l, . . . ,  x n : c~n . f ( x l , . . . ,  xn) ~, c~. 
• Unconditional sort coercions of the form Vx : c~. x +/3. 
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The unconditional sort coercion theorems, together with the syntactic ordering on 

sorts _~, defined in Section 2, determines a pre-order << on sorts. In particular, if 
S is a set of  unconditional sort coercion formulas in a language ~ ,  then <<s is the 
weakest pre-order extending -< for 5~, such that: 

• o~ <<s/3 if a formula of  the form Vx : ~ .  x ~/3 is in S; 

• ~ l , . . . , a n - ~  ~n+l <<s/31,...,/3n ~/3n+l whenever o~i<<st3i for all i with 
l ~ < i ~ < n + l .  

<<s/3 if and only if in every model of  S, the denotation of a is included in the 
denotation of/3. The relation <<s is a pre-order rather than a partial order because 
for two different syntactic sorts c~ and/3, we may have a <<s/3 and/3 <<s ~; in this 

case ~ and/3 have the same denotation in every model of  S. Fix some collection S of 
axioms and theorems of J - ,  with respect to which definedness-checking is being 
carried out. 

The relation <<s together with the totality theorems are used in IMPS by an 

algorithm for checking definedness. We use totality information and unconditional 
sort coercions to extract 'critical pairs of  subterms and sorts', or simply critical 

pairs, from t and a. By a set of  critical pairs, we mean a set of  pairs (si,/3i) such that: 

• each si is a subterm of  t, and 

• if si ,[/3i holds for each i, then t + a. 

In particular, if the null set is a set of  critical pairs for t and a, then t + a is true. 

Naturally, {(t, a)} is always a set of  critical pairs for t and a. More useful sets of  
critical pairs may be computed for many  expressions using two main principles: 

• Suppose that C u { (si,/3i) } is a set of  critical pairs, where si is a variable, constant, 
or A-expression, and 7 is its syntactically declared sort. I f  7 <<s/3i, then s i ,L •i is 
patently true, so C is also a set of  critical pairs. 

• Suppose that 3' <<s o~, t is an application f ( a l , . . . ,  an), and S contains 

VXl : / 31 , ' ' " ,  Xn : /3n . f ( x l , . . . ,  xn) ~. 7. 

I f  Ci is a set of  critical pairs for ai and/3i, then Ui C/is  a set of  critical pairs for t 
and ~. I f  t is a conditional term 'if ~b then sl else s2', then critical pairs for sl and s2 
may be combined to provide a set for t. 

These principles mechanize definedness checking for a fragment of  L U T I N S  that 
corresponds to order sorted theories in higher order logic [32]. 

Frequently, a set of  critical pairs will be relatively small, even if it is nonnull. 
Moreover,  the terms it contains may be far smaller than t. For  instance, consider 
the term t: 

( i + j -  k)-  ( i - j +  k) .  ( i ,  k + j / 2 )  

where k, j ,  i range over the integers Z, and all of the function symbols denote the 
usual binary functions on the reals. The only critical pairs for t to be defined among 
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the rationals Q is (j/2, Q). In this case, we would like to combine the results of the 

lower level with the fact that 

Vp, q: Q . q ¢  0 D p / q  J. Q. 

For this reason, the results of the lower level of definedness-checking are passed to 
the upper layer, which uses this sort of conditional information. 

The Upper Level of  Definedness Checking. In the upper layer, conditional infor- 
mation about definedness is consulted. The simplifier is invoked on the resulting 
assertions, in an attempt to reduce them to t ruth .  

The conditional theorems used in this level are stored in a domain-range handler 
for the theory. It contains three primary kinds of information about the domain 
and range of functions, and the relations between sorts, in the theory. 

• Definedness conditions of the form 

V X  1 : 0 ~ 1 , . . .  , X  n " O~ n . @ ( X l , - . .  , X n )  D f ( X l , . . .  ,Xn) + c~. 

• Value information of the form 

VX1 : OZl , . . . ,Xn :  O ~ n . ~ ( X l , . . . , X n , g ( X l , . . . , X n ) ) .  

These theorems characterize the range of g, and can be used in checking the 
definedness of expressions of the form f ( . . . g ( q , . . . ,  tn)...). 

• Conditional sort coercions of the form 

Vx :/3.  ~(x) ~ x ; c~. 

To check the definedness of a term f ( q , . . . ,  tn) in sort ct, we look for a definedness 
condition 

VXl : a l , . . . , X n :  OZn. ~(Xl,.  . . ,Xn) D f ( x l , . . . , X n )  .L a, 

or, alternatively, a sort coercion condition 

V x : / 3 .  +(x) ~ x ; ~, 

where/3 is the syntactic sort o f f ( t l , . . . ,  t~) (i.e., the declared range o f f ) .  
If  a definedness condition for c~ is found, then we form the new goal ~ ( t l , . . .  t~). 

Moreover, for each subterm t i that is of the form g(sl , . . . ,Sm) and has a value 
condition (~i, we add ~ i ( S 1 , . . . , S m , g ( S l , . . . , S m )  ) to  I ~, thus forming an expanded 
context I? t. Finally, we call the simplifier on I ~ and ~ ( t l , . . . ,  tn). 

If, instead, only a sort coercion is found, we call the simplifier on the assertion 
(Ax :3 .d ) ) ( f ( t l , . . . , t n ) ) .  As part of establishing this, IMPS must ensure that 

f ( q , . . . ,  t,) ]./3. In the course of doing so, a definedness condition for /3 may be 
used. Recursive calls of yet greater depth are, however, almost certain to be in 
vain, and are prevented by the implementation. 

The assertions that, in IMPS, are expressed using partial functions and subtypes 
can also be expressed, more cumbersomely, in ordinary simple type theory. Never- 
theless, the machinery of subtypes and definedness assertions helps to guide IMPS's 
automated support. It provides syntactic cues that the reasoning embodied in these 
algorithms is likely to be useful. 
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4.4.3. Transforms 

Each theory contains a table with information used by the simplifier. This table is 
organized as a hash table of procedures (called transforms) each of which will 
transform an expression in a sound manner. Look-up in this table is done by 
using constructor and the leftmost function constant as keys. Rewrite rules are 
implemented in this way, as are algebraic simplification procedures that would be 
impractical to represent as rewrite rules. 

In I M P S  some of the transforms can be generated in a uniform way, 
independently of the specific constants which play the role of  the algebraic 
operations. This means that the simplifier can be crafted to provide particular forms 
of  simplification, when the constants have certain algebraic properties. For  instance, 
algebraic simplification for an arbitrary field, for real arithmetic, and for modular 
arithmetic are derived from the same entity, called an algebraic processor. An 
algebraic processor is applied by establishing a correspondence between the 
operators of the processor (e.g., the addition and multiplication operators) and 
specific constants of the theory. In the IMPS theory of fields, where the field 
elements form the type K, the algebraic processor is configured by stipulating that 
the multiplication operator is the function constant ×K, the addition operator is 
the function constant +K, the zero is the individual constant oK, and so on. Certain 
operators need not be used; for instance, modular arithmetic does not have a division 
operator in general. Depending on the correspondence between operators and 
constants, the algebraic processor generates a set of  formulas that must be theorems 
in the theory in order for its manipulations to be correct. 

4.4.4. Macetes 

In IMPS we have used the name macete (in Portuguese, a macete is a clever trick) to 
denote user-definable extensions of the simplifier which are under direct control of 
the user. Formally, a macete is a function that takes as arguments a context and 
an expression and returns an expression. Macetes are used to apply a theorem or 
a collection of theorems to a sequent in a deduction graph. Individual theorems 
are applied by theorem macetes built automatically when a theorem is installed in 
a theory. Compound macetes are constructed ultimately from theorem macetes, 
together with a few special macetes such as beta-reduction and simplification, using 
a few simple macete constructors, which are just functions from macetes to macetes. 
They include constructs to apply a number of macetes in succession, or repeatedly 
until no further changes can be made. Compound macetes provide a simple 
mechanism for applying lists of theorems in a manner which is under direct laser 

control. 
One kind of theorem macete based on straightforward matching of expressions is 

called an elementary macete. To explain their behavior, we need two auxiliary 
notions. An expression e matches a pattern expression p if and only if there is a 
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substitution c~ such that cr applied to p is c~-equivalent to e. I f  F is a context and 

cr is a substitution, we say that 17 immediately entails ~ is defined if, for each 
component  x H t of  or, with x of sort ~, simplification reduces t + ~ to t ru th .  

Though any kind of theorem can be used to generate an elementary macete, for 

the purposes of  this exposition, let us assume the theorem is the universal closure 

of  a conditional equality of  the form ~ D Pl =P2- When applied to a context- 
expression pair (F, e), the macete works as follows. The left-hand side Pl is matched 

to e. I f  the matching succeeds, then the resulting substitution a is applied to the 
formula ~. I f  q~[a] is entailed by F, and if F immediately entails that a is defined, 

then the macete returns p2[cr], the result of  applying the substitution cr to the 

right-hand side P2- I f  any stage of  this process fails, then the macete simply returns 

e. (This mechanism is described in more detail in [48].) Elementary macetes are used 
to apply a theorem within its home theory. 

Another  kind of theorem macete is called a transportable macete.  It  is based on a 
much more interesting kind of matching we call translation matching, which allows 
for inter-theory matching of expressions. A translation match is essentially a two- 

fold operation consisting of  a theory interpretation and ordinary matching. An 
expression e is a translation match to a pattern expression p if and only if there is 

a theory interpretation ~5 and a substitution cr such that cr applied to the translation 

of p under ~5 is c~-equivalent to e. After using translation matching, transportable 
macetes work in much the same way as elementary macetes. Transportable macetes 
are used to apply a theorem outside of  its home theory. 

We end this section with three simple examples of  elementary and transportable 
macetes chosen from the hundreds of  examples contained in the IMPS initial theory 
library. The theorem 

V x : R . 0  Ixl = x  

of Real Ari thmet ic  generates an elementary macete that rewrites an expression of the 

form Is[ to s provided the simplifier can verify that s is a nonnegative real number  
(in the local context of  the expression). The theorem 

V x : R ,  y : Z . O < x D O < x  y 

generates an elementary macete that reduces a goal of  the form 0 < r n to a new goal 

0 < r provided the simplifier can verify that r and n are defined in the reals and 
integers, respectively. Finally, the theorem 

Vx, y : U . x  c { y }  - x = y 

of Indicators generates a transportable macete that rewrites an expression of the 
form a C {b} to a = b, regardless of  the sorts of  a and b. 

4.4.5. Transportable Rewri te  Rules 

Transportable rewrite rules make use of  translation matching also, but within the 

simplifier. I f  an unconditional equality Pl = P2 (or a formula of  some other suitable 
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syntactic form) is a theorem of J0 ,  then it may be installed into the simplifier for use 
within a theory ~-1. When simplifying an expression e, we use translation matching 
to find ~5 and cr as before. If we are successful, and if the context ensures that cr is 
defined, then we may replace e by (eg(p2))[cr ]. Transportable rewrite rules are used 
to provide efficient simplification based on rewrites from generic theories about 
such things as mappings and finite sequences. For  instance, the theorem 

Vt, u:  N ~ indl ,e  : indl .  append{(e :: t), u} = (e :: append{t, u}) 

rewrites expressions in which a cons is nested within an append. The role of 
translation matching in this case is simply to select a sort a as the instance for ind 1. 

5. User Interface 

The IMPS user interface, which is a removable component of IMPS, is primarily 
written in G N U  Emacs [47]; the IMPS core is written in T [33, 41], a sophisticated 
version of Scheme. The user interface is implemented using the subordinate process 
mechanism of  G N U  Emacs, which allows a program executing in T to issue 
commands to Emacs, and vice versa.  Thus IMPS can request that formulas and 
derivations be presented to the user, specially formatted by Emacs, while conversely 
the user can frame his requests to IMPS using the interactive machinery of Emacs. 
The interface provides additional facilities in case Emacs is running under the X 
Window System, for instance a menu-driven mode. 

The user interface provides for three major activities: interactive theorem proving, 
theory development, and parsing and printing. Most of the actual interface code is 
devoted to the first activity. Each of  these activities is discussed below. 

5.1. INTERACTIVE THEOREM PROVING 

The IMPS user interface provides facilities for directing, monitoring, recording, and 
replaying proofs. The facilities to monitor the state of the proof  include graphical 
displays of the deduction graph as a tree, TEX typesetting of  the proof  history, 
and TEX typesetting of  individual subgoals in the deduction graph. The graphical 
display of the deduction graph permits the user to visually determine the set of 
unproven subgoals. The TEX typesetting facilities allow the user to examine each 
sequent in the proof  or an entire proof  in a mathematically more appealing notation 

than is possible by raw textual presentation alone. 
There are various facilities for directing proofs. For  example, for any particular 

subgoal, the interface presents the user with a well-pruned list of macetes which 
can be applied to that subgoal. This list is obtained by using syntactic and semantic 
information which is made available to the interface by the IMPS supporting 
machinery. In situations where over 400 theorems are available to the user, there 
are rarely more than 10 macetes presented to the user as options. 

The interface assists the user with command syntax for commands which require 
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additional arguments. For  example, in order to apply the command instantiate- 
universal-assumption the user must specify the universal assumption to be instan- 
tiated and the instantiations of the variables. In such cases, the interface will prompt 
the user for the necessary arguments, if it cannot first determine them from other 
available information. Thus in the previous example, when there is only one univer- 
sal assumption, the interface will not ask the user which formula to instantiate. 

Finally, there is a mechanism for producing a transcript of  an interactive proof. 
The resulting transcript is a segment of text which can be edited and replayed fully 
or partially, in much the same way that a text editing macro replays a sequence of 
commands entered at the keyboard. This is especially useful for building new proofs 
which differ in small ways from previously constructed ones. 

5.2. THEORY DEVELOPMENT 

The IMPS user creates and modifies a theory, theory interpretation, theory 
constituent (such as a definition or theorem), or other IMPS object by evaluating 

an expression called a definition form (or clef-form for short). The approximately 
30 def-forms provide a mechanism for extending the mathematics of the IMPS 
system. The user interface provides templates to the user for writing def-forms. 
Def-forms are stored in files which can be loaded as needed into a running IMPS 
process. 

For  instance, the def-form introducing the natural numbers as a defined sort 
within Real Arithmetic is: 

(def-atomic-sort NN 
"lambda(x : zz, O<=x)" 
(theory h-o-real-arithmetic) 
(witness "0")) 

This stipulates that the natural numbers will be those integers satisfying 
Ax : Z .  0 ~< x; it also advises IMPS to consider 0 when checking that this predicate 
is nonempty. 

The def-form that introduces the symmetry translation reversing group 
multiplication, mentioned in Section 3.3, reads: 

(def-translation MUL-REVERSE 
(source groups) 
(target groups) 
(f ixed-theories h-o-real-arithmet ic) 
(constant-pairs 

(mul "lambda(x,y:gg, y mul x)")) 
(theory-interpretation-check using-simplification) ) 

It stipulates that the theory of groups forms both the source and the target of the 
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translation, and that vocabulary defined in Real Arithmetic should be left 
unchanged. Only the binary function symbol mul is to be translated, to the 
lambda-expression shown. IMPS is requested to use the simplifier to ascertain that 
the theory interpretation obligations of this translation are in fact met, so that the 
translation is an interpretation. 

5.3. PARSING A N D  P R I N T I N G  

Interaction with IMPS requires an extensive amount  of reading of  expressions from 
the keyboard, or from files, and of displaying of  expressions on the screen, or writing 
them to files. Abstractly, an expression is a tree-like structure determined by the 
IMPS logic. In the implementation of  IMPS an expression is a data structure which 
corresponds very closely to its tree structure, but has in addition a large amount of 
cached information available to the deductive machinery. For the IMPS user, an 
expression is typically something which can be represented as text, for instance 
ff  In xdx .  The correspondence of an expression as a data structure to an external 
representation for input or output is determined by the user syntax which is 
employed. IMPS allows multiple user syntaxes, so for example, the syntax that is 
used for reading in expressions (usually text) may be different from the syntax 
used to display expressions (which could be text or text interspersed with TEX 
commands). This flexible arrangement means users can freely change from one 
syntax to another, even during the course of an interactive proof. In other words, 
the core machinery is completely syntax independent. 

6. IMPS and Mathematical Analysis 

To a large extent, the development of IMPS has been guided by our atmmpts to 
prove theorems in mathematical analysis - both theorems about the real numbers 
and theorems about more abstract objects such as Banach spaces or spaces of 
continuous functions from one metric space to another. The IMPS logic and little 
theories methodology have made it possible to develop parts of graduate-level 
analysis without sacrificing either clarity or naturalness. 

With partial functions, higher-order operators, and subtypes, LUTINS is well 
suited to be a logic for analysis. The value of  having a natural way of dealing 
with partial functions in the development of  analysis cannot be overestimated. 
Many of the important operators of analysis, such as the integral of a function or 
the limit of a sequence, are most conveniently treated as partial higher-order 
functions. For  example, the limit of a sequence ~ = (xn),e N is defined whenever 
there is a unique real number a satisfying a familiar predicate ~((, a), and when 
~(~, a) holds, the limit of ~ is the number a. Having a logic with partial functions 
and possibly nondenoting terms, we can define the limit operator by 

lim (~) = La: R .  ~(~, a) 

without having to specify separately its domain. 
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Analysis is rife with various types of spaces and classes of functions. The little 
theories approach is an especially good framework for organizing this kind of 
mathematics. An example of little theories used to advantage in IMPS is the proof 
of an open mapping theorem (for certain Banach space functions close to the 
identity) given in [19]. Other examples are briefly described in Subsection 7.3. 

Mathematical analysis has traditionally served as a ground for testing the 
adequacy of formalizations of mathematics, because analysis requires great 
expressive power for constructing proofs. Nonetheless, most work in automated 
theorem proving has been in areas other than analysis. One notable exception to 
this is the work of Bledsoe and his students which has dealt with problems in 
analysis and general topology beginning in the early '70s (see Bledsoe's discussion 
in [3]). In particular, this group has built a series of powerful provers combining 
resolution and other techniques (such as variable elimination) to reason about 
formulas involving real inequalities. One recent prover in this direction developed 
by Hines is described in [30]. 

An entirely different approach to automated theorem proving in analysis is taken 
by Clarke and Zhao [8]. They have successfully implemented a system which can 
reason about a large class of expressions encountered in real analysis, including 
trigonometric functions, real inequalities, limits, infinite summations, derivatives, 
and integrals. Clarke and Zhao's system, called Analytica, is implemented on top 
of the commercially available system Mathematica. Mathematica provides it with 
a wide range of facilities not possessed by other provers. These include sophisticated 
algebraic manipulation, reduction rules that apply analytic identities, and the ability 
to determine closed forms for transforms of functions in many cases and solutions of 
differential equations. Though Analytica combines theorem-proving capabilities 
with very sophisticated symbolic-manipulation capabilities in an interesting way, it 
has several drawbacks. First, since Mathematica is unsound (for example, in doing 
beta-reduction), the soundness of Analytica itself becomes an issue. Moreover, it is 
not clear how Analytica can relate the formal facilities for manipulating objects 
offered by Mathematica with the underlying semantics of these objects. For 
example, is there a definition for the integral or a set of axioms characterizing the 
integral, or are the manipulations performed by Mathematica code the ultimate 
arbiter of what integration means? Finally, it is not clear how Analytica can handle 
abstract objects such as Banach spaces, which are very useful in all kinds of analysis, 
even 'classical' analysis. 

7. Initial Theory Library 

A theory library is a collection of theories, theory interpretations, and theory 
constituents (e.g. definitions and theorems) which serves as a data base of 
mathematics. A theory library is composed of sections; each section is a particular 
body of knowledge that is stored in a set of files consisting of def-forms. A section 
can be loaded as needed into a running IMPS process. In the course of using 
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IMPS, an IMPS user builds his or her own theory library on top of the initial theory 
library that is supplied with IMPS. 

The IMPS initial theory library contains a large variety of basic mathematics. It 
offers the user a well-developed starting point for her or his own theory library. It 
also is a rich source of examples that illustrates some of  the diverse ways 
mathematics can be formulated in IMPS. The initial theory library includes 
formalizations of  the real number system and objects like sets and sequences; 
theories of abstract mathematical structures such as groups and metric spaces; and 
theories to support specific applications of IMPS in computer science. 

This section describes the major theories that are contained in the IMPS initial 
theory library. Along the way, we point out some of the more important theorems 
we have proven in these theories. 

7.1. REAL N U M B E R S  

Two theories of  the real numbers are contained in the initial theory library. These 
theories are equivalent in the sense that each one can be interpreted in the other; 
moreover, the two interpretations compose to the identity. These interpretations 
are constructed in the theory library using the IMPS translation machinery. 

The first is Complete Ordered Field, a theory in which the real numbers are 
specified as a complete ordered field and the rational numbers and integers are 
specified axiomatically as substructures of the real numbers. Exponentiation to an 
integer power is a defined constant denoting a partial function. 

The second axiomatization is Real Arithmetic, which we consider to be our working 
theory of the real numbers. The axioms of Real Arithmetic include the axioms of 
Complete Ordered Field, formulas characterizing exponentiation as a primitive 
constant and formulas which are theorems proved in Complete Ordered Field. These 
theorems are needed for installing an algebraic processor and for utilizing the 

definedness machinery of the simplifier. The proofs of these theorems in the theory 
Complete Ordered Field require a large number of intermediate results with little 
independent interest. The use of two equivalent axiomatizations frees our working 
theory of  the reals from the burden of recording these uninteresting results. 

The theory Real Arithmetic is equipped with routines for simplifying arithmetic 
expressions and rational linear inequalities (see Section 4.4.1). These routines allow 
the system to perform a great deal of  low-level reasoning without user intervention. 
The theory contains several defined entities; e.g. the natural numbers are a defined 
sort and the higher-order operators ~ and II are defined recursively. 

Real Arithmetic is a useful building block for more specific theories. If a theory has 
Real Arithmetic as a subtheory, the theory can be developed with the help of a large 
portion of  basic, everyday mathematics. For  example, in a theory of graphs which 
includes Real Arithmetic, one could introduce the concept of a weighted graph in 
which nodes or edges are assigned real numbers. We imagine that Real Arithmetic 
will be a subtheory of most theories formulated in IMPS. 
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7.2. GENERIC OBJECTS 

One of the advantages of working in a logic like LUTINS, with a rich structure of 
functions, is that generic objects like sets and sequences can be represented directly 
in the logic as certain kinds of functions. For instance, sets are represented in IMPS 
as indicators, which are similar to characteristic functions, except that x is a 
'member' of an indicator f iff f ( x )  is defined. Operators on indicators and 
other functions representing generic objects are formalized in IMPS as quasi- 
constructors, and theorems about these operators are proved in 'generic theories' 
that contain neither constants nor axioms (except for possibly the axioms of Real 
Arithmetic). Consequently, reasoning is performed in generic theories using only 
the purely logical apparatus of LUTINS (and possibly Real Arithmetic). 
Moreover, theorems about generic objects are easy to apply in other theories 
since the operators, as quasi-constructors, are polymorphic and since the theory 
interpretations involved usually have no obligations to check. 

The initial theory library contains theorems about operators (i.e., quasi- 
constructors) on the following kinds of generic objects: 

• Sets. There are operators for basic set operations such as union, intersection, 
complement, membership, subset, etc. Since sets are represented as indicators, 
most of the basic theorems are proved by just the command simplify-insistently. 

• Unary functions. The operators formalize basic function notions such as compo- 
sition, domain, range, inverse function, injectiveness, etc. These operators 
supplement the built-in function machinery of LUTINS. 

• Sequences. Sequences over a sort c~ are represented as partial functions from the 
natural numbers to ~. Lists are identified with sequences whose domain is a finite 
initial segment of the natural numbers. The operators include basic list operations: 
ni l ,  ca r ,  cd r ,  c o n s ,  and a p p e n d .  

• Pairs. A pair of elements a,b of sort c~,~ is represented as a function whose 
domain equals the singleton set {(a, b)}. The operators include a pair constructor 
and the two pair selectors. 

This part of the initial theory library also contains theorems about the 
constructor and about the cardinality of sets (e.g., the Schr6der-Bernstein theorem 
and the theorem that says a subset of a finite set is itself finite). 

7.3. ANALYSIS 

The structure of the IMPS analysis theory library aggressively exploits the little 
theories approach outlined earlier in Section 3, providing users with an extensive 
network of theories and interpretations between them. This approach is desirable 
because it permits users to state and prove once and for all the basic facts in a 
high degree of generality and reuse the results in more specific contexts. 

The analysis library consists of about 25 theories and over 100 theory 
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interpretations. Most of  the theory interpretations (close to 90 percent) are created 
automatically by the system when the theories are created or by the translation- 
match machinery. What follows is only a small sample of theories that are actually 
available: 

• Partial Order. This is the theory of an abstract set S with a transitive, reflexive, and 
anti-symmetric relation -<. This theory provides a framework for stating and 
proving general theorems about ordering relations, including definitions and 
characterizations of the supremum and infimum of a set. One of the more 
interesting theory interpretations that are explicitly constructed in this section of 
the library is the 'order reversing' interpretation which takes the constant symbol 

-< into the defined constant symbol ~- (defined by x ~- y if and only i fy  -< x.) This 
allows results about suprema to be immediately usable as results about infima. It is 
also clear that results in Partial Order can be interpreted in the theory Real 

Arithmetic. 
• Metric Space. This is the theory of an abstract set P with a two-place real-valued 

function d on P which is nonnegative and symmetric, satisfies the triangle 
inequality, and for which d(x,y) = 0 only if x = y. This theory is appropriate 
for defining metric and topological properties such as limits of sequences, open 
sets, closed sets, completeness, and sequential compactness. The theory library 
contains statements and proofs of numerous facts about these concepts. 

• Metric Spaces 2-Tuples. This is the theory of a pair of abstract metric spaces. It is 
the natural setting for notions about mappings between spaces, such as continuity, 

uniform continuity, and the Lipschitz property. In this theory we can easily prove 
abstract versions of the intermediate value and Bolzano-Weierstrass theorems 
which assert, respectively, that the image of  a connected or sequentially compact 
set is connected or sequentially compact (see [20] for details). By transporting 
machinery developed in this theory to the theory of metric spaces, we obtain 
several versions of  the contractive-mapping fixed-point principle of Banach. 

• Mappings into a Pointed Metric Space. This is a theory for spaces of bounded, 
everywhere defined functions from a set into a metric space with a distinguished 
point a. A function is bounded whenever its range is contained in a closed ball 
centered at a. Basic properties of these spaces (such as completeness conditions) 

are formulated in this theory. 
• Normed Spaces. This is the theory of a real vector space with a norm function. A 

sample theorem in this theory is an open mapping theorem for certain functions 
which are near the identity in a suitable sense (for a discussion of the proof  of 

this theorem in IMPS, see [19]). 
• Mappings from an Interval to a Normed Space. This is the theory of an abstract 

normed space together with an arbitrary interval of real numbers. This theory is 
used for defining the fundamental notions of calculus of functions of one variable 
such as differentiation and integration. Important  theorems proved in the library 
are the mean value theorems for differentiation and integration (see Figure 5).~2 
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for e v e r y  a,  b : I ,  f : I --- U ,  m : R implication 
• c o n j u n c t i o n  

o 3 y . : I  a < y  
o f f+ 
o w :  i l[f( )ll _< m 

• II I l l  <- m .  Ib - al.  
Fig. 5. The mean value theorem for integrals. 

7.4. A L G E B R A  

The initial library contains theories of the following algebraic structures: 

• Monoids. A monoid is a set with an associative binary operation and an identity 
element. In the theory monoids, a constant monoid%prod is defined recursively 
as the iterated product of the primitive monoid operation. Basic properties of  
this constant are proven in monoids and then transported to theories with their 
own iterated product operators, such as Real Arithmetic with the operators 
and II. 

• Groups and Group Actions. The rudiments of group theory are developed in the 
theory network consisting of these two theories and various interpretations of  
Group Actions in Groups and of Groups in itself. The theorem that the quotient 
of a group by a normal subgroup is itself a group is proved as well as the 
Fundamental Counting Theorem for group theory, of which Lagrange's theorem 
is an easy corollary. 

• Fields. Basic operations for fields (exponentiation to an integer power and 
multiplication by an integer) are defined. The theory is developed sufficiently for 
installing an algebraic processor for simplification. Some useful identities, such 
as the binomial theorem, are proved. 

7.5. C O M P U T E R  SCIENCE 

The theory library for computer science is currently less developed than that for 
mathematics. However, three significant facilities exist. 

State Machine Theories. Reusable parametric theories (in the sense described in 
Section 3.3) characterize a number of different kinds of state machine. A state 
machine theory axiomatizes a state space, which need not be finite, together with 
a transition function or relation, depending on whether the machine being specified 
is known to be deterministic or not. Typical theorems include the induction theorems 
for accessible states, one of  which is shown in Figure 6. When such a theorem has 
been proved, it may be applied with the full power of  the induction command 
(Section 4.2). 

In order to specify a particular state machine, say, a deterministic one, the user 
develops an axiomatic theory 5- characterizing the objects that will serve as states 
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for eve ry  p : s t a t e  ---. p rop  

• for every  s : s t a t e  imp l i ca t ion  
o access ib le(s)  
o p(s) 

• con junc t ion  

o V s :  s t a t e  in i t ia l (s)  D p(s) 
o Vsl : ~tate,  a : ac t ion  (access ib le ( s1 )A p ( s ~ ) ^  n e x t ( s ~ , a )  ~) D 

p(ne×t(sl, a)). 

Fig. 6. Induction on accessibility for deterministic state machines. 

and as inputs. He then instantiates the parametric theory ~ of deterministic state 
machines. To do so, he supplies an interpretation ~5 from ~ to J .  As a 

consequence, all defined expressions from N are made available in Y-, possibly 

under a suitable renaming, and all the theorems of ~ are available through the 
interpretation ~. 

Safety theorems are then expressed in terms of the resulting accessibility predicate, 

and liveness assertions may be expressed directly. Refinement relations between two 
state machines may be formulated in the direct way, using a joint theory describing 
both individual machines. 

Domain Theory for Denotational Semantics. This is a simple parametric theory of 
continuous functions and related notions developed for denotational semantics. 
We have developed an IMPS theory representing the official Scheme denotational 
semantics using this as a basis. 

Facility for Defining Free Recursive Datatypes. Many applications in computing use 
datatypes that are constructed recursively by a number of operations from 
previously given objects and some atoms. These datatypes are often specified by a 
BNF-like notation. For  instance, if elt denotes a class of  previously given objects, 

then the finite lists composed of these elements may be specified by the clauses: 

L :: = NIL I CONS elt L 

In other cases, for instance in the abstract syntax for a programming language, 
different sorts of  objects, such as statements, expressions, and variables, may be 
defined by mutual  recursion, starting from given objects such as identifiers: 

s :: = W H I L E  e s I SEMICOLON sl  s2 I ASSICN v e I . . .  

e : : = v  I PLUS v l  v2 B L O C K  s e  I . . .  

v :: ~- VAI:% ident 

A specification such as this is normally interpreted as denoting the free algebra 

generated by regarding each a tom as a constant and each constructor as a function 
symbol. Hence, it justifies an induction principle and a principle of  function 
definition by primitive recursion. 

IMPS provides a procedure that, given a legitimate specification, will generate a 
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new theory Y.  The specification may stipulate an already-known theory ~--0 to 
characterize the given objects (list elements and identifiers in the examples above). 
Y- will be a model conservative extension of ~-0, by which we mean that any model 
of Y-0 may be enlarged to form a model of Y by adding suitable new objects. In 
particular, ~- is satisfiable if J0  is. 

~ ( J - )  extends 5°(Y-0) by adding one new type ~-. If the specification declares 
several new categories (such as statements, expressions, and variables in the 
example above), then each of these will be represented by a subsort of ~-. A clause 
may be represented by a sort inclusion; for instance, the sort v is included within e 
above. Otherwise, it is represented by a function serving as a datatype constructor. 
Axioms of Y ensure that the ranges of different datatype constructors are disjoint, 
and do not include the values of atoms; the domain of a datatype constructor is 
characterized exactly by the sorts of its arguments. The second-order induction 
principle for -r is also an axiom. The primitive recursion principle is supplied as a 
theorem, although its proof is not generated at the time that Y is constructed. 

8. Conclusion 

IMPS is an interactive proof development system intended to support standard 
mathematical notation, concepts, and techniques. In particular, it provides a flexible 
logical framework in which to specify axiomatic theories, prove theorems, and relate 
one theory to another via inclusion and theory interpretation. Theory interpretations 
are used extensively in IMPS for reusing theories and theorems. The IMPS logic is a 
conceptually simple, but highly expressive version of higher-order logic which allows 
partially defined (higher-order) functions and undefined terms. The simple types 
hierarchy of the logic is equipped with a subtyping mechanism. Proofs are 
developed in IMPS with the aid of several different deduction mechanisms, 
including expression simplification, automatic theorem application, and a 
mechanism for orchestrating applications of inference rules and theorems. The 
naturalness of the logic and the high level of inference in proofs make it possible 
to develop machine-checked proofs in IMPS that are intuitive and readable. 

The IMPS initial theory library provides evidence for the claim that IMPS 
supports the traditional methods of mathematics. The theory library now contains 
repeatable proofs of over a thousand theorems, including significant portions of 
algebra and analysis. Sources include traditional presentations, such as parts of a 
graduate course in algebra and parts of Dieudonn6's Foundations of Modern 
Analysis [13]. Because standard mathematical development is possible in IMPS, 
the system should be an accessible, effective tool to a wide range of mathematically 
educated users. 
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Notes 

1 By a logic, we mean in effect a function. Given a particular vocabulary, or set of  (nonlogical) constants, 
the logic yields a triple consisting of  a formal language A °, a class of  models d for the language, and a 
satisfaction relation ~ between models and formulas. The function is normally determined by the 
syntax and semantics of  a set of  logical constants for the logic. The satisfaction relation determines 
a consequence relation between sets of  formulas and individual formulas. A formula P is a consequence 
of  a set of  formulas S if ~ ~ P holds whenever d ~ Q holds for every Q c S. When we speak of a 
theory, we mean  in essence a language together with a set of  axioms. A formula is a theorem of the 
theory if it is a consequence of  the axioms. 

2 Pronounced as the word in French. 
3 We will refer to thes e types by the names ind, indl ,  etc., al though of course they may be given any 

convenient names. 
4 However, since the graph of  a function (partial or total) can always be represented as a relation, the 

problem of  nondenot ing terms can in theory be easily avoided at the cost of  using unwieldy, verbose 
expressions packed with existential quantifiers. Hence, i f  pragmatic concerns are not important, classical 
logic is perfectly adequate for dealing with partial functions. 

5 Throughout  this paper, constructors will be denoted using traditional symbology. For example, 
l ambda  and iota are denoted, respectively, by the variable-binding symbols A and ~; equals is denoted 
by the usual infix symbol =; and apply-operator  is denoted implicitly by the standard notat ion of 
function application. 

e The meaning of the formula s = t is that  s and t denote the same value, and so 0/0 = 0/0  is a false 
assertion. 

7 f_E g i f f f ( a l , . . . , a m )  = g(a l , . . . ,am)  for all m-tuples ( a l , . . . , am}  in the domain o f f  
8 p C_ q i f f p ( a l , . . .  , am) D q (a l , . . . ,  am) for aii m-tuples ( a l , . . . ,  am) in the common domain o f p  and q. 
9 The translations available in IMPS are actually more general than what we describe here: # is allowed 

to map  sorts to unary predicates. When this occurs, expressions beginning with variable binders such as 
V or A must  be 'relativized'. For  example, if # maps  c~ to a unary predicate U on sort /3, then 
• (Vx: ~.  ~) = Vx: 9 .  U(x) ~ ~(~). 

10 In this formulation, K is the underlying sort of  field elements. Figure 1 is printed exactly as formatted 
by the TEX presentation facility of  IMPS. Various switches are available, for instance to cause con- 
nectives to be printed in-line with the usual logical symbols instead of being written as words with 
subexpressions presented in itemized format.  

11 By a path we mean  a sequence of natural numbers  that 'navigates'  from the topmost  node of  an 
expression, regarded as a tree, to some subexpression. It is thus one way of formalizing and 
implementing the notion of an occurrence. 

12 In this formulation, U denotes the underlying sort of  vectors and I denotes an arbitrary (possibly 
unbounded)  interval of  real numbers.  
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