
Journai of Automated Reasoning I i : 2i3-248, 1993. 2t3
© 1993 K!uwerAcademic Publishers. Printed in the Netherlands.

IMPS: An Interactive Mathematical Proof System*

WILLIAM M. FARMER, JOSHUA D. G U T T M A N , and F. JAVIER THAYER
7he MITRE Corporation, 202 Burlington Rd, Bedford, MA 01730-1420, U.S.A.
Emc~il: farmer, guttman, jt@mitre.org

(Received: 18 July 1991; accepted: 2 February 1993)

Abstract. IMPS is an interactive mathematical proof system intended as a general-purpose too! '~'or
lbrmulating and applying mathematics in a familiar fashion. The logic of IMPS is based on a version
of simple type theory with partial functions and subtypes. Mathematical specification and inference are
performed relative to axiomatic theories, which can be related to one another via inclusion and theory
interpretation. IMPS provides relatively large primitive inference steps to facilitate human control of
the deductive process and human comprehension of the resulting proofs. An initial theory library con-
taining over a thousand repeatable proofs covers significant portions of logic, algebra, and analysis and
provides some support for modeling applications in computer science.

Key words. Interactive theorem proving, automated analysis, computing with theorems, theory
interpretation, higher-order logic, partial functions.

~o Introduction

The primary goal of IMPS, an interactive mathematical proof system, is to provide
mechanized support for the traditional techniques of mathematical reasoning. The
system consists of a data base of mathematics (represented as a collection of inter-
connected axiomatic theories) and a collection of tools for exploring, applying,
and extending the mathematics in the data base. IMPS is distinguished by its
logic, its methodology for formalizing mathematics, and its style of proof.

o Logic. The IMPS logic is intended to allow the user to formulate mathematical
concepts and arguments in a natural and direct manner. It is a simple type theory
with strong support for specifying and reasoning about functions. Unlike classical
logic, functions may be partial and terms may be nondenoting, but formulas
always have a standard truth value. Section 2 describes the IMPS logic.

® Methodology. Mathematics is formalized in IMPS as a network of axiomatic
theories. The theories in the network are linked together by theory interpretatio~ls
which serve as conduits to pass results from one theory to another. This way of
~brmalizing mathematics - the 'little theories' version of axiomatic method
has advantages for mechanized mathematics [19]. In particular, it fosters the reuse
of theories and their constituents. Section 3 discusses the little theories approach in
IMPS.

* Supported by the MITRE-Sponsored Research program.

214 WILLIAM M. FARMER ET AL

• Proofs. In contrast to the formal proofs described in logic textbooks, IMPS proofi
are a blend of computation and high-level inference. Consequently, they resembl~
intelligible informal proofs, but unlike informal proofs, all the details of an IMP5
proof are machine checked. IMPS emphasizes interactive proof development
There is essentially no structural difference between completed proofs and partial
proof attempts. The development of proofs in IMPS is the subject of Section 4.

The remaining sections of the paper discuss the IMPS user interface (Section 5),
the use of IMPS for mathematical analysis (Section 6), and the IMPS mathematics,
data base (Section 7). A brief conclusion is given in Section 8.

2. Logic

The logic 1 of IMPS is called LUTINS, 2 a logic of undefined terms for inference in
natural style. LUTINS is a conceptually simple implementation of higher-ordel
predicate logic that closely conforms to mathematical practice. Partial functions
are dealt with directly; consequently, terms may be nondenoting. The logic,
however, is bivalent; formulas are either true or false.

LUTINS is derived from the formal system PF* [17], which in turn is derived from
the formal system PF [16]. PF is a version of Church's simple theory of types [1, 7] in
which functions may be partial, and PF* is a many-sorted, multivariate simple type
theory with partial functions, subtypes, and definite description operators. It is
shown in [16] and [17] that PF and PF*, respectively, are complete with respect to
a Henkin-style general models semantics [29]. LUTINS is essentially PF* plus a
number of convenient expression constructors, which are discussed below. The
formal semantics of LUTINS is straightforwardly derived from the (standard
models) semantics of PF* in [17]. (See [28] for a detailed description of the syntax
and semantics of LUTINS.)

2.1. HIGHER-ORDER FUNCTIONS AND TYPES

Higher-order logic (or type theory) was developed in the early part of this century to
serve as a foundation for mathematics, but lost its popularity as a foundation for
mathematics in the 1930s with the rise of set theory and first-order logic. Higher-
order logic emphasizes the role of functions, in contrast to set theory, which
emphasizes the role of sets. In type theory, functions may be quantified and may
take other functions as arguments. In order to avoid circularity, functions are
organized according to a type hierarchy.

Type theory has a uniform syntax; it is based on familiar notions; and it is highly
expressive. The use of A-notation allows functions to be specified succinctly. Since
type theory contains second-order logic, there are many things that can be expressed
in it which cannot be directly expressed in first-order logic. For example, the
induction principle for the natural numbers can be expressed completely and

IMPS: AN INTERACTIVE MATHEMATICAL PROOF SYSTEM 215

naturally by a single second-order formula. (See [4, 45] for discussion on the

expressive power of second-order logic relative to first-order logic.)
The type hierarchy of LUTINS consists of base types and function types. Let ~ be

a language in LUTINS. The base types of ~ are the type of propositions prop and
m >/1 types of individuals. 3 The function types of 2 ' are inductively defined from its
base types: if C~l, . . . ,%,~n+l are (base or function) types where n/>1, then
a l , . . . % --+ c~n+l is a function type. Since m and n may be strictly greater than 1,
the type structure is 'many-sorted' and 'multivariate', respectively.

A higher-order logic with this sort of type hierarchy is called a simple type theory.
The automatic theorem proving system TPS developed at CMU [2], the proof
development system HOL developed at the University of Cambridge [25], and the
E H D M and PVS verification systems developed at SRI International [39, 42] are
also based on simple type theories. However, in these systems function types contain
only total functions, while in LUTINS, some types may contain partial functions.
These are the types of kind ind. We say that a type ~ is of kind ind (or ~) if c~
is a base type of individuals or c~ = a l , . . . , % ~ %+1 and %+1 is of kind ind.
Otherwise, we say that c~ is of kindprop (or *).

When a function type a is known to be of kind ind, we prefer to write it in the
form c ~ i , . . . , c ~ c ~ + l instead of c~1, . . . ,%--+c~+ I. This emphasizes that a
contains partial functions as well as total functions.

Every formal expression in LUTINS has a unique type. The type of an expression
serves both a semantic and syntactic role: an expression denotes an object in the
denotation of its type (if the expression is defined), and the syntactic well-formedness
of an expression is determined on the basis of the types of its components. An
expression is said to be of kind ind (respectively, prop) if its type is of kind ind
(respectively, prop). Expressions of kind ind are used to refer to mathematical
objects; they may be undefined. Expressions of kind prop are primarily used in
making assertions about mathematical objects; they are always defined.

2.2. PARTIAL FUNCTIONS

One of the primary distinguishing characteristics of LUTINS is its direct
approach to specifying and reasoning about partial functions (i.e., functions which
are not necessarily defined on all arguments). Partial functions are ubiquitous in
both mathematics and computer science. If a term is constructed from simpler
expressions by the application of an expression denoting a partial function f to an
expression denoting an argument a which is outside the domain of f , then the
term itself has no natural denotation. Such a term would violate the existence
assumption of classical logic, which says that terms always have a denotation.
Thus a direct handling of partial functions can only lie outside of classical logic. 4

The semantics of LUTINS is based on five principles:

(1) Variables, constants, and A-expressions always have a denotation.
(2) Expressions of type prop always denote a standard truth value.

216 WILLIAM M. FARMER ET AL.

(3) Expressions of kind ind may denote partial functions.

(4) An application of kind ind is undefined if its function or any of its arguments is
undefined.

(5) An application of type prop is false if any of its arguments is undefined.

As a consequence of these principles, expressions of kind prop must be denoting.
We have chosen this approach for dealing with partial functions because it causes
minimal disruption to the patterns in reasoning familiar from classical logic and
standard mathematical practice. (For a detailed discussion of various ways of
handling partial functions in predicate logic, see [16].)

2.3. CONSTRUCTORS

The expressions of a language of LUTINS are constructed from variables and
constants by applying constructors. Constructors serve as 'logical constants' that
are available in every language. LUTINS has approximately 20 constructors. (PF
and PF* have only two constructors, application and A-abstraction.) Logically,
the most basic constructors are apply-operator, lambda, iota, and equals; in
principle, every expression of LUTINS could be built from these four. 5 The other
constructors serve to provide economy of expression.

There is a full set of constructors for predicate logic: constants for true and false,
propositional connectives, equality, 6 and universal and existential quantifiers.
LUTINS also has a definite description operator 5, an if-then-else operator if, and
definedness constructors is-defined (denoted by the postfix symbol +) and
defined-in (~. in between an expression and a sort). Although a few constructors
(such as implies (infix D) and not (7)) correspond to genuine functions, most
constructors do not. For example, the constructor if is nonstrict in its second and
third arguments (e.g., the expression if(0 = 0 , 0 , 1/0) is defined in a theory of
arithmetic even though 1/0 is undefined). Four constructors bind variables: forall
(V), forsome (3), ~, and A, the basic variable-binding constructor.

The ~ constructor, the definite description operation of LUTINS, is a constructor
that cannot be easily imitated in other logics. Using this constructor, one can create a
term of the form cx. P(x), where P is a predicate, which denotes the unique element
described by P. More precisely, ~x. P(x) denotes the unique x that satisfies P if there
is such an x and is undefined otherwise. In addition to being quite natural, this kind
of definite description operator is very useful for specifying (partial) functions. For
example, ordinary division (which is undefined whenever its second argument is 0)
can be defined from the times function • by a A-expression of the form

Ax, y . Lz .x* z = y.

In logics in which terms always have a denotation, there is no completely satisfactory
way to formalize a definite description operator (see Russell's attempt [43])~ This is
because a definite description term ~x. P(x) must always have a denotation, even
when there is no unique element satisfying P.

IMPS: AN INTERACTIVE MATHEMATICAL PROOF SYSTEM 217

The IMPS implementation allows one to create macro/abbreviat ions called quasi-

constructors which are defined in terms of the ordinary constructors. For

example, the quasi-constructor quasi-equals (infix _~) is defined by the following

biconditional:

el ~- e2 ~ (el ; Ve2 ;) D el = e2.

A quasi-constructor is used in two different modes: as a device for constructing
expressions with a common form and as if it were an ordinary constructor. The first
mode is needed for proving basic theorems about quasi-constructors, while the

second mode effectively gives the user a logic with a richer set of constructors.

Quasi-constructors can be especially useful for formulating generic theories (e.g., a

theory of finite sequences) and special-purpose logics within IMPS,

Constructors and quasi-constructors are polymorphic in the sense that they can be
applied to expressions of several different types. For instance, the constructor if can

take any three expressions as arguments as long as the type of the first expression is

prop and the second and third expressions are of the same type.

2.4. SORTS

Superimposed on the type hierarchy of L U T I N S is a system of subtypes. We call

types and subtypes jointly sorts. The sort hierarchy consists of atomic sorts and

compound sorts. Let 5O be a language in LUTINS. 5O contains a set of atomic sorts

which includes the base types of 5O. The compound sorts of 5O are inductively
defined from the atomic sorts of 5O in the same way that function types of 5O are

defined from the base types of 5O. Every atomic sort c~ is assigned an enclosing

sort ~(c~). -J_ is the least reflexive, transitive binary relation on the sorts of 5 ° such
that

• I f c~ is an atomic sort, then ~ -< ~(c~).

• I f c~ 1 ~ i l l , . . . , c~n+l -~/3n+1, then c~1,... , c~ ~ c~+ 1 _~/31,...,/3n --~/3n+l.

It follows from the definition of a L U T I N S language that the enclosing sort function
satisfies three properties:

• The enclosing sort of a base type is itself.

• The enclosing sort of an atomic sort is of kind prop iff the atomic sort is itself prop.
• _~ is Noetherian; i.e., every ascending sequence of sorts,

c~l ~ c~2 _~ ~3 -~ . . . ,

is eventually stationary.

These properties imply that:

• _~ is a partial order.

• For all sorts o~, there is a unique type/3, called the type of ~, such that c~ _~/3.
• I f two sorts have the same type, there is a least upper bound for them in _~.

218 WILLIAM M. FARMER ET AL.

A sort denotes a nonempty subset of the denotation of its type. Hence sorts may
overlap, which is very convenient for formalizing mathematics. (The overlapping of
sorts has been dubbed inclusionpolymorphism [6].)

Since a partial function from a set A to a set B is also a partial function from any
superset of A to any superset of B, compound sorts of kind ind have a very elegant
semantics: The denotation of c~ = al , • •., c~n ~ o~n+l of type /3 of kind ind is the

set of partial (and total) functions f of type/3 such that f (a l , . . . , an) is undefined
whenever at least one of its arguments a i lies outside the denotation of c~ i.

Sorts serve two main purposes. First, they help to specify the value of an
expression. Every expression is assigned a sort (called the syntactic sort of the
expression) on the basis of its syntax. If an expression is defined, it denotes an
object in the denotation of its syntactic sort. Second, sorts are used to restrict the
application of binding constructors. For example, if a is a sort of type/3, then a
formula of the form

Vx : a . P(x)

(which says: for all x of sort ~, P(x) holds) is equivalent to the formula

Vy: /3 . (y ~ a) D P(y).

Sorts are not directly used for determining the well-formedness of expressions. Thus,
i f f and a are expressions of sorts a ~ / 5 and a/, respectively, then the application
f(a) is well formed provided only that a and a / have the same type.

As a simple illustration of the effectiveness of this subtyping mechanism, consider
the language of our basis theory of real numbers, Complete Ordered Field, in which
we stipulate N is enclosed by Z, which is enclosed by Q, which is enclosed by R,
which is enclosed by the base type ind. So N ~ R denotes the set of all partial
functions from the natural numbers to the real numbers. This set of functions is a
subset of the denotation of ind ~ ind. A function constant specified to be of sort
R ~ R would automatically be applicable to expressions of sort N. Similarly, i f f
is a function constant declared to be of sort N ~ N and a is an expression of sort

R, then f(a) is automatically well formed, but f(a) is well defined only when a
denotes a natural number. A subtyping mechanism of this kind would be quite
awkward in a logic having only total functions.

Since LUTINS has a partially ordered set of sorts, it is an 'ordered-sorted' logic.
Ordered-sorted type theory [32] (and most weaker order-sorted logics) can be

directly embedded in LUTINS.

2.5. SUMMARY

LUTINS is a many-sorted, multivariate, higher-order predicate logic with partial
functions and subtypes. It has strong support for specifying and reasoning about
functions: A-notation, partial functions, a true definite description operator, and
full quantification over functions. Its type hierarchy and sort mechanism are

IMPS: AN INTERACTIVE MATHEMATICAL PROOF SYSTEM 219

convenient and natural for developing many different kinds of mathematics.
Although LUTINS contains no polymorphism in the sense of variables over
types, polymorphism is achieved through the use of constructors and quasi-
constructors, sorts, and theory interpretations (see Section 3.3).

Perhaps most importantly, the intuition behind LUTINS closely corresponds to
the intuition used in everyday mathematics. The logical principles employed by
LUTINS are derived from classical predicate logic and standard mathematical
practice. This puts it in contrast to some other higher-order logics, such as
Martin-L6f's constructive type theory [34], the Coquand-Huet calculus of construc-
tions [10], and the logic of the Nuprl proof development system [9]. These logics -
which are constructive as well as higher order - employ rich type constructors
and incorporate the 'propositions as types' isomorphism (see [31]). Motivated in
part by a desire to model computational reasoning, they are a significant departure
from traditional, classical mathematical practice. Moreover, they allow dependent
types or quantification over type variables, which create more complicated type
systems. However, the Martin-L6f-style systems provide simpler, specifically
predicative [21], methods for defining mathematical objects, so that their domains
are in this respect less complicated than those for classical simple type theories.
The restriction to predicative definitions may or may not be an advantage; from
the point of view of developing classical analysis, for instance, it is certainly an
impediment [21, 44, 49, 50].

3. Little Theories Approach

IMPS supports the 'little theories' version of the axiomatic method [19] as well as the
'big theory' version in which all reasoning is performed within a single powerful and
highly expressive axiomatic theory, such as Zermelo-Fraenkel set theory. In the little
theories version, a number of theories are used in the course of developing a portion
of mathematics. Different theorems are proved in different theories, depending on
the amount and kind of mathematics that is required. Theories are logically linked
together by translations called theory interpretations which serve as conduits to
pass results from one theory to another. We argue in [19] that this way of organizing
mathematics across a network of linked theories is advantageous for managing
complex mathematics by means of abstraction and reuse.

3.1. THEORIES

Mathematically, a theory in IMPS consists of a language and a set of axioms. At the
implementation level, however, theories contain additional structure which encodes
this axiomatic information in procedural or tabular form. It facilitates various kinds
of low-level reasoning within theories that are encapsulated in the IMPS expression
simplifier (see Section 4.4.1).

A theory is constructed from a (possibly empty) set of subtheories, a language,

220 WILLIAM M. FARMER ET AL.

and a set of axioms. Theories are related to each other in two ways: one theory can

be the subtheory of another, and one theory can be interpreted in another by a theory
interpretation. A theory may be enriched via the definition of new atomic sorts and

constants and via the installation of theorems. Several examples of theories are
discussed in Section 7.

3.2. DEFINITIONS

IMPS supports four kinds of definitions: atomic sort definitions, constant defi-

nitions, recursive function definitions, and recursive predicate definitions. In the
following let ¢- be an arbitrary theory.

Atomic sort definitions are used to define new atomic sorts from nonempty unary

predicates. An atomic sort definition for ~- is a pair ~5 = (n, U) where n is a symbol
intended to be the name of a new atomic sort of Y- and U is a nonempty unary
predicate in J - intended to specify the extension of the new sort. ~5 can be installed

in ~-- only if the formula 3x . U(x) is known to be a theorem of ~-. As an

example, the pair

(N, Ax : Z . 0 ~< x)

defines N to be an atomic sort which denotes the natural numbers. Since the sort of
an expression gives immediate information about the value of the expression, it is

often very advantageous to define new atomic sorts rather than work directly with

unary predicates.
Constant definitions are used to define new constants from defined expressions. A

constant definition for Y- is a pair 6 : (n, e) where n is a symbol intended to be the
name of a new constant of ~-- and e is an expression in 3-- intended to specify the
value of the new constant. 6 can be installed in Y- only if the formula e ~ is verified

to be a theorem of Y . As an example, the pair

(floor, A x : R . ~ z : Z . z ~ < x A x < l + z)

defines the floor function on reals using the c constructor.
Recursive function definitions are used to define one or more functions by (mutual)

recursion. They are essentially an implementation of the approach to recursive defi-
nitions presented by Moschovakis in [38]° A recursive definition for g is a pair
~5 = ([ni , . . . ,nk], [F1,... ,Fkl) where k /> 1, [nl,... ,nk] is a list of distinct symbols

intended to be the names of k new constants, and [F1, . . . , Fk] is a list of functionals
(i.e., functions which map functions to functions) of kind ind in J - intended to
specify, as a system, the values of the new constants. 6 can be installed in Y only
if the functionals F 1 , . . . , F k are verified to be monotone in Y with respect to the
subfunction order _c. 7 The names [nl , . . . ,n~] then denote the simultaneous least

fixed point of the functionals F1,. • •, Fk. As an example, the pair

(factorial, Af: Z ~ Z.,Xn : Z . i f (n = 0, 1 , n , f (n - 1)))

is a recursive definition of the factorial function in our standard theory of the real

numbers.

~MPS: AN INTERACTIVE MATHEMATICAL PROOF SYSTEM 221

This approach to recursive definitions is very natural in IMPS because expressions

of kind ind are allowed to denote partial functions. Notice that there is no require-
ment that the functions defined by a recursive definition be total. In a logic in which
functions must be total, a list of functions can be a legitimate recursive definition
only if it has a solution composed entirely of total functions. This is a difficult
condition for a machine to check, especially when k > 1. Of course, in IMPS there
is no need for a recursive definition to satisfy this condition since a recursive defi-
nition is legitimate as long as the defining functionals are monotone. IMPS has
an automatic syntactic check sufficient for monotonicity that succeeds for many
common recursive function definitions.

Recursive predicate definitions are used to define one or more predicates by
(mutual) recursion. They are implemented in essentially the same way as recursive
function definitions using the order _c s on predicates. This approach is based

on the classic theory of positive inductive definitions (see [37]). For an example,
consider the pair

([even, odd], IF1, F2]),

where:

* F1 = Ae, o :N -+ prop . An : N . i f (n = 0, truth, o (n - 1)).
* F2 = Ae, o :N --+ prop. An : N . i f (n = 0, falsehood, e (n - 1)).

It defines the predicates even and odd on the natural numbers by mutual recursion.
As with recursive function definitions, there is an automatic syntactic check sufficient
for monotonicity that succeeds for many recursive predicate definitions.

3.3. THEORY INTERPRETATIONS

One of the chief virtues of the axiomatic method is that the theorems of a theory can
be 'transported' to any specialization of the theory. A theory interpretation is a
syntactic device for translating the language of a source theory to the language of
a target theory. By definition, it has the property that the image of a theorem of
the source theory is always a theorem of the target theory. It then follows that
any formula proved in the source theory translates to a theorem of the target
theory. We use this method in a variety of ways (which are described below) to
reuse mathematical results from abstract mathematical theories.

Theory interpretations are constructed in IMPS by giving an interpretation of the
sorts and. constants of the language of tl~e source theory; this is the standard
approach which is usually seen in logic textbooks (e.g., see [14, 35, 46]). We give
below a summary of theory interpretations in IMPS; a detailed description of theory
interpretations for PF* is given in [17].

Let if- and .Y-~ be theories over languages ~ and 54 ~, respectively. A translation from
.Y- to y t is a pair q) = (#, u), where # is a mapping from the sorts of 5~ to the sorts of

222 W I L L I A M M. F A R M E R ET AL.

~ ' and v is a mapping from the constants of £o to the expressions of 5°', such that

(1) #(prop) = prop.
(2) For each sort a of £0, a and #(c~) are of the same kind.

(3) If a is a sort of 5(' with type/3, then #(o<) and #(/3) have the same type.
(4) If c is a constant of ~ of sort a, then the type of v(c) is the type of #(o<).

Given an expression e of 5 a, @(e) denotes the expression of ~ ' , defined in the
obvious way from # and v, that is the translation of e via q~.9

Let q~ be a translation from Y- to g" . An obligation o f ~ is a formula ~(qo) where ~ is:

(1) an axiom of J ;
(2) a formula asserting that a particular constant of Y is defined in its sort; or
(3) a formula asserting that a particular atomic sort of 5~ is a subset of its enclosing

sort.

By a theorem called the interpretation theorem (see [17]), @ is a theory interpretation
from Y- to Y ' if each of its obligations is a theorem of Y ' .

The IMPS system provides support for using theory interpretations in many
different ways. The following are brief descriptions of some of the most important
ways theory interpretations are used in IMPS. See [19] for further discussion on
applications of theory interpretations in mechanical theorem proving.

Theorem reuse. Mathematicians want to be able to formulate a result in the most
general axiomatic framework that good taste and ease of comprehension allow.
One major advantage of this approach is that a result proved in an abstract theory
holds in all contexts that have the same structure as the abstract theory. In IMPS,
theory interpretations are used foremost as a mechanism for realizing this advan-
tage: theorems proved in abstract theories can be transported via a theory interpret-
ation to all appropriate concrete structures. For instance, the binomial theorem may
be proved in a theory of fields (see Figure 1). l° Because the real numbers form a field,
we can define a theory interpretation from the theory of fields to a theory of the reals.
As a consequence, we can then 'install' the usual binomial theorem for the real

numbers.

Automatic application of theorems. Theorems can be automatically applied in IMPS
in two ways: (1) as rewrite rules (see Section 4.4.3) and (2) as macetes (see Section

for every a, b : K , n : Z impl icat ion
• conjunct ion

o l < n

o - o K)

o = oK)

• / a + b) ° = Z =o

Fig. 1. The binomial theorem in fields.

IMPS: AN INTERACTIVE MATHEMATICAL PROOF SYSTEM 223

4.4.4). Theorems can be applied both inside and outside of their home theories. A

theorem is applied within a theory J - which is outside of its home theory . ~ by,

in effect, transporting the theorem from ~ to Y and then applying the new theorem
directly within ~-. The mechanism is based on a kind of polymorphic matching
called translation matching [19]; the theory interpretation used to transport the

theorem is either selected or constructed automatically by IMPS. See Sections

4.4.4 and 4.4.5 for more details.

Polymorphic operators. As we noted in Section 2.3, constructors and quasi-

constructors are po lymorphic in the sense that they can be applied to expressions

of several different types. This sort of polymorphism is not very useful unless we
have results about constructors and quasi-constructors that could be used in proofs

regardless of the actual types that are involved. For constructors, most of these
'generic' results are coded in the form of rules, as described in Section 4.2. Since

quasi-constructors, unlike constructors, can be introduced by IMPS users, it is
imperative that there is some way to prove generic results about quasi-constructors.
This can be done by proving theorems about quasi-constructors in a theory of

generic types, and then transporting these results as needed to theories where the

quasi-constructor is used. For example, consider the quasi=constructor

composi t ion (infix o) defined as follows, for expressions f and g of type /3 -+ 7
and o~ --+/3, respectively:

f o g =_)~x : c~ . f (g(x)) .

The basic properties about o, such as associativity, can be proved in a generic theory
having four base types but no constants, axioms, or other atomic sorts. See Section
7.2 for further discussion on using quasi-constructors as polymorphic operators.

Symmetry and duality proofs. Theory interpretations can be used to formalize certain
kinds of arguments involving symmetry and duality. For example, suppose we have

proved a theorem in some theory and have noticed that some other conjecture
follows from this theorem 'by symmetry' . This notion of symmetry can frequently

be made precise by creating a theory interpretation from the theory to itself which
translates the theorem to the conjecture. As an illustration, let .Y- be a theory of

groups where • is a binary constant denoting group multiplication. Then the trans-
lation from Y to 3-- which takes • to Ax, y . y , x and holds everything else fixed

maps the left cancellation law x , y = x , z D y = z to the right cancellation law
y , x - z , x c y = z. Since this translation is in fact a theory interpretation, we
need only prove the left cancellation law to show that both cancellation laws are
theorems of Y-.

Parametric theories. As argued by Burstall and Goguen (e.g., in [23, 24]), a flexible
notion of parametric theory can be obtained with the use of ordinary theories and
theory interpretations. The key idea is that the primitives of a subtheory of a theory
are a collection of parameters which can be instantiated as a group via a theory

224 WILLIAM M. FARMER ET AL.

interpretation. For example, consider a generic theory Y of graphs which contains a
subtheory ~-~ of abstract nodes and edges, and another theory ~ containing graphs
with a concrete representation. The general results about graphs in g'- can be
transported to q./by creating a theory interpretation ~ from J~ to 0g and then lifting
• , in a completely mechanical way, to a theory interpretation of J to an extension
of q/. This use of theory interpretations has been implemented in OBJ3 as well as

IMPS (but in OBJ3, which has no facility for theorem proving, translation obli-
gations must be checked by hand). For a detailed description of this technique,
see [15, 181.

Relative consistency. If there is a theory interpretation from a theory J- to a theory
Y~, then J - is consistent if Y~ is consistent. Thus, theory interpretations provide a
mechanism for showing that one theory is consistent relative to another. One conse-
quence of this is that IMPS can be used as a foundational system. In this approach,
whenever one introduces a theory, one shows it to be consistent relative to a chosen
foundational theory (such as, perhaps, our theory of real numbers: Real Arithmetic,
described in Section 7).

3.4. THEORY ENSEMBLES

Ordinarily, mathematicians use the term theory in a much broader sense than we use
in this paper, or than is used by logicians generally. In this sense 'metric space theory'
refers not to the formal theory of a single metric space (which is from a mathematical
point of view not very interesting) but at the very least a theory of metric spaces and
mappings between them. For example, the notion of continuity for mappings
involves two separate metric spaces, and is naturally defined in a theory which is
the union of two copies of a theory of an abstract metric space. A family of theories
organized in this way is implemented in IMPS as a theory ensemble which consists of
a base theory, copies of the base theory called theory replicas, and unions of copies of
the base theory called theory multiples. The various theories of a theory ensemble are
connected by theory interpretations which rename constants. Theory interpretations
are automatically created from the base theory to each theory replica, and theory
interpretations between the theory multiples are created when needed by the user.
The theory interpretations allow the user to make a definition or prove a theorem
in just one place, and then transport the definition or theorem to other members
of the theory ensemble as needed.

As an illustration, consider the theory ensemble for the IMPS theory dd of an
abstract metric space. The points and the distance function of the metric space are
denoted in d{ by an atomic sort P and a constant dist (of sort P , P ~ R). For
n/> 0, let d{~ be a copy of d{ in which the set of points and distance function are
denoted by Pn and distn, and let q/n be the union of Jd0 , . . . ,dgn_ 1. (Usually,
n ~< 3.) The theorem in Figure 2, which says that the composition of two continuous
functions is itself a continuous function, is proved in q/3. The constant continuous is

IMPS: AN INTERACTIVE MATHEMATICAL PROOF SYSTEM 225

for every f : P0 -~ P I , g : P1 --" P2

• c o n j u n c t i o n

o c o n t i n u o u s (f)

o con t inuous ly (g)

• cont inuouso2(g o f) .

imp l i ca t i on

for every f : P0 ~ P I , g : Px ~ P2 i m p l i c a t i o n
• c o n j u n c t i o n

o c o n t i n u o u s (f)

o con t inuous (g)

• c o n t i n u o u s (g o f) .

Fig. 2. Composition preserves continuity (printed without and with overloading).

defined in °g 2 by the user. IMPS introduces the constants continuous12 and
continuous02 by transporting the definition of continuous to ~3 via the obvious
theory interpretations. Normally, the user would use the mechanism in IMPS for
overloading constants so that each of the three continuous constants would be
written for the user as continuous and the theorem would be printed in TEX in
the second form given in Figure 2.

After this composition theorem is proved, it can be transported to other theory
replicas and multiples of the theory ensemble. For example, to obtain the compo-
sition theorem for continuous functions on a single metric space, the theorem would
be transported from J//3 to J / v i a the theory interpretation which maps each of Po,
P~, P2 to P and each of dist o, diStl, dist2 to dist. The theory ensemble mechanism
also supports the transportation of definitions and theorems from a theory multiple
to one of its 'instances'. For example, the user can transport the definition of
continuous to Real Arithmetic by doing little more than specifying that both Po,
P1 map to R and both dist0, d i s t I map to Ax, y : R . I x - y [

4. Theorem Proving

In accordance with our emphasis on mathematically natural and intuitively under-
standable proofs, we distinguish two levels of reasoning in proving theorems in
IMPS. Reasoning at the (lower) formula level is largely done automatically via an
expression simplification routine. Reasoning at the proof structure level is done by
the user and the machine interactively. IMPS is designed to provide some auto-
mated support, but without giving free reign to the machine; the course of machine
deduction is orchestrated and controlled by the user.

IMPS produces formal proofs; they serve as the basis for conveying why the
theorem is true. Because they are intended for this purpose, they are very different
from the formal proofs that are described in logic textbooks. Usually a textbook,
formal proof is a sequence or tree constructed using a small number of low-levei

226 WILLIAM M. FARMER ET AL.

rules of inference. Formal proofs of this kind tend to be composed of a mass of small
logical steps. Humans usually find these proofs to be unintelligible. In contrast, the
steps in an IMPS proof can be large, and most low-level inference in the proof is
performed by the expression simplification routine. Moreover, a number of these lar-
ger steps may be grouped together as the result of a single human-level command.
Since inference is described at a high level, proofs constructed in IMPS resemble
informal proofs in understandability, but unlike an informal proof, all the details
of an IMPS proof have been checked by machine.

4.1. DEDUCTION GRAPHS

Every proof is carried out within some formal theory. In the process of constructing
a proof, IMPS builds a data structure representing the deduction, so that during
the proof process the user has great freedom to decide the order in which he wants to
work on different subgoals, and to try alternative strategies on a particular subgoal.
At the end of a proof, this object, called a deduction graph, can be surveyed by the
user, typeset automatically, or analyzed by software.

The items appearing in a deduction graph are not formulas, but sequents, in a
sense derived from Gentzen [22]; see [36] for a discussion of the advantage of
organizing deduction in this way. A sequent consists of a single formula called the
assertion together with a context. The context is logically a finite set of assump-
tions, although the implementation caches various kinds of derived information
with a context. In addition, the implementation associates each context with a
particular theory. We will write a sequent in the form r ~ A, where r is a context
and A is an assertion.

A deduction graph is a directed graph with nodes of two kinds, representing
sequents and inferences respectively. If an arrow points from a sequent node to an
inference node, then the sequent node represents a hypothesis to the inference. An
inference node has exactly one arrow pointing at a sequent node, and that sequent
node represents the conclusion of the inference. A sequent node is said to be
grounded (i.e., known to be 'valid' or 'true') if at least one arrow comes into it
from a grounded inference node; an inference node is grounded if, for every arrow
coming into it, the source of the arrow is a grounded sequent node. In particular,
an inference node with no arrows coming into it represents an inference with no
hypotheses, and is thus 'immediately grounded'. A deduction graph has one
distinguished sequent node as its goal; it represents the theorem to be proved. A
deduction graph is a proof of each sequent represented by a grounded sequent
node in the graph.

This representation of deductions has several advantages. First, because any
number of inference nodes may share a common sequent node as their conclusion,
the user (or a program) may try any number of alternative strategies for proving
a given sequent. Second, loops in deduction graphs arise naturally; they indicate
that either of two sequents may be derived from the other, possibly in combination

IMPS: AN INTERACTIVE MATHEMATICAL PROOF SYSTEM 227

with different sets of additional premises. Finally, at the end of a proof, the resulting
deduction graph serves as a transcript for analyzing the reasoning used in the proof,
and recollecting the ideas. On the other hand, the cost to store the objects is not
significant: in the current IMPS data base of over a thousand proofs, only 18
contain as many as a hundred sequent nodes; the average number is 23.

4.2. BUILDING DEDUCTION GRAPHS

A deduction graph is begun by 'posting' the goal node, a sequent node representing a
sequent to be proved. The deduction graph is then enlarged by posting additional
sequent nodes and creating inferences. The building of a deduction graph usually
stops when the goal node is marked as grounded. Inference nodes are created by
procedures called primitive inferences. Primitive inferences provide the only means
to add inference nodes to a deduction graph; there is no way to modify or delete
existing inference nodes. Each primitive inference works in roughly the same way:
Certain information is fed to the primitive inference; zero or more new sequent
nodes are posted; and finally, an inference node is constructed that links the newly
posted nodes with one or more previously posted nodes.

There are about 30 primitive inferences. Two of the primitive inferences are
special: simplification makes an inference on the basis of simplifying expressions
(see Section 4.4.1); macete-application makes an inference by applying a macete
(see Section 4.4.4). Each of the remaining primitive inferences embody one of the
basic laws of LUTINS (or is a variant of simplification or macete-application).
For example, the primitive inference direct-inference applies an analogue of an intro-
duction rule of Gentzen's sequent calculus (in reverse). It is selected according to the
leading constructor of the assertion of the input sequent node, which will become the
conclusion of the inference. The system also has primitive inferences for beta-
reduction, universal generalization, existential generalization, equality substitution,
contraposition, cut, backchaining, eliminating iota expressions, extensionality,
unfolding defined constants, definedness assertions, raising if-then-else expressions,
assuming theorems, introducing choice functions, and for modifying the context
of a sequent in various ways. Although the primitive inferences are available in
every theory, some of them, such as simplification and defined-constant-unfolding
depend on the axioms and theorems in the theory.

Primitive inferences are not called directly by the user. Instead, the user invokes
interactive proof commands which are procedures that call primitive inferences in
useful patterns. They are akin to what are called tactics in some other systems,
such as HOL [25], LCF [26], and Nuprl [9].

Commands are more useful than mere primitive inferences for three reasons. First,
unlike primitive inferences, commands have an interface procedure for collecting
information from the user. The interface procedure protects the user from the
'primitive' nature of the arguments of a primitive inference. For instance, the
command unfold-single-defined-constant collects a set of natural numbers, where

228 WILLIAM M. FARMER ET AL.

the number n represents the nth occurrence of the defined constant to be unfolded.
By contrast, the primitive inference defined-constant-unfolding requires a set of
paths 11 to the defined constant that is to be unfolded. The interface procedure calcu-

lates a path for each natural number and then calls the primitive inference defined-
constant-unfolding with this new information. More precisely, the interface proce-
dure orchestrates a conversation in which information can be exchanged a number
of times between the user and the system. For example, when the user applies the
command unfold-single-defined-constant to some sequent node, the system will list
the constants that occur in the assertion of sequent, the user will select one, and
then the system will unfold the constant if there is only one occurrence of it in the
sequent. If there is more than one occurrence, the system will ask the user for which
occurrences to unfold.

Second, commands may combine primitive inferences into larger, more humanly
understandable units. They may thus lift the user to a higher level of inference
than that of primitive inferences. As an illustration, consider again the command
unfold-single-defined-constant. After this command calls the primitive inference to
unfold some specified occurrences of a defined constant, the beta-reduction
primitive inference is called repeatedly until no beta-reductions are possible. This
has the desirable effect of building in beta-reduction into constant unfolding.

And, third, commands provide the user with new inferences that realize a certain
pattern of primitive inferences. These kinds of commands, which we sometimes
informally call strategies, usually add several new inference nodes to a deduction
graph at one time. Some of the simplest and most useful strategies break down
the logical structure of an assertion (e.g., by applying the direct-inference primitive
inference repeatedly), or else instantiate universal assumptions, existential assertions,

and theorems.
An extremely important strategy is used for proving theorems by induction. The

strategy takes, among other arguments, an inductor which specifies what induction
principle to use, how to apply the induction principle, and what heuristics to employ
in trying to prove the basis and induction step. IMPS allows the user to build his own
inductors; the induction principles are axioms or theorems of an appropriate form.
For example, the induction principle for the integers in Real Arithmetic is just the full
second-order induction axiom. The induction strategy is very effective on many
theorems from elementary mathematics; in some simple cases, the strategy can
produce a complete proof (two such formulas are printed in Figures 3 and 4), while
in other cases it does part of the work and then returns control to the user.

IMPS also has 'ending' strategies, the most basic of which is called prove-by-logic-
and-simplification. These strategies correspond to statements like 'and the theorem
follows from the above lemmas' that are commonly given in informal proofs.
They make complicated, but shallow inferences using lots of logical deduction and
simplification. These strategies have the flavor of the proof search strategies of
classic automated theorem provers; hence, they give IMPS an automated, as well
as interactive, theorem proving capability.

IMPS: AN INTERACTIVE MATHEMATICAL PROOF SYSTEM 229

for e v e r y n : Z i m p l i c a t i o n

e O < n
n "6 • E i = o 3 = nr/7 + n6/2 + nS/2 - n316 + n/42.

Fig. 3. The sum of sixth powers.

4.3. SOUNDNESS

We intend, of course, that the user can only make sound inferences in IMPS. Our
scheme for guaranteeing this is rather simple: IMPS allows the user to modify a
deduction graph only by posting sequent nodes or by calling primitive inferences
(either directly or indirectly). Since posting a sequent node does not affect the
inferences encoded in a deduction graph, IMPS will be sound as long as
each primitive inference is sound. The primitive inferences have been carefully
implemented so that there is a high degree of assurance that they do indeed only
make sound inferences. With this scheme, there is no problem about the soundness
of commands since they ultimately only affect a deduction graph through the appli-
cation of primitive inferences. Hence, our machinery of deduction graphs and
primitive inferences makes a type discipline like ML's unnecessary for assuring
that complex reasoning does not go awry.

4.4. THEORY-SUPPORTED REASONING

The logical content of a theory is determined by its language and set of axioms. As
an IMPS object, a theory also has a variety of other characteristics, such as the
sequence of defined constants that have been introduced, and the sequence of
theorems that have been derived so far. This section will discuss mechanisms that
support theory-specific reasoning, by which we mean reasoning that is sound only
relative to the axiomatic content of particular theories.

4.4.1. Simplification

Proofs which are understandable to a human must take relatively large steps, so that
the reader is not overwhelmed with a forest of detail. The expression simplifier is
crucial to achieving human-sized proof steps. It is always invoked on an expression

for e v e r y f , 9 : Z --~ R , a , b : Z i m p l i c a t i o n

• for e v e r y z : Z i m p l i c a t i o n

o a < z A z < b
o f(z) < g(z)

• ~b=f < ~ , g .

Fig. 4. The monotonicity of summation.

230 WILLIAM M. FARMER ET AL.

relative to a context P, and serves three primary purposes:

• to invoke a variety o f theory-specific transformations on expressions, such as
rewrite rules and simplification of polynomials (given that the theory has suitable
algebraic structure, such as that of a ring);

• to make simplifications based on the logical structure of an expression, often at
locations deeply nested within it;

• to discharge the great majority of definedness and sort-definedness assertions
needed to apply many forms of inference.

The notion of quasi-equality, mentioned in Section 2.3, serves as the correctness
requirement for the simplifier: If the simplifier transforms an expression e to e'
relative to the assumptions of a context I ~ (in a theory Y) , then J - and I' must
together entail e _~ e'. That is to say, either e and e' are both defined and share
the same denotation, or else they are both undefined. In LUTINS, quasi-equality
justifies substituting e ~ in place of e at any occurrence at which e ~ is free for e.

The algorithm traverses the expression recursively; as it traverses propositional
connectives it does simplification with respect to a richer context. Thus, for
instance, in simplifying an implication A D B, A may be assumed true in the 'local
context' relative to which B is simplified. Similarly, in simplifying the last conjunct
C of a ternary conjunction A A B A C, A and B may be assumed in the 'local
context'. On the other hand, when a variable-binding operator is traversed, and
there are context assumptions in which the bound variable occurs free, then
the simplifier must either rename the bound variable or discard the offending
assumptions. The strategy of exploiting local contexts is justified in [36] and has
since been incorporated in other work (such as [27]).

At any stage in this recursive descent, if a theory-specific procedure may success-
fully be used to transform the expression, it is applied. These procedures currently

include:

1. algebraic simplification of polynomials, relative to a range of algebraic theories

(see Section 4.4.3);
2. a decision procedure for linear inequalities, based on the variable elimination

method used in many other theorem provers, for instance by Boyer and Moore

[5]; and
3. rewrite rules for the current theory J , or for certain theories Y-0 for which IMPS

can find interpretations from Y-0 into J (see Section 4.4.5).

Since in LUTINS functions may be partial and terms may be undefined, term
simplification in LUTINS must involve a considerable amount of definedness
checking. For example, simplifying expressions naively may cancel undefined
terms, reducing a possibly undefined expression such as 1Ix- 1Ix to 0, which is
certainly defined. In this example, the previous replacement is valid if the context
F can be seen to entail the definedness or 'convergence' of 1Ix. In general, algebraic
reductions of this kind produce intermediate definedness formulas to which the

IMPS: AN INTERACTIVE MATHEMATICAL PROOF SYSTEM 231

simplifier is applied recursively. These formulas are called convergence
requirements.

Rewrite rules also generate convergence requirements. Suppose that we have a
theorem of the form

V x : ~ . s[x] = s'[x]

which is being used as a rewrite rule from left to right. If a portion of an expression
being simplified is of the form s[t], then we would like it to be rewritten to s'[t], but
only if t + c~. If t is undefined, or if it has a value in the type of ~ but not in c~, then
the change is not justified as an instance of the theorem.

Despite these apparently stringent restrictions, the IMPS simplifier is able to work
effectively. Although allowing partial functions in theories does require checking
definedness of expressions, one of the significant lessons that we have learned
from IMPS is that this difficulty can be overcome.

If no transform is applicable, then a simplification routine determined by the
top-most constructor or quasi-constructor of the expression to be simplified is
applied. These routines normally invoke the simplifier recursively on sub-
expressions, with different contexts. The routines for a few constructors, especially
the definedness constructors (Section 4.4.2), use special routines exploiting
information extracted from the axioms and theorems of the context's theory.

The simplification procedures are used systematically in the course of building
deduction graphs. For instance, if A simplifies to t ru th relative to F, then the
sequent I ~ =~ A is recognized as valid without any further inference. In addition,
the power of the simplifier ensures that the same proof idea may be successfully
applied to different formulas when the differences between them are syntactic and
superficial.

The emphasis on a powerful simplification procedure to allow large inference
steps in the course of interactive proof development is shared with Eves and its
predecessor m-Eves [11, 12, 40], as well as the more recent PVS [39].

4.4.2. Reasoning about Definedness

Because simplification involves large numbers of convergence requirements, it is
important to automate, to the greatest extent possible, the process of checking
that expressions are well defined or defined with a value in a particular sort. This
kind of reasoning must rely heavily on axioms and theorems of the axiomatic theory
at issue. The algorithm for simplifying definedness assertions is separated into two
layers, according to whether recursive calls to the simplifier are involved.

The Lower Level of Definedness Checking. In the lower level, there are no recursive
calls to the simplifier; two kinds of information are used:

• Totality theorems of the form VXl : c~l, . . . , x n : c~n . f (x l , . . . , xn) ~, c~.
• Unconditional sort coercions of the form Vx : c~. x +/3.

232 WILLIAM M. FARMER ET AL.

The unconditional sort coercion theorems, together with the syntactic ordering on

sorts _~, defined in Section 2, determines a pre-order << on sorts. In particular, if
S is a set of unconditional sort coercion formulas in a language ~ , then <<s is the
weakest pre-order extending -< for 5~, such that:

• o~ <<s/3 if a formula of the form Vx : ~ . x ~/3 is in S;

• ~ l , . . . , a n - ~ ~n+l <<s/31,...,/3n ~/3n+l whenever o~i<<st3i for all i with
l ~ < i ~ < n + l .

<<s/3 if and only if in every model of S, the denotation of a is included in the
denotation of/3. The relation <<s is a pre-order rather than a partial order because
for two different syntactic sorts c~ and/3, we may have a <<s/3 and/3 <<s ~; in this

case ~ and/3 have the same denotation in every model of S. Fix some collection S of
axioms and theorems of J - , with respect to which definedness-checking is being
carried out.

The relation <<s together with the totality theorems are used in IMPS by an

algorithm for checking definedness. We use totality information and unconditional
sort coercions to extract 'critical pairs of subterms and sorts', or simply critical

pairs, from t and a. By a set of critical pairs, we mean a set of pairs (si,/3i) such that:

• each si is a subterm of t, and

• if si ,[/3i holds for each i, then t + a.

In particular, if the null set is a set of critical pairs for t and a, then t + a is true.

Naturally, {(t, a)} is always a set of critical pairs for t and a. More useful sets of
critical pairs may be computed for many expressions using two main principles:

• Suppose that C u { (si,/3i) } is a set of critical pairs, where si is a variable, constant,
or A-expression, and 7 is its syntactically declared sort. I f 7 <<s/3i, then s i ,L •i is
patently true, so C is also a set of critical pairs.

• Suppose that 3' <<s o~, t is an application f (a l , . . . , an), and S contains

VXl : / 31 , ' ' " , Xn : /3n . f (x l , . . . , xn) ~. 7.

I f Ci is a set of critical pairs for ai and/3i, then Ui C/is a set of critical pairs for t
and ~. I f t is a conditional term 'if ~b then sl else s2', then critical pairs for sl and s2
may be combined to provide a set for t.

These principles mechanize definedness checking for a fragment of L U T I N S that
corresponds to order sorted theories in higher order logic [32].

Frequently, a set of critical pairs will be relatively small, even if it is nonnull.
Moreover, the terms it contains may be far smaller than t. For instance, consider
the term t:

(i + j - k)- (i - j + k) . (i , k + j / 2)

where k, j , i range over the integers Z, and all of the function symbols denote the
usual binary functions on the reals. The only critical pairs for t to be defined among

IMPS: AN INTERACTIVE MATHEMATICAL PROOF SYSTEM 233

the rationals Q is (j/2, Q). In this case, we would like to combine the results of the

lower level with the fact that

Vp, q: Q . q ¢ 0 D p / q J. Q.

For this reason, the results of the lower level of definedness-checking are passed to
the upper layer, which uses this sort of conditional information.

The Upper Level of Definedness Checking. In the upper layer, conditional infor-
mation about definedness is consulted. The simplifier is invoked on the resulting
assertions, in an attempt to reduce them to t ruth .

The conditional theorems used in this level are stored in a domain-range handler
for the theory. It contains three primary kinds of information about the domain
and range of functions, and the relations between sorts, in the theory.

• Definedness conditions of the form

V X 1 : 0 ~ 1 , . . . , X n " O~ n . @ (X l , - . . , X n) D f (X l , . . . ,Xn) + c~.

• Value information of the form

VX1 : OZl , . . . ,Xn : O ~ n . ~ (X l , . . . , X n , g (X l , . . . , X n)) .

These theorems characterize the range of g, and can be used in checking the
definedness of expressions of the form f (. . . g (q , . . . , tn)...).

• Conditional sort coercions of the form

Vx :/3. ~(x) ~ x ; c~.

To check the definedness of a term f (q , . . . , tn) in sort ct, we look for a definedness
condition

VXl : a l , . . . , X n : OZn. ~(Xl,. . . ,Xn) D f (x l , . . . , X n) .L a,

or, alternatively, a sort coercion condition

V x : / 3 . +(x) ~ x ; ~,

where/3 is the syntactic sort o f f (t l , . . . , t~) (i.e., the declared range o f f) .
If a definedness condition for c~ is found, then we form the new goal ~ (t l , . . . t~).

Moreover, for each subterm t i that is of the form g(sl , . . . ,Sm) and has a value
condition (~i, we add ~ i (S 1 , . . . , S m , g (S l , . . . , S m)) to I ~, thus forming an expanded
context I? t. Finally, we call the simplifier on I ~ and ~ (t l , . . . , tn).

If, instead, only a sort coercion is found, we call the simplifier on the assertion
(Ax :3 .d)) (f (t l , . . . , t n)) . As part of establishing this, IMPS must ensure that

f (q , . . . , t,)]./3. In the course of doing so, a definedness condition for /3 may be
used. Recursive calls of yet greater depth are, however, almost certain to be in
vain, and are prevented by the implementation.

The assertions that, in IMPS, are expressed using partial functions and subtypes
can also be expressed, more cumbersomely, in ordinary simple type theory. Never-
theless, the machinery of subtypes and definedness assertions helps to guide IMPS's
automated support. It provides syntactic cues that the reasoning embodied in these
algorithms is likely to be useful.

234 WILLIAM M. FARMER ET AL.

4.4.3. Transforms

Each theory contains a table with information used by the simplifier. This table is
organized as a hash table of procedures (called transforms) each of which will
transform an expression in a sound manner. Look-up in this table is done by
using constructor and the leftmost function constant as keys. Rewrite rules are
implemented in this way, as are algebraic simplification procedures that would be
impractical to represent as rewrite rules.

In I M P S some of the transforms can be generated in a uniform way,
independently of the specific constants which play the role of the algebraic
operations. This means that the simplifier can be crafted to provide particular forms
of simplification, when the constants have certain algebraic properties. For instance,
algebraic simplification for an arbitrary field, for real arithmetic, and for modular
arithmetic are derived from the same entity, called an algebraic processor. An
algebraic processor is applied by establishing a correspondence between the
operators of the processor (e.g., the addition and multiplication operators) and
specific constants of the theory. In the IMPS theory of fields, where the field
elements form the type K, the algebraic processor is configured by stipulating that
the multiplication operator is the function constant ×K, the addition operator is
the function constant +K, the zero is the individual constant oK, and so on. Certain
operators need not be used; for instance, modular arithmetic does not have a division
operator in general. Depending on the correspondence between operators and
constants, the algebraic processor generates a set of formulas that must be theorems
in the theory in order for its manipulations to be correct.

4.4.4. Macetes

In IMPS we have used the name macete (in Portuguese, a macete is a clever trick) to
denote user-definable extensions of the simplifier which are under direct control of
the user. Formally, a macete is a function that takes as arguments a context and
an expression and returns an expression. Macetes are used to apply a theorem or
a collection of theorems to a sequent in a deduction graph. Individual theorems
are applied by theorem macetes built automatically when a theorem is installed in
a theory. Compound macetes are constructed ultimately from theorem macetes,
together with a few special macetes such as beta-reduction and simplification, using
a few simple macete constructors, which are just functions from macetes to macetes.
They include constructs to apply a number of macetes in succession, or repeatedly
until no further changes can be made. Compound macetes provide a simple
mechanism for applying lists of theorems in a manner which is under direct laser

control.
One kind of theorem macete based on straightforward matching of expressions is

called an elementary macete. To explain their behavior, we need two auxiliary
notions. An expression e matches a pattern expression p if and only if there is a

IMPS: AN INTERACTIVE MATHEMATICAL PROOF SYSTEM 235

substitution c~ such that cr applied to p is c~-equivalent to e. I f F is a context and

cr is a substitution, we say that 17 immediately entails ~ is defined if, for each
component x H t of or, with x of sort ~, simplification reduces t + ~ to t ru th .

Though any kind of theorem can be used to generate an elementary macete, for

the purposes of this exposition, let us assume the theorem is the universal closure

of a conditional equality of the form ~ D Pl =P2- When applied to a context-
expression pair (F, e), the macete works as follows. The left-hand side Pl is matched

to e. I f the matching succeeds, then the resulting substitution a is applied to the
formula ~. I f q~[a] is entailed by F, and if F immediately entails that a is defined,

then the macete returns p2[cr], the result of applying the substitution cr to the

right-hand side P2- I f any stage of this process fails, then the macete simply returns

e. (This mechanism is described in more detail in [48].) Elementary macetes are used
to apply a theorem within its home theory.

Another kind of theorem macete is called a transportable macete. It is based on a
much more interesting kind of matching we call translation matching, which allows
for inter-theory matching of expressions. A translation match is essentially a two-

fold operation consisting of a theory interpretation and ordinary matching. An
expression e is a translation match to a pattern expression p if and only if there is

a theory interpretation ~5 and a substitution cr such that cr applied to the translation

of p under ~5 is c~-equivalent to e. After using translation matching, transportable
macetes work in much the same way as elementary macetes. Transportable macetes
are used to apply a theorem outside of its home theory.

We end this section with three simple examples of elementary and transportable
macetes chosen from the hundreds of examples contained in the IMPS initial theory
library. The theorem

V x : R . 0 Ixl = x

of Real Ari thmet ic generates an elementary macete that rewrites an expression of the

form Is[to s provided the simplifier can verify that s is a nonnegative real number
(in the local context of the expression). The theorem

V x : R , y : Z . O < x D O < x y

generates an elementary macete that reduces a goal of the form 0 < r n to a new goal

0 < r provided the simplifier can verify that r and n are defined in the reals and
integers, respectively. Finally, the theorem

Vx, y : U . x c { y } - x = y

of Indicators generates a transportable macete that rewrites an expression of the
form a C {b} to a = b, regardless of the sorts of a and b.

4.4.5. Transportable Rewri te Rules

Transportable rewrite rules make use of translation matching also, but within the

simplifier. I f an unconditional equality Pl = P2 (or a formula of some other suitable

236 WILLIAM M. FARMER ET AL.

syntactic form) is a theorem of J0 , then it may be installed into the simplifier for use
within a theory ~-1. When simplifying an expression e, we use translation matching
to find ~5 and cr as before. If we are successful, and if the context ensures that cr is
defined, then we may replace e by (eg(p2))[cr]. Transportable rewrite rules are used
to provide efficient simplification based on rewrites from generic theories about
such things as mappings and finite sequences. For instance, the theorem

Vt, u: N ~ indl ,e : indl . append{(e :: t), u} = (e :: append{t, u})

rewrites expressions in which a cons is nested within an append. The role of
translation matching in this case is simply to select a sort a as the instance for ind 1.

5. User Interface

The IMPS user interface, which is a removable component of IMPS, is primarily
written in G N U Emacs [47]; the IMPS core is written in T [33, 41], a sophisticated
version of Scheme. The user interface is implemented using the subordinate process
mechanism of G N U Emacs, which allows a program executing in T to issue
commands to Emacs, and vice versa. Thus IMPS can request that formulas and
derivations be presented to the user, specially formatted by Emacs, while conversely
the user can frame his requests to IMPS using the interactive machinery of Emacs.
The interface provides additional facilities in case Emacs is running under the X
Window System, for instance a menu-driven mode.

The user interface provides for three major activities: interactive theorem proving,
theory development, and parsing and printing. Most of the actual interface code is
devoted to the first activity. Each of these activities is discussed below.

5.1. INTERACTIVE THEOREM PROVING

The IMPS user interface provides facilities for directing, monitoring, recording, and
replaying proofs. The facilities to monitor the state of the proof include graphical
displays of the deduction graph as a tree, TEX typesetting of the proof history,
and TEX typesetting of individual subgoals in the deduction graph. The graphical
display of the deduction graph permits the user to visually determine the set of
unproven subgoals. The TEX typesetting facilities allow the user to examine each
sequent in the proof or an entire proof in a mathematically more appealing notation

than is possible by raw textual presentation alone.
There are various facilities for directing proofs. For example, for any particular

subgoal, the interface presents the user with a well-pruned list of macetes which
can be applied to that subgoal. This list is obtained by using syntactic and semantic
information which is made available to the interface by the IMPS supporting
machinery. In situations where over 400 theorems are available to the user, there
are rarely more than 10 macetes presented to the user as options.

The interface assists the user with command syntax for commands which require

IMPS: AN INTERACTIVE MATHEMATICAL PROOF SYSTEM 237

additional arguments. For example, in order to apply the command instantiate-
universal-assumption the user must specify the universal assumption to be instan-
tiated and the instantiations of the variables. In such cases, the interface will prompt
the user for the necessary arguments, if it cannot first determine them from other
available information. Thus in the previous example, when there is only one univer-
sal assumption, the interface will not ask the user which formula to instantiate.

Finally, there is a mechanism for producing a transcript of an interactive proof.
The resulting transcript is a segment of text which can be edited and replayed fully
or partially, in much the same way that a text editing macro replays a sequence of
commands entered at the keyboard. This is especially useful for building new proofs
which differ in small ways from previously constructed ones.

5.2. THEORY DEVELOPMENT

The IMPS user creates and modifies a theory, theory interpretation, theory
constituent (such as a definition or theorem), or other IMPS object by evaluating

an expression called a definition form (or clef-form for short). The approximately
30 def-forms provide a mechanism for extending the mathematics of the IMPS
system. The user interface provides templates to the user for writing def-forms.
Def-forms are stored in files which can be loaded as needed into a running IMPS
process.

For instance, the def-form introducing the natural numbers as a defined sort
within Real Arithmetic is:

(def-atomic-sort NN
"lambda(x : zz, O<=x)"
(theory h-o-real-arithmetic)
(witness "0"))

This stipulates that the natural numbers will be those integers satisfying
Ax : Z . 0 ~< x; it also advises IMPS to consider 0 when checking that this predicate
is nonempty.

The def-form that introduces the symmetry translation reversing group
multiplication, mentioned in Section 3.3, reads:

(def-translation MUL-REVERSE
(source groups)
(target groups)
(f ixed-theories h-o-real-arithmet ic)
(constant-pairs

(mul "lambda(x,y:gg, y mul x)"))
(theory-interpretation-check using-simplification))

It stipulates that the theory of groups forms both the source and the target of the

238 W I L L I A M M. F A R M E R ET AL.

translation, and that vocabulary defined in Real Arithmetic should be left
unchanged. Only the binary function symbol mul is to be translated, to the
lambda-expression shown. IMPS is requested to use the simplifier to ascertain that
the theory interpretation obligations of this translation are in fact met, so that the
translation is an interpretation.

5.3. PARSING A N D P R I N T I N G

Interaction with IMPS requires an extensive amount of reading of expressions from
the keyboard, or from files, and of displaying of expressions on the screen, or writing
them to files. Abstractly, an expression is a tree-like structure determined by the
IMPS logic. In the implementation of IMPS an expression is a data structure which
corresponds very closely to its tree structure, but has in addition a large amount of
cached information available to the deductive machinery. For the IMPS user, an
expression is typically something which can be represented as text, for instance
ff In xdx . The correspondence of an expression as a data structure to an external
representation for input or output is determined by the user syntax which is
employed. IMPS allows multiple user syntaxes, so for example, the syntax that is
used for reading in expressions (usually text) may be different from the syntax
used to display expressions (which could be text or text interspersed with TEX
commands). This flexible arrangement means users can freely change from one
syntax to another, even during the course of an interactive proof. In other words,
the core machinery is completely syntax independent.

6. IMPS and Mathematical Analysis

To a large extent, the development of IMPS has been guided by our atmmpts to
prove theorems in mathematical analysis - both theorems about the real numbers
and theorems about more abstract objects such as Banach spaces or spaces of
continuous functions from one metric space to another. The IMPS logic and little
theories methodology have made it possible to develop parts of graduate-level
analysis without sacrificing either clarity or naturalness.

With partial functions, higher-order operators, and subtypes, LUTINS is well
suited to be a logic for analysis. The value of having a natural way of dealing
with partial functions in the development of analysis cannot be overestimated.
Many of the important operators of analysis, such as the integral of a function or
the limit of a sequence, are most conveniently treated as partial higher-order
functions. For example, the limit of a sequence ~ = (xn),e N is defined whenever
there is a unique real number a satisfying a familiar predicate ~((, a), and when
~(~, a) holds, the limit of ~ is the number a. Having a logic with partial functions
and possibly nondenoting terms, we can define the limit operator by

lim (~) = La: R . ~(~, a)

without having to specify separately its domain.

IMPS: AN INTERACTIVE MATHEMATICAL PROOF SYSTEM 239

Analysis is rife with various types of spaces and classes of functions. The little
theories approach is an especially good framework for organizing this kind of
mathematics. An example of little theories used to advantage in IMPS is the proof
of an open mapping theorem (for certain Banach space functions close to the
identity) given in [19]. Other examples are briefly described in Subsection 7.3.

Mathematical analysis has traditionally served as a ground for testing the
adequacy of formalizations of mathematics, because analysis requires great
expressive power for constructing proofs. Nonetheless, most work in automated
theorem proving has been in areas other than analysis. One notable exception to
this is the work of Bledsoe and his students which has dealt with problems in
analysis and general topology beginning in the early '70s (see Bledsoe's discussion
in [3]). In particular, this group has built a series of powerful provers combining
resolution and other techniques (such as variable elimination) to reason about
formulas involving real inequalities. One recent prover in this direction developed
by Hines is described in [30].

An entirely different approach to automated theorem proving in analysis is taken
by Clarke and Zhao [8]. They have successfully implemented a system which can
reason about a large class of expressions encountered in real analysis, including
trigonometric functions, real inequalities, limits, infinite summations, derivatives,
and integrals. Clarke and Zhao's system, called Analytica, is implemented on top
of the commercially available system Mathematica. Mathematica provides it with
a wide range of facilities not possessed by other provers. These include sophisticated
algebraic manipulation, reduction rules that apply analytic identities, and the ability
to determine closed forms for transforms of functions in many cases and solutions of
differential equations. Though Analytica combines theorem-proving capabilities
with very sophisticated symbolic-manipulation capabilities in an interesting way, it
has several drawbacks. First, since Mathematica is unsound (for example, in doing
beta-reduction), the soundness of Analytica itself becomes an issue. Moreover, it is
not clear how Analytica can relate the formal facilities for manipulating objects
offered by Mathematica with the underlying semantics of these objects. For
example, is there a definition for the integral or a set of axioms characterizing the
integral, or are the manipulations performed by Mathematica code the ultimate
arbiter of what integration means? Finally, it is not clear how Analytica can handle
abstract objects such as Banach spaces, which are very useful in all kinds of analysis,
even 'classical' analysis.

7. Initial Theory Library

A theory library is a collection of theories, theory interpretations, and theory
constituents (e.g. definitions and theorems) which serves as a data base of
mathematics. A theory library is composed of sections; each section is a particular
body of knowledge that is stored in a set of files consisting of def-forms. A section
can be loaded as needed into a running IMPS process. In the course of using

240 WILLIAM M. F A R M E R ET AL.

IMPS, an IMPS user builds his or her own theory library on top of the initial theory
library that is supplied with IMPS.

The IMPS initial theory library contains a large variety of basic mathematics. It
offers the user a well-developed starting point for her or his own theory library. It
also is a rich source of examples that illustrates some of the diverse ways
mathematics can be formulated in IMPS. The initial theory library includes
formalizations of the real number system and objects like sets and sequences;
theories of abstract mathematical structures such as groups and metric spaces; and
theories to support specific applications of IMPS in computer science.

This section describes the major theories that are contained in the IMPS initial
theory library. Along the way, we point out some of the more important theorems
we have proven in these theories.

7.1. REAL N U M B E R S

Two theories of the real numbers are contained in the initial theory library. These
theories are equivalent in the sense that each one can be interpreted in the other;
moreover, the two interpretations compose to the identity. These interpretations
are constructed in the theory library using the IMPS translation machinery.

The first is Complete Ordered Field, a theory in which the real numbers are
specified as a complete ordered field and the rational numbers and integers are
specified axiomatically as substructures of the real numbers. Exponentiation to an
integer power is a defined constant denoting a partial function.

The second axiomatization is Real Arithmetic, which we consider to be our working
theory of the real numbers. The axioms of Real Arithmetic include the axioms of
Complete Ordered Field, formulas characterizing exponentiation as a primitive
constant and formulas which are theorems proved in Complete Ordered Field. These
theorems are needed for installing an algebraic processor and for utilizing the

definedness machinery of the simplifier. The proofs of these theorems in the theory
Complete Ordered Field require a large number of intermediate results with little
independent interest. The use of two equivalent axiomatizations frees our working
theory of the reals from the burden of recording these uninteresting results.

The theory Real Arithmetic is equipped with routines for simplifying arithmetic
expressions and rational linear inequalities (see Section 4.4.1). These routines allow
the system to perform a great deal of low-level reasoning without user intervention.
The theory contains several defined entities; e.g. the natural numbers are a defined
sort and the higher-order operators ~ and II are defined recursively.

Real Arithmetic is a useful building block for more specific theories. If a theory has
Real Arithmetic as a subtheory, the theory can be developed with the help of a large
portion of basic, everyday mathematics. For example, in a theory of graphs which
includes Real Arithmetic, one could introduce the concept of a weighted graph in
which nodes or edges are assigned real numbers. We imagine that Real Arithmetic
will be a subtheory of most theories formulated in IMPS.

IMPS: AN INTERACTIVE MATHEMATICAL PROOF SYSTEM 241

7.2. GENERIC OBJECTS

One of the advantages of working in a logic like LUTINS, with a rich structure of
functions, is that generic objects like sets and sequences can be represented directly
in the logic as certain kinds of functions. For instance, sets are represented in IMPS
as indicators, which are similar to characteristic functions, except that x is a
'member' of an indicator f iff f (x) is defined. Operators on indicators and
other functions representing generic objects are formalized in IMPS as quasi-
constructors, and theorems about these operators are proved in 'generic theories'
that contain neither constants nor axioms (except for possibly the axioms of Real
Arithmetic). Consequently, reasoning is performed in generic theories using only
the purely logical apparatus of LUTINS (and possibly Real Arithmetic).
Moreover, theorems about generic objects are easy to apply in other theories
since the operators, as quasi-constructors, are polymorphic and since the theory
interpretations involved usually have no obligations to check.

The initial theory library contains theorems about operators (i.e., quasi-
constructors) on the following kinds of generic objects:

• Sets. There are operators for basic set operations such as union, intersection,
complement, membership, subset, etc. Since sets are represented as indicators,
most of the basic theorems are proved by just the command simplify-insistently.

• Unary functions. The operators formalize basic function notions such as compo-
sition, domain, range, inverse function, injectiveness, etc. These operators
supplement the built-in function machinery of LUTINS.

• Sequences. Sequences over a sort c~ are represented as partial functions from the
natural numbers to ~. Lists are identified with sequences whose domain is a finite
initial segment of the natural numbers. The operators include basic list operations:
ni l , ca r , cd r , c o n s , and a p p e n d .

• Pairs. A pair of elements a,b of sort c~,~ is represented as a function whose
domain equals the singleton set {(a, b)}. The operators include a pair constructor
and the two pair selectors.

This part of the initial theory library also contains theorems about the
constructor and about the cardinality of sets (e.g., the Schr6der-Bernstein theorem
and the theorem that says a subset of a finite set is itself finite).

7.3. ANALYSIS

The structure of the IMPS analysis theory library aggressively exploits the little
theories approach outlined earlier in Section 3, providing users with an extensive
network of theories and interpretations between them. This approach is desirable
because it permits users to state and prove once and for all the basic facts in a
high degree of generality and reuse the results in more specific contexts.

The analysis library consists of about 25 theories and over 100 theory

242 WILLIAM M. FARMER ET AL.

interpretations. Most of the theory interpretations (close to 90 percent) are created
automatically by the system when the theories are created or by the translation-
match machinery. What follows is only a small sample of theories that are actually
available:

• Partial Order. This is the theory of an abstract set S with a transitive, reflexive, and
anti-symmetric relation -<. This theory provides a framework for stating and
proving general theorems about ordering relations, including definitions and
characterizations of the supremum and infimum of a set. One of the more
interesting theory interpretations that are explicitly constructed in this section of
the library is the 'order reversing' interpretation which takes the constant symbol

-< into the defined constant symbol ~- (defined by x ~- y if and only i fy -< x.) This
allows results about suprema to be immediately usable as results about infima. It is
also clear that results in Partial Order can be interpreted in the theory Real

Arithmetic.
• Metric Space. This is the theory of an abstract set P with a two-place real-valued

function d on P which is nonnegative and symmetric, satisfies the triangle
inequality, and for which d(x,y) = 0 only if x = y. This theory is appropriate
for defining metric and topological properties such as limits of sequences, open
sets, closed sets, completeness, and sequential compactness. The theory library
contains statements and proofs of numerous facts about these concepts.

• Metric Spaces 2-Tuples. This is the theory of a pair of abstract metric spaces. It is
the natural setting for notions about mappings between spaces, such as continuity,

uniform continuity, and the Lipschitz property. In this theory we can easily prove
abstract versions of the intermediate value and Bolzano-Weierstrass theorems
which assert, respectively, that the image of a connected or sequentially compact
set is connected or sequentially compact (see [20] for details). By transporting
machinery developed in this theory to the theory of metric spaces, we obtain
several versions of the contractive-mapping fixed-point principle of Banach.

• Mappings into a Pointed Metric Space. This is a theory for spaces of bounded,
everywhere defined functions from a set into a metric space with a distinguished
point a. A function is bounded whenever its range is contained in a closed ball
centered at a. Basic properties of these spaces (such as completeness conditions)

are formulated in this theory.
• Normed Spaces. This is the theory of a real vector space with a norm function. A

sample theorem in this theory is an open mapping theorem for certain functions
which are near the identity in a suitable sense (for a discussion of the proof of

this theorem in IMPS, see [19]).
• Mappings from an Interval to a Normed Space. This is the theory of an abstract

normed space together with an arbitrary interval of real numbers. This theory is
used for defining the fundamental notions of calculus of functions of one variable
such as differentiation and integration. Important theorems proved in the library
are the mean value theorems for differentiation and integration (see Figure 5).~2

IMPS: AN INTERACTIVE M A T H E M A T I C A L P R O O F SYSTEM 243

for e v e r y a, b : I , f : I --- U , m : R implication
• c o n j u n c t i o n

o 3 y . : I a < y
o f f+
o w : i l[f()ll _< m

• II I l l <- m . Ib - al.
Fig. 5. The mean value theorem for integrals.

7.4. A L G E B R A

The initial library contains theories of the following algebraic structures:

• Monoids. A monoid is a set with an associative binary operation and an identity
element. In the theory monoids, a constant monoid%prod is defined recursively
as the iterated product of the primitive monoid operation. Basic properties of
this constant are proven in monoids and then transported to theories with their
own iterated product operators, such as Real Arithmetic with the operators
and II.

• Groups and Group Actions. The rudiments of group theory are developed in the
theory network consisting of these two theories and various interpretations of
Group Actions in Groups and of Groups in itself. The theorem that the quotient
of a group by a normal subgroup is itself a group is proved as well as the
Fundamental Counting Theorem for group theory, of which Lagrange's theorem
is an easy corollary.

• Fields. Basic operations for fields (exponentiation to an integer power and
multiplication by an integer) are defined. The theory is developed sufficiently for
installing an algebraic processor for simplification. Some useful identities, such
as the binomial theorem, are proved.

7.5. C O M P U T E R SCIENCE

The theory library for computer science is currently less developed than that for
mathematics. However, three significant facilities exist.

State Machine Theories. Reusable parametric theories (in the sense described in
Section 3.3) characterize a number of different kinds of state machine. A state
machine theory axiomatizes a state space, which need not be finite, together with
a transition function or relation, depending on whether the machine being specified
is known to be deterministic or not. Typical theorems include the induction theorems
for accessible states, one of which is shown in Figure 6. When such a theorem has
been proved, it may be applied with the full power of the induction command
(Section 4.2).

In order to specify a particular state machine, say, a deterministic one, the user
develops an axiomatic theory 5- characterizing the objects that will serve as states

244 WILLIAM M. FARMER ET AL.

for eve ry p : s t a t e ---. p rop

• for every s : s t a t e imp l i ca t ion
o access ib le(s)
o p(s)

• con junc t ion

o V s : s t a t e in i t ia l (s) D p(s)
o Vsl : ~tate, a : ac t ion (access ib le (s1)A p (s ~) ^ n e x t (s ~ , a) ~) D

p(ne×t(sl, a)).

Fig. 6. Induction on accessibility for deterministic state machines.

and as inputs. He then instantiates the parametric theory ~ of deterministic state
machines. To do so, he supplies an interpretation ~5 from ~ to J . As a

consequence, all defined expressions from N are made available in Y-, possibly

under a suitable renaming, and all the theorems of ~ are available through the
interpretation ~.

Safety theorems are then expressed in terms of the resulting accessibility predicate,

and liveness assertions may be expressed directly. Refinement relations between two
state machines may be formulated in the direct way, using a joint theory describing
both individual machines.

Domain Theory for Denotational Semantics. This is a simple parametric theory of
continuous functions and related notions developed for denotational semantics.
We have developed an IMPS theory representing the official Scheme denotational
semantics using this as a basis.

Facility for Defining Free Recursive Datatypes. Many applications in computing use
datatypes that are constructed recursively by a number of operations from
previously given objects and some atoms. These datatypes are often specified by a
BNF-like notation. For instance, if elt denotes a class of previously given objects,

then the finite lists composed of these elements may be specified by the clauses:

L :: = NIL I CONS elt L

In other cases, for instance in the abstract syntax for a programming language,
different sorts of objects, such as statements, expressions, and variables, may be
defined by mutual recursion, starting from given objects such as identifiers:

s :: = W H I L E e s I SEMICOLON sl s2 I ASSICN v e I . . .

e : : = v I PLUS v l v2 B L O C K s e I . . .

v :: ~- VAI:% ident

A specification such as this is normally interpreted as denoting the free algebra

generated by regarding each a tom as a constant and each constructor as a function
symbol. Hence, it justifies an induction principle and a principle of function
definition by primitive recursion.

IMPS provides a procedure that, given a legitimate specification, will generate a

IMPS: AN INTERACTIVE MATHEMATICAL PROOF SYSTEM 245

new theory Y. The specification may stipulate an already-known theory ~--0 to
characterize the given objects (list elements and identifiers in the examples above).
Y- will be a model conservative extension of ~-0, by which we mean that any model
of Y-0 may be enlarged to form a model of Y by adding suitable new objects. In
particular, ~- is satisfiable if J0 is.

~ (J -) extends 5°(Y-0) by adding one new type ~-. If the specification declares
several new categories (such as statements, expressions, and variables in the
example above), then each of these will be represented by a subsort of ~-. A clause
may be represented by a sort inclusion; for instance, the sort v is included within e
above. Otherwise, it is represented by a function serving as a datatype constructor.
Axioms of Y ensure that the ranges of different datatype constructors are disjoint,
and do not include the values of atoms; the domain of a datatype constructor is
characterized exactly by the sorts of its arguments. The second-order induction
principle for -r is also an axiom. The primitive recursion principle is supplied as a
theorem, although its proof is not generated at the time that Y is constructed.

8. Conclusion

IMPS is an interactive proof development system intended to support standard
mathematical notation, concepts, and techniques. In particular, it provides a flexible
logical framework in which to specify axiomatic theories, prove theorems, and relate
one theory to another via inclusion and theory interpretation. Theory interpretations
are used extensively in IMPS for reusing theories and theorems. The IMPS logic is a
conceptually simple, but highly expressive version of higher-order logic which allows
partially defined (higher-order) functions and undefined terms. The simple types
hierarchy of the logic is equipped with a subtyping mechanism. Proofs are
developed in IMPS with the aid of several different deduction mechanisms,
including expression simplification, automatic theorem application, and a
mechanism for orchestrating applications of inference rules and theorems. The
naturalness of the logic and the high level of inference in proofs make it possible
to develop machine-checked proofs in IMPS that are intuitive and readable.

The IMPS initial theory library provides evidence for the claim that IMPS
supports the traditional methods of mathematics. The theory library now contains
repeatable proofs of over a thousand theorems, including significant portions of
algebra and analysis. Sources include traditional presentations, such as parts of a
graduate course in algebra and parts of Dieudonn6's Foundations of Modern
Analysis [13]. Because standard mathematical development is possible in IMPS,
the system should be an accessible, effective tool to a wide range of mathematically
educated users.

Acknowledgements

We are grateful to the MITRE-Sponsored Research program, which funded the
development of IMPS.

246 WILLIAM M. F A R M E R ET AL.

Several of the key ideas behind IMPS were originally developed by Dr. Leonard
Monk on the Heuristics Research Project, also funded by MITRE-Sponsored
Research, during 1984-1987. Some of these ideas are described in [36].

We are also grateful for the suggestions received from the referee.

Notes

1 By a logic, we mean in effect a function. Given a particular vocabulary, or set of (nonlogical) constants,
the logic yields a triple consisting of a formal language A °, a class of models d for the language, and a
satisfaction relation ~ between models and formulas. The function is normally determined by the
syntax and semantics of a set of logical constants for the logic. The satisfaction relation determines
a consequence relation between sets of formulas and individual formulas. A formula P is a consequence
of a set of formulas S if ~ ~ P holds whenever d ~ Q holds for every Q c S. When we speak of a
theory, we mean in essence a language together with a set of axioms. A formula is a theorem of the
theory if it is a consequence of the axioms.

2 Pronounced as the word in French.
3 We will refer to thes e types by the names ind, indl , etc., al though of course they may be given any

convenient names.
4 However, since the graph of a function (partial or total) can always be represented as a relation, the

problem of nondenot ing terms can in theory be easily avoided at the cost of using unwieldy, verbose
expressions packed with existential quantifiers. Hence, i f pragmatic concerns are not important, classical
logic is perfectly adequate for dealing with partial functions.

5 Throughout this paper, constructors will be denoted using traditional symbology. For example,
l ambda and iota are denoted, respectively, by the variable-binding symbols A and ~; equals is denoted
by the usual infix symbol =; and apply-operator is denoted implicitly by the standard notat ion of
function application.

e The meaning of the formula s = t is that s and t denote the same value, and so 0/0 = 0/0 is a false
assertion.

7 f_E g i f f f (a l , . . . , a m) = g(a l , . . . ,am) for all m-tuples (a l , . . . , am} in the domain o f f
8 p C_ q i f f p (a l , . . . , am) D q (a l , . . . , am) for aii m-tuples (a l , . . . , am) in the common domain o f p and q.
9 The translations available in IMPS are actually more general than what we describe here: # is allowed

to map sorts to unary predicates. When this occurs, expressions beginning with variable binders such as
V or A must be 'relativized'. For example, if # maps c~ to a unary predicate U on sort /3, then
• (Vx: ~. ~) = Vx: 9 . U(x) ~ ~(~).

10 In this formulation, K is the underlying sort of field elements. Figure 1 is printed exactly as formatted
by the TEX presentation facility of IMPS. Various switches are available, for instance to cause con-
nectives to be printed in-line with the usual logical symbols instead of being written as words with
subexpressions presented in itemized format.

11 By a path we mean a sequence of natural numbers that 'navigates' from the topmost node of an
expression, regarded as a tree, to some subexpression. It is thus one way of formalizing and
implementing the notion of an occurrence.

12 In this formulation, U denotes the underlying sort of vectors and I denotes an arbitrary (possibly
unbounded) interval of real numbers.

References

1. Andrews, P. B., An Introduction to Mathematical Logic and Type Theory: To Truth through Proof
Academic Press, 1986.

2. Andrews, P. B., Issar, S., Nesmith, D. and Pfennig, F., 'The TPS theorem proving system (system
abstract) ' , in M. E. Stickel (ed.), lOth International Conference on Automated Deduction, Vol. 449
of Lecture Notes in Computer Science, pp. 641-642. Springer-Verlag, 1990.

3. Bledsoe, W. W., 'Some automatic proofs in analysis', in Automated Theorem Proving." After 25 Years,
pp. 89-118'. American Mathematical Society, 1984.

IMPS: AN INTERACTIVE MATHEMATICAL PROOF SYSTEM 247

4. Boolos, G. S., 'On second-order logic', J. Philosophy 72, 509 527 (1975).
5. Boyer, R. S. and Moore, J. Strother, 'Integrating decision procedures into heuristic theorem provers:

A case study of linear arithmetic', Technical Report ICSCA-CMP-44, Institute for Computing
Science, University of Texas at Austin, January 1985.

6. Cardelli, L. and Wegner, P., 'On understanding types, data abstraction, and polymorphism',
Computing Surveys 17, 471-522 (1985).

7. Church, A., 'A formulation of the simple theory of types', J. Symbolic Logic 5, 56-68 (1940).
8. Clarke, E. and Zhao, X., 'Analytica - a theorem prover in mathematica', In D. Kapur (ed.), Auto-

mated Deduction - CADE-I1, Vol. 607 of Lecture Notes in Computer Science, pp. 761 765.
Springer-Verlag, 1992.

9. Constable, R. L., Allen, S. F., Bromley, H. M., Cleaveland, W. R., Cremer, J. F., Harper, R. W.,
Howe, D. J., Knoblock, T. B., Mendler, N. P., Panangaden, P., Sasaki, J. T. and Smith, S. F.,
Implementing Mathematics with the Nuprl Proof Development System, Prentice-Hall, 1986.

10. Coquand, T. and Huet, G., 'The calculus of constructions', Information and Computation 76, 95-120
(1988).

11. Craigen, D., Kromodimoeljo, S., Meisels, I., Pase, B. and Saaltink, M., 'EVES: an overview',
Technical Report CP-91-5402-43, ORA Corporation, 1991.

12. Craigen, D., Kromodimoeljo, S., Meisels, I., Pase, B. and Saaltink, M., 'EVES system description', in
D. Kapur (Ed.), Automated Deduction CADE-I1, Vol. 607 of Lecture Notes in Computer Science,
pp, 771-775, Springer-Verlag, 1992.

13. Dieudonn6, J., Foundations of Modern Analysis, Academic Press, 1960.
14. Enderton, H. B., A Mathematical Introduction to Logic, Academic Press, 1972.
15. Farmer, W, M., 'Abstract data types in many-sorted second-order logic', Technical Report M87-64,

The MITRE Corporation, 1987.
16. Farmer, W. M., 'A partial functions version of Church's simple theory of types', J. Symbolic Logic 55,

1269-91 (1990).
17. Farmer, W. M., 'A simple type theory with partial functions and sub-types', Technical report, The

MITRE Corporation, 1991.
18. Farmer, W. M., 'A technique for safely extending axiomatic theories', Technical report, The MITRE

Corporation, 1993.
19. Farmer, W. M., Guttman, J. D. and Thayer, F. J., 'Little theories', in D. Kapur (Ed.), Automated

Deduction - CADE-11, Vol. 607 of Lecture Notes in Computer Science, pp. 567-581, Springer-
Verlag, 1992.

20. Farmer, W. M. and Thayer, F. J., 'Two computer-supported proofs in metric space topology', Notices
Am. Math. Soe. 38, 1133-1138 (1991).

21. Feferman, S., 'Systems of predicative analysis', J. Symbolic Logic, 29, 1-30 (1964).
22. Gentzen, G., 'Investigations into logical deduction' (I935), in The Collected Works of Gerhard

Gentzen, North Holland, 1969.
23. Goguen, J. A., 'Principles of parameterized programming', Technical report, SRI International, 1987.
24. Goguen, J. A. and Burstall, R. M., 'Introducing institutions', in Logic of Programs, Vol. 164 of

Lecture Notes in Computer Science, pp. 221-256. Springer-Verlag, 1984.
25. Gordon, M., 'HOL: A proof-generating system for higher-order logic', in VLSI Specification,

Verification and Synthesis, Kluwer, 1987.
26. Gordon, M., Milner, R. and Wadsworth, C. P., Edinburgh LCF: A MeehanisedLogie of Computation,

Vol. 78 of Lecture Notes in Computer Science, Springer-Verlag, 1979.
27. Grundy, J., 'Window inference in the HOL system', in Proceedings of the 1991 International Workshop

on the HOL Theorem Proving System and its Applications, pp. 177 89. IEEE Computer Society Press,
1991.

28. Guttman, J. D., 'A proposed interface logic for verification environments', Technical Report M91-19,
The MITRE Corporation, 1991.

29. Henkin, L., 'Completeness in the theory of types', J. Symbolic Logic, 15, 81-91 (1950).
30. Hines, L. M., 'The central variable strategy of str-*ve', in D. Kapur (ed.), Automated Deduction -

CADE-11, Vol. 607 of Lecture Notes in Computer Science, pp. 35-49, Springer-Verlag, 1992.
31. Howard, W. A., 'The formulae-as-types notion of construction', in To H. B. Curry: Essays on

Combinatory Logic, Lambda Calculus and Formalism, pp. 479-490, Academic Press, 1980.

248 WILLIAM M. FARMER ET AL.

32. Kohlhase, M., 'Unification in order-sorted type theory', in A. Voronkov (ed.), Logic Programming
and Automated Reasoning, Vol. 624 of Lecture Notes in Computer Science, pp. 421-432, Springer-
Verlag, July 1992.

33. Kranz, D., Kelsey, R., Rees, J., Hudak, P., Philbin, J. and Adams, N., 'ORBIT: An optimizing
compiler for scheme', in Proceedings of the SIGPLAN "86 Symposium on Compiler Construction,
Vol. 21, pp. 2!9-233, 1986.

34. Martin-L6f, P., 'Constructive mathematics and computer programming', in L. J, Cohen, J. Los, H.
Pfeiffer, and K. P. Podewski (ed.), Logic, Methodology, and Philosophy of Science VI, pp. 153-175,
Amsterdam, 1982, North-Holland.

35. Monk, J. D., Mathematical Logic, Springer-Verlag, 1976.
36. Monk, L. G., 'Inference rules using local contexts', J. Automated Reasoning, 4, 445-462 (1988).
37. Moschovakis, Y. N., Elementary Induction on Abstract Structures, North-Holland, 1974.
38. Moschovakis, YI N., 'Abstract recursion as a foundation for the theory of algorithms', in Computation

and Proof Theory, Vol. 1104 of Lecture Notes in Mathematics, Vol. 4, pp. 289-364, Springer-Verlag,
1984.

39. Owre, S., Rushby, J. M. and Shankar, N., 'PVS: a prototype verification system', in D. Kaput (ed.),
Automated Deduction - CADE-ll, Vol. 607 of Lecture Notes in Computer Science, pp. 748-752,
Springer~Verlag, 1992.

40. Pase, B. and Kromodimoeljo, S., 'm-Never system summary', in E. Lusk and R. Overbeek (ed.), 9th
International Conference on Automated Deduction, Vol. 310 Lecture Notes in Computer Science, pp.
738 739, Springer-Verlag, 1988.

41. Rees, J. A., Adams, N. I. and Meehan, J. R., The TManual, 5th edn, Computer Science Department,
Yale University, 1988.

42. Rushby, J., von Henke, F. and Owre, S., 'An introduction to formal specification and verification
using EHDM', Technical Report SRI-CSL-91-02, SRI International, 1991.

43. Russell, B., 'On denoting', Mind (New Series), 14, 479-493 (1905).
44. Russell, B., 'Mathematical logic as based on the theory of types', Am. J. Mathematics, 30, 222-262

(1908).
45. Shapiro, S., 'Second-order languages and mathematical practice', J. Symbolic Logic, 50, 660-696

(1985).
46. Shoenfield, J. R., Mathematical Logic, Addison-Wesley, 1967.
47. Stallman, R. M., GNU Emacs Manual (Version 18), 6th edn, Free Software Foundation, 1987.
48. Thayer, F. J., 'Obligated term replacements', Technical Report MTR-10301, The MITRE Corpora-

tion, 1987.
49. WeyI, H., Das Kontinuum, Veit, Leipzig, 1918.
50. Whitehead, A. N. and Russell, B., Principia Mathematica, Cambridge University Press, 1910. Paper-

back version to Section 56, published 1964.

