
Journal of Automated Reasoning 11: 185-212, 1993. 185
© 1993 Kluwer Academic Publishers. Printed in the Netherlands.

Competing for the A C-Unification Race

A L E X A N D R E BOUDET
LRL CNRS URA 410, Universit~ Paris-Sud, Bdt 490, 91405 Orsay Cedex, France

(Received: 18 November 1992)

Abstract. We describe our implementation of the unification algorithm for terms involving some associ-
ative-commutative operators plus free function symbols described by Boudet et al. The first goal of this
implementation is efficiency, more precisely competing for the AC Unification Race. Although our
implementation has been designed for good performance when applied to non-elementary AC-unification
problems, it is also very efficient on elementary problems. Our implementation, written in C and running
on Sun workstations, is to be compared with the implementations in LISP, on Symbolics LIPS machines.

Key words. Unification, equation solving, logic programming, automated theorem proving, term rewriting.

1. Introduction

Robinson [28] coined the term unification for the process of solving an equation
in a term algebra. Ever since, unification has been playing a key role in automated

deduction and logic programming. Plotkin [27] suggested that some properties

could be taken into account while solving equations, namely, the properties

expressible by an equational theory.
Let ~- be a set of function symbols and ~c a denumerable set of variables.

y(~,~, £r) is the free J~-algebra over £c. An equational axiom is a pair Is, t} of terms

of Y (Y , f) , denoted by s = t. Given a set E = {Sl = t l , . . . , s~ = tn} of equational
axioms, the corresponding equational theory =E is the least congruence containing

all the instances of the axioms. A theory E is consistent if the set of its equivalence
classes is not reduced to a singleton; E is regular if the set of variables of s and t

are the same for each s = t, E E and collapse-free if it has no axiom x = s where x
is a variable and s is not equal to x.

Unification in an equational theory E consists in finding the substitutions o- that

make an equation valid in the class of models of E. In other words, o- is an E-
solution of the equation s ~ t i f f

E ~ so-= t~

or, equivalently, by using Birkhoff 's completeness theorem [2],

SO- = E to-.

The problem of the existence of such a solution is undecidable in general, but there
are ad hoc algorithms for many theories of interest, including associativity-

commutativi ty which is probably the most frequently encountered one [8, 14, 15, 17,
21, 22, 25, 30].

186 ALEXANDRE BOUDET

We describe an implementation in C of the algorithm for associative-commutative
unification given in [5]. Several choices contribute to the efficiency of the program:

• Variable sharing allows to have one unique occurrence of each variable in the
system and to use DAG solved forms instead of solved forms. This saves space
and turns out to be essential for unification in the free theory. The size of a
most general unifier may be exponential with respect to the original problem,
while the size of a DAG solved form is linear. The reader is referred to [20] for
a study of solved forms vs. D A G solved forms.

• AC-unification requires branching when an elementary AC-unification problem
has several solutions. The way this branching is implemented is essential for the
efficiency. We have chosen to save the problem physically, that is by copying a
byte array, rather than copying a symbolic expression.

• Solving a subproblem associated with an associative-commutative operator rather
than one equation at a time is also crucial. It may be that one equation has an
intractable number of solutions while the whole subproblem is solvable in practice.

? ?

For instance, the problem x + x + x + x ± xl + x2 + x3 + x4/~ x + x - xl + x2
has 487 most general unifiers, computed in a very short time by our program,
while the first equation alone has 34 359 607 481 most general unifiers! For further
evidence of the advantage of the system-solving approach, see [1].

• For elementary AC-unification, it is necessary to solve linear Diophantine
equations. The algorithm described in [5, 11] solves efficiently a system of linear
Diophantine equations, and it is easy to implement. When the problem has few
solutions, the efficiency of AC unification heavily depends on the efficiency of
this step. When solving the equations one at a time, the number of variables at
each step is equal to the number of minimal solutions of the subproblem solved
so far. Evidence of the advantage of solving a whole system at one time can be
found in [11].

• When an elementary AC-unification problem has many solutions, most of the time
is spent in combining the minimal solutions of the system of linear Diophantine
equations and most of all, in constructing each solution. The care with which
these two steps were implemented is the main reason for the satisfactory efficiency
of the program.

The paper is organized as follows: Section 2 describes the problem, gives some
basic definitions, and recalls the algorithm for combining several AC theories and
the free theory. Section 3 describes the data structure that we use for unification pro-
blems, and Section 4 shows how the equations of the original problem are stored into
this data structure. Section 5 briefly describes how the occur-check is performed. The
most important part of the implementation deals with elementary AC-
unification. This is described in Section 6, together with the algorithm for solving
systems of linear Diophantine equations. Section 7 deals with the branching that
results because AC theories are not unitary and the implementation of the failure
rules. Finally, Section 8 gives some benchmarks for elementary AC problems taken

COMPETING FOR THE AC-UNIFICATION RACE 187

from [7], as well as new benchmarks for non-elementary problems. Our notations are

consistent with [13]; for example, t(p) denotes the symbol in t at the position p, t(A)

the top function symbol of t, t[S]p the term t where the subterm at position p is

replaced by s. The subterm at position p in t is denoted by tip. The notation t[x]
simply means that x occurs in t. The set of variables of a term t (resp. a unification
problem P) is denoted by Var(t) (resp. Var(P)). The syntactic equality will be

denoted by ~-.

2. The Problem and the Algorithm

2.1. UNIFICATION PROBLEMS

Following Martelli and Montanari [26] and Kirchner [22], we envision a unification

algorithm as a simplification process that transforms a unification problem until a
solved form is reached, from which a most general solution is easily obtained.

Rather than considering systems of equations (or multiequations) and disjunc-
tions of systems, we consider unification problems as a particular case of equational
problems [10], with no negations nor universal quantifiers.

D E F I N I T I O N . A unification problem is a first-order predicate calculus formula

involving only one binary predicate ~ , built up using disjunction, conjunction,
and existential quantifiers only.

• T is the trivial unification problem.
• F is the unsolvable unification problem.

• An atomic unification problem is an equation s ? t. 1

• I f PI and P2 are unification problems and x is a variable, then P1 A P2, P1 V P2
and (~x)P 1 are unification problems.

The E-solutions of a unification problem P are the substitutions a that make the
formula valid when the predicate ~ is interpreted as the equational theory =e.

D E F I N I T I O N . Let E be an equational theory.

• The unification problem F has no E-solution.

The unification problem T has the E-solution cr for any substitution a.
• An E-solution of s ~ t is a substitution cr such that sc~ =E tcr.

• An E-solution of PI A P2 (resp. P1 V P2) is a substitution cr that is an E-solution of
Pl and (resp. or) P2.

• An E-solution of (3x)P is a substitution a, such that there exists a term t, such that
cr is an E-solution of P{x ~ t}.

Two E-unification problems are E-equivalent (or simply equivalent if E is clear from
the context) if they have the same sets of solutions.

The explicit use of existential quantifiers in the syntax makes the set of variables of
the original problem irrelevant. Partial correctness can be proven by just showing

188 ALEXANDRE BOUDET

that the rules preserve the sets of solutions, without regard to the original problem.

The importance of existential quantifiers is illustrated by the following example:

E x a m p l e 1. Let E be the free theory. The unification problems P1 - x ? y and
? X ! ? X t X t P2 ~ x -- /~ y -- are not equivalent since ~r = {x H a, y ~ a, ~ b} is a

solution of P1, but not of P2. On the other hand, P1 and the unification problem

P3 =- (3x~)x ~ x ~ /~ Y ~ x t are E-equivalent for any equational theory E.

As shown by the above example, an advantage of this definition is that it gives a
clear notion of what the new variables introduced in the unification process are,
specifically, nothing but existentially quantified variables.

2.2. COMPLETE SETS OF SOLVED FORMS

It may be that a unification problem has a m o s t genera l unifier, which is a particular
solution that somehow expresses all the other solutions:

D E F I N I T I O N . Let P be a unification problem and V the set of the free variables
occurring in P. The substitution cr is a m o s t genera l E-uni f ier of P if

• ~r is an E-solution of P;
• for all E-solutions 0 of P, there exists a substitution p such that Vx E V,

x O ~--'E XO-p.

D E F I N I T I O N . The unification problem P is in solved f o r m if P = T, or P ~- F, or

? ?

P - (3 y l , . . . , y p) X l "- tl A . . . A x n - tn,

where {xl , . . . ,Xn} N { Y l , . . . , Y p } = ~ and x i occurs only once 2 in P for 1 <~ i ~< n.

Solved forms are essentially substitutions, and they represent their most general

unifier.
? ?

L E M M A 1. L e t P =- (3 y l , . . . , y p) x 1 - t 1 A . . . A xn - tn be a unification prob lem in

so lved f o r m . The subst i tu t ion cr = { x l H t l , . . . , xn H tn} is a mos t general E-uni f ier

o f P, f o r any consis tent equat ional theory E.

A major problem with solved forms is that their size may be exponential with
respect to the size of the original unification problem, even in the free theory. 3 We
prefer to use D A G solved forms [20], which are more compact and allow variable

sharing. Evidence of the efficiency of variable sharing is given in [12].

D E F I N I T I O N . A unification problem P is in D A G solved f o r m i f P = T, or P - F, or

? ?

P = (3 y l , . . . , y p) X l -- tl A . . . A x~ -- t~,

where Vi , j c [1 , . . . ,n]

1. x i C x j f o r i C j .

2. x i E Var (t j) ~ i > j .

COMPETING FOR THE AC-UNIFICATION RACE 189

3. X i ~ { Y l , ' ' " ,Yp} or
3j < i such that xj ¢ { Y l , . . . ,Yp} and xi c Var(tj) .

The first condition is already required in solved forms, the second one expresses

acyclicity, and the last one is a usefulness condition, preventing the use of new vari-
ables if not necessary.

It is easy to deduce a solved form from a DAG solved form: one simply needs to
apply the two following rules as long as possible.

Rep (Replacement)
(3 y l , . . . ,yn)X • s A P ~ (~Yl , . - - ,Yn) x L s A P{x~-+ s}
if x E Var (P), and x ¢ Var (s), and s ¢~ X or
s, e E Var (P), and x ~ s, and x is existentially quantified, or s is flee.

EQE (Existential Quantifiers Elimination)
?

(~x, y l , . . . , y ~) x - s A P ~ (3y~ , . . . ,yn)P
if x f~ Var (P) U Var (s).

It is trivial to show that these two rules preserve the sets of solutions and that they
terminate, starting with a DAG solved form. This allows us to compute complete
sets of DAG solved forms, rather than complete sets of most general unifiers as
usually defined (see, e.g., [20]).

DEFINITION. A complete set o f D A G solved f o rms of a unification problem P is a
set {P1 , . . . ,Pn} of unification problems in D A G solved form such that P and
P1 v . . . V Pn are equivalent. A problem P~ is a D A G solved f o rm o f P if P' is a mem-
ber of a complete set of DAG solved forms of P.

Note that not all theories have finite complete sets of (DAG) solved forms, nor
even complete sets of (DAG) solved forms, since solved forms correspond to uni-
fiers. However, the rules given in Section 2.3 apply to f ini tary theories, that is, the-
ories having finite complete sets of (DAG) solved forms.

Rather than introducing disjunctions in the unification problems, we prefer to give
the rules in a non-deterministic form. This is just a matter of notation, since it is
actually enough to be able to solve conjunctions of equations and to collect all the
solutions when non-deterministic branching occurs. More precisely, we will consider
unification problems in prenex form, with no disjunctions:

? ?

(3y l , . . . ,y~)s l -- tl A . . . A s~ -- t~

modulo the commutativity of =, the associativity-commutativity and idempotence of
A, and the rewrite rules P A T -+ P, P A F ---+ F.

2.3. ASSOCIATIVE-COMMUTATIVE UNIFICATION

The associative-commutative theory of a binary function symbol + is the
theory presented by the two axioms + (+ (x , y) , z) = +(x, +(y , z)) (associativity) and

190 ALEXANDRE BOUDET

+(x ,y) = + (y , x) (commutativity). We aim at solving equations in the theory

E = E0 U El U-. . U En where E 0 is the free theory over a set @ of free function
symbols, and for 1 <~ i <<. n, Ei is the associative-commutative theory of the symbol
+i- Two different problems arise:

• Solving equations in J-(o~, ~c), modulo Ei, where W//is the singleton {+i} (or
possibly {+i} U cg where cg is a set of free constants, for a better efficiency).

• Combining the unification algorithms for the theories E0, E1, . . . ,E~, in order to
get an E-unification algorithm.

The first problem has been independently solved by Stickel [30] and Livesey and
Siekman [25]. It requires solving linear Diophantine equations [5, 11, 15, 16, 18,
24, 23]. We implemented the algorithm described in [5, 11] which has the advantage
of solving whole systems of linear Diophantine equations. From an implementation
point of view, the most difficult part is the combining of the minimal solutions of the

linear Diophantine equations.
The second problem is a difficult one because termination is hard to prove: The

termination of Stickel's algorithm [30] remained an open problem for nine years
until Fages [14] gave an adequate complexity measure. 4 We use the rules of [5] for
unification in a combination of regular, collapse-free theories. These rules ter-
minate; and the notion of shared variables gives, besides a simple termination
proof, a bound on the number of calls to elementary AC unification.

We recall briefly the algorithm presented in [5], for combining unification
algorithms for regular collapse-free theories. Actually, the regular collapse-
free case is more general than what we need for AC theories. We shall extend, in
Section 4, some of the rules for our specific combination problem. In particular,
the occur-check and conflict rules may be extended.

Before giving the rules, we will define a data structure for unification problems in a

combination of regular collapse-free theories.
?

DEFINITION. A proper equation is an equation s - t, where s and t are not both
q

variables. A term t is pure in the theory E i if t E J - (~ , ~) . An equation s - t is
pure in the theory Ei if s, t e Y-(~/,3f). Non-pure terms or equations are called
heterogeneous. A non-variable, proper subterm u of a term t is an alien subterm of
t if the top function symbol of u does not belong to the same theory as the function

symbol immediately above u in t.

To apply the rules, we write a unification problem as follows:

P = (3Yl,.-. ,Yp)Pv A P~I A Po APt A . . . A P,,
?

where Pv is the conjunction of the non-proper equations x - y of P; PH is the
conjunction of the heterogeneous equations of P; and Pi is the conjunction of the
proper equations of P, pure in the theory E;.

The first rule is a classical one. Since the goal is to reduce unification in a

COMPETING FOR THE AC-UNIFICATION RACE 191

combination of theories to the unification in each elementary theory, it is natural to

split heterogeneous terms so as to make a pure term appear. The rule is the following:

VA (VariableAbstraction)
@]p L t [x]p L t A x L .
if u is an alien subterm of s[up] at position p. (x is a new variable.)

Variable abstraction preserves the sets of solutions according to the semantics of
?

existential quantifiers. As an example, the problem x +1 (Y +2 z) = u +1 v becomes
9

(3w)x 4-1 w 2__ u 4-1 v A w -- y +2 z, after applying variable abstraction.
After one or more applications of variable abstraction, it is possible that some

equations will be pure in a theory E i. The pure subproblem Pi c a n be solved by
using the following rule:

E-Res
Pi ~ P~
if Pi is not in a (DAG) solved form and ~ a (DAG) solved form of Pi.

?

For instance, a DAG solved form of P1 ~ x +1 w = u +1 v is (among the seven
D A G solved forms of a complete set)

P t 1 ~ (~z1,z2,z3)x ? z 1 A w ? z 2 4-1 z 3 A b l ~- Z 1 4-1 Z2 A v ? z 3.

After applying E-Res with this D A G solved form, the problem one obtains is
9

(~W, Zl,Z2,Z3)X • Z 1 A'u L z 3,A,W L z 2 4-IZ3 f b / L 2i 4-1 z2, A~ .~-+2z- . ,

Clearly, E-Res is sound (i.e., it introduces no new solutions) but surprisingly, the
completeness (i.e., no solutions are lost) is not straightforward. A complete
proof can be found in [3]. I f P i has no solution, its only (DAG) solved form is F. This
rule is non-deterministic: If a complete set of (DAG) solved forms is not a singleton,
then the rule must be applied with all its elements.

In a combination of collapse-free theories over disjoint sets of function symbols,
9

the equations s ± t, where s and t have their top function symbols belonging to
different tlheories, have no solutions. This statement is easily proven by contra-
diction and induction on the alleged proof. This yields the correctness of the
following two rules:

Conflict 1
?

s = t ~ F

if s(A) E ~., and t(A) E ~., and i C j .

Conflict 2
9 ?

x - - s A x = - t ~ F

if s(A) E ~. , and t(A) C ~j, and i ¢ j.

192 ALEXANDRE BOUDET

Note that in our example, the rule Conflict2 applies to the two equations
? ?

w - z2 +1 z3 and w - y +2 z of the problem yielded by E-Res.
In the case of unification with several AC symbols plus free operators, we shall

extend these rules to take into account the operator clashes in the free theory (see
Section 4).

The standard occur-check is not complete in a combination of regular collapse-
free theories: The equation x ~ f (x) has the solution { x ~ a } , in the regular
collapse-free theory RC = {a = f (a) } . However, a compound cycle (i.e., involving
operators from different theories) has no solutions. Hence we have the following

rule:

Check*
P ~ F
if P contains a compound cycle xl ? Sl [x2] A x2 L s2[x3] A . . . A x, L sn[xl],
with si(A) E ~'~h, and sj(A) E Yk, and h ¢ k for some i,j E [1 , . . . , n].

For our implementation, we shall extend this rule (in Section 5), since our
combination is a simple theory, that is, a theory in which the equations of the

?

form x - s, where s is a non-variable term containing x have no solutions.
To compute a DAG solved form, the classical term replacement (or variable

elimination) rule is not needed. All we need is a restriction of the rule to non-proper

equations:

Var-Rep
? ?

(3 z l , . . . , zn)x - y A P ~ (~z1,.. . , Zn)X - - y A P{x ~"+ y}
if x, y C Var (P), and x is existentially quantified or y is free.

The variable replacement rule, Var-Rep, is very important because it handles the
interactions between the different pure subproblems. Indeed~ solving a subproblem
Pi with the rule E-Res may yield a non-proper equation x - y. If Var-Rep is then
applied to this equation, it is possible that a previously solved subproblem Pj
becomes unsolved, because x and y have been identified.

Finally, the last rule EQE removes useless existential quantifiers. It is clear that it

preserves the sets of solutions.

E Q E
(Existential Qnantifiers Elimination)

(3x, y l , . . . ,yn)x ~- s A P =~ (3y l , . . . ,y~)P
if x ¢ Var (P) t3 Var (s).

The set of rules 50 -- {VA, E-Res, Conflictl, Conflict2, Check*, Var-Rep, EQE}
preserves the sets of solutions. It terminates for every input P and the irreducible
problems are D A G solved forms. Hence 5 p implements a complete unification
algorithm for the combination of regular collapse-free theories.

We now show how our rules compute a solution for the problem given above,

COMPETING FOR THE AC-UNIFICATION RACE 193

when Conflict2 does not apply after E-Res:
?

X q - 1 (y + 2 z) - u q - I v

VA
? ?

(3w)x +l w - - u +1 v A w - - y +2 z

E-Res
?

(3w, wl , w2, w3)w ~ w3 A u ~ wl A x ~ Wl +I w2 A v -~ w2 +1 w3 A w -- y +2 z

Var-Rep =>

?

(~W, W1, W2, W3)W ? W 3 A U ~ W 1 A X ? w 1 -JC'l W2 A v ? w 2 q - 1 W A w - - y +2 z

Var-Rep
v ?

(3w, wl, w2, w3)w 2= w3 A u ~ w1 A x ~ U +l w2 A v ~ We +l w A w ~= y +2 z

EQE

9 9 ?

(~W, W1,W2)U ? W 1 A X -- Uq- 1 W 2 A V -- w 2 -r- 1 w A W - - y + 2 z

EQE

(~W, W2)X ? U-l- 1 W 2 A V ? W 2 -}-1 W A w ~ y +2 z

The last problem is irreducible, and it is a D A G solved form. The solved form
9 ?

(~Wz)X -- U -}-I W2 A V -- W 2 q-i (3 7 -I-2 Z)

can be obtained by applying the replacement rule, followed by the rule EQE to the
?

equation w - y +2 z. One can check that {x ~ u +l w2 A v ~ w2 +l (Y +2 z)} is a
solution of the original problem.

3. The Data Structure

The fundamental notion for the choice of the data structure is the notion of variable

sharing. Variable sharing and the use of D A G solved forms avoid having solved

forms whose size may be exponential with respect to the size of the input, in the
free theory. Hence the first implementation choice:

C H O I C E 1. A variable x may not be duplicated in the memory.

Variables will be referenced by pointers, and a variable position in a term will be a
pointer to that variable. A non-variable term t will be implemented as a pair whose
first item is its top function symbol t(A) and whose second item is the list of the
subterms tll, . . . , ttarity(t(A)).

Moreover, we have chosen an AC-flat representation such that two occurrences of
a same A C symbol one immediately above the other are forbidden, A C operators
having a variable arity.

194 ALEXANDRE BOUDET

C H O I C E 2

• A term of T({+i} U ~, 3f)\(cg U 3f) is of the form +i (s l , . . . , Sn), where n ~ 2 and
si E c~ UW for i E [1; . . . ,n] .

• A term t of T ({ + I , . . . , +n} U ~o~ Yf), where +1 , . . . , +n are AC symbols and ~o is a
set of free operators, is of one of the following forms:
- t is a variable (pointer).

- t(A) E Yo, and t is represented by the pair (t(A), l), where l is the list of the

pointers to t[l, . . . , tlarity(t(h)).
- t(A) = +g, and t is represented by the pair (t(A), l), where l is a list of pointers to

t[1,.. . , tlm, with m >~ 2 and t[j(A) ¢ +ifor j E [1 , . . . , n 1.

Given choice 1, we can collect all the variables of the system into some data

structure, which is a list in our implementation. This allows access to the set of all
the variables of the problem.

We introduce the notion of quasi-solved variable:
?

D E F I N I T I O N . An equation x - s, where x is a variable, is called a quasi-solved
equation. The variable x is quasi-solved within the unifieation problem P if it occurs

?

at most once as a side of a quasi-solved equation x - s.

Our two first implementation choices allow a special representation for the
quasi-solved equations.

C H O I C E 3. The physical implementation of a variable x contains, besides the symbol

'x', a pointer field to a term called value field of x. I f x is quasi-solved, the equation
?

x -- s will be physically represented by the presence of a pointer to the term s in the

value field of x. We will say that x has a value s.
As an example, the unification problem z ? f (y , x , x) A x + y ?g(z , y) will be

represented, according to our implementation choices, as shown in Figure 1. I f there
?

is a non-proper equation x - y, it is allowed that x has a pointer to y in its value
field, but it is necessary to avoid having a cycle of such non-proper equations.

Thus we have a notion of representative for the classes of the equivalence = v
generated by the non-proper equations.

D E F I N I T I O N (Representative of a variable). I f a variable x has a value field

containing a pointer to a non-variable term or a null pointer (i.e., a particular value
that addresses no location in the memory), then x is its own representative. Other-
wise, if x has in its value field a pointer to another variable y, then the representative

of x is the representative of y.

The parsing of the equations of the initial problem is done by a parser generated
by YACC, which puts the equations into a stack and performs the variable sharing.
On top of the head function symbol and the list of immediate subterms, a non-
variable term contains a field, containing its size, which is initialized at parsing time.
The variables will have an extra counter field which will be used for the occur-check.

COMPETING FOR THE AC-UNIFICATION RACE 195

List of
variables

/
I: II

l , I I

Equation
+(~, y) '-- ~(z, ~)

Equation
z L f(I/, x, x)

Fig. t. Internal representation of the equation x +y ~ g(z,y) and of the quasi-solved equation
9

z±f(y,x,x).

This field is initialized with the value 0. The value fields of the variables contain a
null pointer at the beginning.

The program takes, as input, a stack (conjunction) of equations whose variables
are shared, and the list of the variables of the problem. It returns a DAG solved
form represented by the list of the variables whose value field has been modified
in order to point to their values. Another global variable is the list (conjunction)
of pure AC problems (i.e., the subproblems involving only one AC operator, free
constants, and variables). To improve the efficiency, the equations with a same
free function symbol on both sides will be decomposed. Hence, the subproblem P0
associated 'with the free theory contains only quasi-solved equations. The program
is not a functional program: It works only by side effects.

4. Insertion of the Equations into the Data Structure

In this section we show how to insert a unification problem into our data structure.
Some additional transformations are used, whose soundness and completeness are
straightforward. As long as the equations stack returned by the parser is not
empty, one equation is popped and is processed as follows.

196

If possible, apply the first rule for the free theory:

Decomposition
--"--f(t l , . . . , tn) ~ S l ? tl A ' " A S n L t n f (s l , . . . ,sn)

i f f is a free function symbol.

ALEXANDRE BOUDET

If the rule applies, the resulting equations are pushed onto the stack. Clash
is also a classical rule for free function symbols, and the rule extends to A C
operators.

Clash
] f (s l , . . . , s ,) ? g (t l , . . . , t m) ~ F

l i f f , g E ~-0 U { + 1 , ' " , +n} w i t h / ¢ g.

In the case where f and g belong to two different signatures, Clash implements the
rule Conflictl of the combination algorithm. The rule Conflict2 will possibly apply
when inserting quasi-solved equations, as shown below.

Section 7 will expose how the failure rules that return F are implemented. For the
moment we will just say that the program fails.

If none of these two rules applies to the top equation in the stack, two cases may
occur:

• the top equation is of the form + (s l , . . . , s n) ~ + (h , . . . , t m) , where + is an A C

symbol, or
?

• the top equation is a quasi-solved equation x - s.

In the first case, VA is applied, if necessary, so as to obtain a pure equation in
T({+} t3 ~, 5f) which is added to the corresponding pure A C subproblem. The other
equations yielded by VA are pushed onto the stack.

?

For quasi-solved equations x -- s, several cases are to be considered.

4.1. QUASI-SOLVED EQUATIONS x ~ +i(sl,...,sn)
9

When the equation on top of the stack is a quasi-solved equation x - s, with s ~ ~f
and s(A) = +i, the rule VA is applied if necessary so as to obtain a pure equation

?

x - Sl with Sl E ~-({+i} U g, 5f)\~f. The other equations yielded by VA are stacked.

• If x has a null pointer in its value field, a pointer to Sl is put in its value field. This
transformation does nothing but represent a quasi-solved equation according to
our implementation choices.

• If the variable x has a value with a top function symbol other than +i, the rule
Conflict2 applies, yielding F.

• If x has a value field pointing to a term t whose top function symbol is +i, the
equation s ~ t is stacked. This transformation corresponds to the following rule,
which obviously preserves the solution sets and leaves x quasi-solved.

C O M P E T I N G FOR TH E A C - U N I F I C A T I O N RACE 197

A C-Merge
? ? ? ?

x - - s A x - - t = = > x - - s A s - - t

if s and t are terms in Y-({+i} U ~, 2F)\2F.

• If the variable x has a value field pointing to another variable, then the equation
? ?

y ~- sl is inserted rather than x = s~, where y is the representative of x. This last

case corresponds to the transformation

Representative
x ~ y A x ? sl =e~ x ~ y A y ? s~
if y is the representative of x.

4.2. QUASI-SOLVED EQUATIONS x - f (s l , . . . , s+)

?

The equations x - s, where the top function symbol of s is a free symbol, are

processed in a similar way. The only difference is that the merge must take into

account the size of the terms in order to ensure termination. The rule Merge uses

the size field of the terms initialized at parsing time:

x - - s A x ? t = ~ x L s A s _ ~ t

i f s and t are terms of Y(Y0 U cg,~r)\~ r and Isl ~< Itl.

4.3. N O N - P R O P E R EQUATIONS x ~ y

The variable replacement rule is built in via the notion of representative. If an

equation is of none of the forms examined so far, then it must be a non-proper
?

equation x -+- y. Again there are several cases:

• I f x and y have the same representative, there is no need to do anything. This

corresponds to the trivially correct transformation

? ? ?
x = x l A x l = x 2 A . . . A x n -~ y A y =. x

? ? ?
=~ x = x I A X l = x 2 A . . - A x n = y .

• Otherwise, let x ~ and y' be the representatives of x and y, respectively.

- I f x ~ has no value, a pointer to J is put into the value field of x'. This
corresponds to the transformation

? 9 ? 9 yt ?

X - & X l A ' " A x n - - x t A y - - y l A . . . A y n - A x - = y

= = ~ X - - X 1 A . . . A x n - - A y - - y l A . . . A y n -- A x e ± y ,

which obviously preserves the sets of solutions.
- If yt has no value, we proceed symmetrically.

- I f x t and y~ have values with different top function symbols, there is a clash, and

198 ALEXANDRE BOUDET

the program fails. This implements the rule Conttiet2 of the combination
algorithm.
If x ~ and yr have respective values s and t, with the same associative-commutative
top function symbol +i, the equation s ~ t is added to the subproblem Pi.

- Finally, if x t and y~ have respective values s and t, with the same free top

function symbol with Is l ~ I tl, the pointer to t in the value field of y' is replaced
by a pointer to x r, and the equation s ~ t is stacked. If Lsl > Itl, we proceed
symmetrically.

After this preliminary process, a problem equivalent to the original one is obtained
where

?
1. all the quasi-solved equations x - s are represented by a pointer to s in the value

field of x;
2. all the equations are pure;
3. each variable has a representative (possibly itself), and only the representatives

may have a non-variable value; and
4. the subproblem P0 associated with the free theory contains only quasi-solved

equations.

If there is no cycle in the subproblem P0, then P0 is in a D A G solved form.
Otherwise, the problem has no solution, since the combination of the free theory and
some associative-commutative theories is a simple theory, i.e., a theory where

?
the equations s -t[s] between a term and one of its proper subterms have no
solutions. The counter field of the variables is used for the occur-check.

5. Occur-check

The fact that we have a simple theory allows us to replace the rule Check* of the
general combination algorithm by the following:

[Occur-Check

Xl L SI[X2] A x 2 ? s2[x3] A " " A X n ? Sn[Xl] ::~ F
lif there exists i E [1 , . . . , n] such that si¢ Y(.

The occur-check is performed by means of a topological sort with respect to the

predecessor relation.

DEFINITION. The variable x is a predecessor of the variable y if there exists an
equation x]+-s[y], where s ~ ~r, in the problem where each variable has been
replaced by its representative. If y has n occurrences in s, x is a predecessor o fy of
multiplicity n. Symmetrically, y is a successor of x of multiplicity n.

We actually look for a cycle in the problem where all the variables have been
replaced by their representatives.

In each of the transformations described above, the counter fields of the variables

C O M P E T I N G F O R T H E A C - U N I F I C A T I O N R A C E 199

are maintained with the sum of the multiplicities of their predecessors. This is done

as follows:

• When a pointer to a term s is set in the value field of a variable x for the first time,

the term s is walked through, and at every variable position, the counter of the

representative of the variable is incremented.
• When a value pointer to a term t is removed, the representatives of the variables of

t are decremented similarly.
• When a pointer to a term s in the value field of a variable x is replaced by a pointer

to another variable y, the counter o f y is incremented by the value of the counter of

x, and the counter of x is set to 0.

The occur-check proceeds as follows:

1. The representatives are counted in the list of the variables of the problem, and the

representatives that have no predecessor (having the value 0 in their counter field)
are stacked.

2. I f the stack is empty, there is a cycle because every variable has a predecessor.
Otherwise, a variable x is popped from the stack: This variable cannot belong
to a cycle. Now having a proof that x belongs to no cycle, x can be removed

from the graph of the successor relation without changing the existence or non-

existence of a cycle. This is done by decrementing the counters of the represen-

tatives of the successors of x (which are available through the value field).
When a variable has its counter decremented to 0, it cannot belong to any
cycle, and it is stacked.

3. I f as many variables have been popped as the number of representatives

computed in 1, there is no cycle; else continue to 2.

I f there is a cycle, the program fails; otherwise P0 is in D A G solved form. We still

have to implement the rule E-Res for the pure subproblems in an AC theory.

~. Elementary AC-Unification

Before solving the subproblem Pi, associated with an AC symbol +i, the problem is
Jcalked through, and the variables are replaced by their representatives. In the
:ollowing x n will denote the term

X @i "" " -[-i X .

n times

Remember that Pi contains two types of equations: the quasi-solved equations which
~re represented by pointers in the value fields of the variables, and the equations
~etween two non-variable terms. Since there has been an occur-check for the

tuasi-solved equations, the conjunction of the quasi-solved equations of Pi is a prob-
em in D A G solved form. We will take advantage of the general fact that if ~ is a

nost general solution of PI, then the solutions of PI A P2 are the s~Lbstitutions cT 1 o2,

200 A L E X A N D R E B O U D E T

where 0- 2 is a solution of P20-1. Therefore, we only need to solve the non-quasi-solved
equations of Pi, proVided that the most general unifier of the quasi-solved ones has
been applied to Pi. This is done by applying, as long as possible, the following rule:

E-Rep
s[x] ~ t A x ~ s 1 ~ S[S1] ? I A x ? S 1

if s[x] ? t and x ? sl are equations of Pi.

This rule terminates because the occur-check guarantees acyclicity.

6.1. SOLVING SYSTEMS OF LINEAR DIOPHANTINE EQUATIONS

Before we give the algorithm for elementary AC-unification, we show how to
efficiently solve systems of linear Diophantine equations.

Consider the system 6 e of homogeneous linear Diophantine equations

allX 1 -r- • • • q- almXm = 0

anlX 1 ~- . . . - - anmX m = 0

with n equations and m unknowns, where the ag in Z.
We are interested in the set of the non-zero solutions of 50 in N m which are mini-

mal wrt the ordering >m on N m, defined by (a l , . . . , am) >m (bl , - - - , bin) if a i >~ bi for

1 <<, i <~ m, and there exists j E [1 , . . . , m] s.t. aj > bj.
Such a set always exists and it is finite. There exist several algorithms for comput-

ing Sol(D) [9, 18, 23], but we will use the new one given in [5, 11] which extends [9] to
the solving of a whole system, rather than of one equation at a time. A complete

proof can be found in [5, 11].
Let ei be the vector (0 , . . . , 1 , . . . , 0) of N m, where the value 1 is at the ith position.

The defect of the vector v = (v l , . . . , Vn) of N m is the vector

N(v) = (ally1 + ' " + almVm,. . . ,anlvl + " " + anmVm)

of Z n. Clearly, v is a solution iff ~(v) = (0 , . . . , 0).
Let v be a (non-zero) solution. We can write v = eii + ' " + % , where

/ j c [1 , . . . , m] for l < . j < . k . Let u 0 = (O , . . . , O) and u j = u j _ l + % for l<<.j<~k
(we have uk -- v). With each member of this sequence, we associate its defect in
Z n. Since v is a solution, ~(uk) = ~(v) = (0 , . . . , 0). Hence, for any (non-zero) solu-
tion, we have a 'geometrical proof ' , which is a sequence of vectors of Z ", starting and
ending at the origin, each vector being obtained from the previous by adding the
defect of a vector %. Now, a very simple geometrical remark allows a dramatic
restriction of the search space for building every such proof:

Remark. Let uj (j >~ 1) be a vector in the sequence that is not a solution. Every solu-
tion greater than uj (wrt >m) must be greater on at least one component a, such that
~(uj + ea) lies in the open half space delimited by the affine hyperplane orthogonal
to ~(uj) and containing the origin. 5

C O M P E T I N G F O R T H E A C - U N I F I C A T I O N R A C E 201

This is so because otherwise the Euclidian norm of ~ (U j + l) , . . . , N (U k)
would always remain greater than or equal to that of ~(uj) . Hence, every solution
greater than uj can be constructed, starting from u], by increasing one component
satisfying this constraint. In other words, every solution v = (v l , . . . , Vm) of 5 z s.t.
Vl + "'" + Vm = k corresponds with a sequence

U 0 : (0 , . . . , 0) , U 1 : U 0 + e j l , . . . , U k = U k l Jr ejk : v

such that ~ (u j) . ~ (e i j + ~) < 0 for 1 < j < k. A son of u is a vector u + ej such that
~ (v) . ~ (e j) < 0. The solutions greater than a vector v are greater than or equal to
a son of v. This is illustrated in Figure 2, which shows the sequences of defects
corresponding to two sequences of vectors leading to the same solution.

The algorithm searches N m \ { (0 , . . . , 0) } , taking into account the geometrical
restriction. It starts with the set

f l = { e , , . . . , e m }

of vectors and the set

= (e~ll < i<~ m & ~(ei) = (0 , . . . ,0)}

I 1
(1,0,0,0), (1, 1, O, 0), (1, 1, 1,0),(1, 1, 1, 1)

/ f -

/

7 u a I I \ II

[(1, O, O, 0), (1, O, 1,0), (1, O, 1, 1), (1, 1, 1, l)

/

I
I =

Fig. 2. Two sequences of defects corresponding to the solution (1, 1, 1, 1) of the system.

2Xl -}-2x 2 - 2x 3 - 2 x 4 = 0

x 1 -? x 3 - 2x 4 = 0
Only the second will be constructed by the algorithm since the first one violates the geometrical restriction.

202 ALEXANDRE BOUDET

of minimal solutions. For k > 1, it computes the sets

~k+m = {v + ejlv e ~k\~ce ~: Vu c ~ k v + ej ;~m U a~ ~(V)- ~(ej) < O}

J~k+l ~--- ~ k U {¥ E ~/'k+ll=@(¥) = (0 , . . . , 0) } .

The algorithm returns the first ~ h such that •h is empty. An additional constraint
avoids redundancy: when a vector v has several sons v + e k , . . . , v + ej~, everyjl th com-

ponent o fv + ejh for 1 ~< l < h ~< p can be frozen. A vector with a frozen componen t j
cannot be increased by ej. This restriction preserves the completeness since all the

solutions greater than v on their j t th component will descend from v + ej~. Therefore
it is of no use to consider them again among the descendents of v + ejh.

We explain below how the solutions of a system of linear Diophantine equations
are used for elementary AC unification.

6.2. UNIFICATION IN Y({+i} U cg, ~c)

We recall some well-known results for the elementary AC-unification [22, 25, 30],
and we illustrate them with an example that will be developed through the rest of

this section.
?

Let P be the elementary AC unification problem v @i'u-~-iv-~ a + i y +i c+iv ,
where a and c are free constants. For the sake of efficiency, we include cg into the

signature associated with the AC theory of +i.

?

D E F I N I T I O N . Let s -- t be a pure equation in Y({+ i} tJ cg, ~) . The defect of the
9

variable x (resp. of the constant c) with respect to the equation s - t, denoted
d(x, s]= t) (resp. d(c, s ? t)), is the number of occurrences of x (resp. c) in s, minus

its number of occurrences in t.
9 9

Let P = Sl - tl A --- A sn - tn be a pure unification problem in J - ({+i} U cg, ~) .
The defect of the variable x (resp. the constant c) with respect to P, denoted d(x, P)
(resp. d(c,p)), is the vector (d l , . . . , dn) , where di is the defect of x (resp. c) with

?

respect to the equation si - ti. In our example, d(v, P) = (2) and d(c, P) = (-1) .

? ' ? ' be an elementary AC unification problem. Let Let P - - t l - - t l A . . . A t p - - t p
{Ul, . . . ,un} be the set of the variables and free constants occurring in P. For
i E [1 , . . . , n], we associate with ui an integer variable xi, and we associate with the
unification problem P, the system D of linear Diophantine equations

! ? ?

d(Ul, t 1 -~ tl)X1 -~- d(u2, t 1 - ttl)X2 @ . . . q- d(un, t 1 - t ~) x n = 0

I ? d(Ul,tp -~ tp)X 1 q- d(u2: lp-- tp)X 2 @ ' ' ' + d(un, tp -v tp)X = O.

In our example, {ul,. •., U4} = {V, a, y, c}. The integer variables Xl, x2, x3 and X 4 are
associated with v, a, y and c, respectively.

COMPETING FOR THE AC-UNIFICATION RACE 203

A solution of D is a vector s = (d l , . . . , d~) of 1~ n such that f o r j ¢ I i , . . . ,p]
n

i~ l

We will denote by s(i) the ith component d i of s. In the example, D is reduced to the
equat ion 2Xl - x2 - x3 - x4 = 0, and the vector s = (2, 1,3, 0) is a solution of D.

A solution s of D is said to be minimal if there exists no nonzero solution
strictly smaller than s for the Cartesian product ordering on 1~ ~. The solution
(2, 1,3, 0) is not minimal because (1, 1, l, 0) is a smaller solution and is actually a

minimal one.
Let Sol(D) be the set of positive, non-null , minimal solutions of D. In our

example, we have

Sol(D) = {(1 ,2 ,0 ,0) , (1 ,0 ,2 ,0) , (1 ,0 ,0 ,2) , (l , 1, 1,0), (1, 1,0, 1), (1,0, 1, 1)}.

A variable xi of D is constrained if it is associated with a constant ui of {Ul,. . •, u,}.
The constrained variables are x2 and x4.

Sol(D) may be restricted to the solutions where all constrained variables have
value at most 1 and where two different constrained variables are not both
non-null. In the example, it becomes Sol(D) = {(1, 0, 2, 0), (1, 1, 1,0), (1,0, 1, 1)}. 6

To each solution sj = (a l l , . . . , dn) o f Sol(D) we associate a term vj which is

• a new variable if sj has the value zero in each componen t corresponding to a

constrained variable xi;
• the constant c corresponding to the only constrained variable xi such that di = 1

otherwise.

In the example, the new variable vl is associated with sl = (1,0, 2, 0), the constant a
with s2 = (1, 1, 1,0), and the constant c with s 3 = (1,0, 1, 1).

D E F I N I T I O N . A potential solution of P is a subset p = { s l , . . . , Sq} of Sol(D). A
potential solution { s l , . . . , Sq} is suitable if

• for all i c [1 , . . . , n], ~Y=I sj(i) # 0 (p is large enough); and
e for each constrained variable xi, ~--]J=l sj(i) < 2 (p is small enough).

The potential solution {sl, s3} is not suitable because sl (2) + s3(2) = 0. The potential
solution {sl, s2, s3 } is suitable.

We associate the substi tution

{/gi ~---~'U~ 1(i) ~-i " " " -~i l)qq(i)lui ~ ~ ' , i E [1 , . . . ,n]}

with every suitable potential solution { s l , . . . , Sq}.
Then the substitutions associated with the suitable potential solutions form a

complete set of unifiers of P (see [25, 30]). The suitable potential solution
{sl, s2, s3 } yields the solution

{2) ~ 731 -~i a +i c, y H vl +i '/31 ~-i a +i C}

of the original elementary AC unification problem.

204 ALEXANDRE BOUDET

From the implemental point of view, the major problem with elementary AC
unification is that the number of potential solutions is 2 Is°l(D)l. It is then necessary to
efficiently extract from 2 s°t(D) the set of suitable potential solutions, that is, that are
'large enough' and 'small enough' at one time. For this purpose, we use the binary
trees defined by Hullot [19] which extend the binomial trees of Vuillemin [31].

We recall the method on an example. Let A = {al,a2, a3} be a set. Every
subset of A is encoded by a bit vector representing its characteristic function. The
bit vector (bl, b2, b3) represents the subset {a ilb i = 1}. We then build the following
tree:

-....

/ \

This tree has the following three properties:

1. Every subtree rooted at a node, containing the subset p and the symbol >,
contains only nodes whose associated subset q is smaller than or equal to p,
with respect to the inclusion ordering.

2. Every subtree rooted at a node, containing the subset p and the symbol <,
contains only nodes whose associated subset q is greater than or equal to p,
with respect to the inclusion ordering.

3. Every leaf containing the subset p and the symbol > (resp. <) has an ancestor
containing the same subset p and the symbol < (resp. >). The only exception
is the leaf ((0, 0, 0), >) which is always small enough.

To determine which potential solutions are suitable (that is, which elements of
2 s°t(D) are large enough and small enough), a depth-first search of such a tree is
made, testing whether the element at each node is large enough (if the node contains
the symbol >) or small enough (if the node contains the symbol <). Thanks to the

C O M P E T I N G F O R T H E A C - U N I F I C A T I O N R A C E 205

9 I t !
Input: P = t 1 - t 1 A . . . A tp = tp , where ti, t i C J - ({+ i} U cg, ~) .

1. Associate an integer variable xi with each variable or constant ui of P, xi being constrained if ui is a
constant.

2. Compute the set Sol(D) of minimal, non-negative, integral solutions of the system

d(~,~, t~ L t'~)xl + d(u2, tl L t'~)x2 +.. . + d(u°, tl L d)Xn = 0

d(,1, t~ L t;)xl + d(u2, t, L t;)x2 + . . . + d(u,, t, L t;)x, = 0
of linear Diophant ine equations.

3. Remove from Sol(D) the solutions which have a value strictly greater than 1 for a constrained variable,
or a non-zero value for two different constrained variables.

4. Associate with each si in Sol(D) a term vi that is (i) a new variable if si has the value 0 for every con-
strained variable, or (ii) the constant c c ~f associated with the only constrained variable that has value
1 in si.

5. For every subset {sl,... ,Sq} of Sol(D) such that (i) for all i c [1 hi, i ,~1 sj(i) ¢ 0, s..(iand (ii) for
each constrained variable xi, ~q=l sj(i) < 2, yield the solution {ui~vl ~() +i"" +~ Vq~()Iui E 32,
i c [1 , . . . , n]}o fP .

Fig. 3. Elementary AC-unification algorithm.

proper t i e s 1 and 2, the search o f a subtree roo ted at a node where the test fai led is

avoided. Thanks to the p r o p e r t y 3, when a test succeeds on a leaf, the co r re spond ing

bit vec tor codes a sui table po ten t i a l solut ion. This tree is ob ta ined by merg ing two

b inomia l trees [31], and the reader is referred to [19] for the cons t ruc t ion o f such

trees.

6.3. FAST I M P L E M E N T A T I O N O F T H E TESTS

It is na tu ra l to encode the subsets o f a finite set by a bi t vector. W e are going to take

advan t age o f the fact tha t bi twise logic ope ra t ions are ext remely fast on a compute r .

Let D be the system of l inear D i o p h a n t i n e equat ions associa ted with the p r o b l e m

P, and S o l (D) = { S l , . . . ,Sq} be the set of its posi t ive min imal solut ions. Let us

associa te wi th each var iable x i E { x l , . . . , x n } of D, the vector o f q bits

vi = (b l , . . . , bq) where by = 1 iff sj(i) ¢ 0. Then the subset p o f Sol(D), represented

by the bi t vec tor (p~, . . . ,pq), is big enough if and only if (p & vi) ¢ (0 , . . . , 0) for all

i E [1 , . . . , hi, where & represents the bi twise logic ope ra t i on and.
Similarly, we test whether the componen twi se sum of a subset p o f Sol(D) is dif-

ferent f rom 0 on at mos t one c o m p o n e n t co r r e spond ing to a cons t ra ined var iable .

Tha t is to say, for every cons t ra ined var iable xi, p & vi has at mos t one non-nul l

bit. A bit vector represented by an uns igned integer n has at mos t a non-nuU bit i f

n is 0 or a power o f 2 or, equivalent ly , if (n & (n - 1)) = 0.

These r emarks give an ext remely fast m e t h o d for enumera t ing the sui table
po ten t ia l solut ions:

o C o m p u t e the set { e l , . . . , en } o f integers represent ing the bi t vectors v l , . . . , vn asso-

c ia ted with the var iables Xl, • • •, x~ o f D.

206 ALEXANDRE BOUDET

• Extract from this set the subset {el, . . . ,Cm} of the integers associated with
constrained variables.

• A subset p of Sol(D) is large enough if for i E I1, . . . , n 1, p & ei =/= O.
• A subset p of Sol(D) is small enough if for i c [1 , . . . , m] , (p & c i) &

((p &ci) - 1) = 0.
• Perform a depth-first search of Hullot's binary tree (with a stack), and test the

subsets of Sol(D), represented by unsigned integers, with the test 'large enough'
(resp. 'small enough') if the node contains the symbol > (resp. <).

• If a test fails at a node, do not search the subtree rooted at this node. If a test
succeeds at a leaf containing the potential solution p, then p is suitable.

It is easy to generate Hullot's tree by using a stack whose items contain a test
(< or >), a bit vector (unsigned integer coding the subset to be tested), and an integer
representing the height of the tree to be generated. Moreover, the sons of a node are
easily computed with bitwise logic operations and shifting on unsigned integers. The
height of the stack used for generating Hullot's binary tree is bounded by the number
of solutions in Sol (D) plus one; hence the required memory can be allocated in advance.

Note that for these tests to be really efficient, the length of the bit vectors is limited
to the number of bits in the words of the machine. In our case, the machines have 32-
bit words; therefore, we are limited to the problems having up to 32 solutions to their
associated Diophantine system (that is, 232 potential solutions).

6.4. CONSTRUCTION OF THE UNIFIERS

The equation x ~-i x -t- i x = x 1 -~-i x2 q-i x3 --}-i x4, where +i is associative-commutative,
has 1 044 569 most general unifiers. It is crucial not to spend too much time on
building each solution. In the preceding section, we saw how to determine efficiently
what the solutions are. We will now show how to build them fast. We keep
developing our example: The following table gives the solutions associated with
the two suitable potential solutions of 2 s°1(D).

If there are many most general solutions, the most expensive operation in

Potential solution Associated substitution

Subset Code Value of v Value of y

{$2,$3} (0, 1, 1) t2 +i t3 =~ a +i c t2 +i l3 = a +i c
{s l , sz , s3} (1,1,1) t l + i t 2 + i t 3 = _ v l + i a + i c t ~ + i t 2 + i t 3 = v ~ + i v l + i a + i c

elementary AC unification is the construction of the solutions, or equivalently, the
solved forms, from the suitable potential solutions. The method given above for
the computation of the suitable potential solutions is so efficient that 95% of the
time would be spent in memory allocation if the different solutions were constructed
ex nihilo. To improve the efficiency, it is enough to build, in advance, all the subterms

COMPETING FOR THE AC-UNIFICATION RACE 207

t~ ~(j) (that is, the terms tl - Vl, tl 2 = Vl +i vl, t2 - a and t3 - c in our example).
Remember that the terms are implemented as pairs containing the top function
symbol and the list of immediate subterms. If the addresses of the beginning and
the end of the lists (vl), (Vl,Vl), (a) and (c) are available, then the value of each
variable can be constructed by only testing each bit of the corresponding suitable
potential solution and moving some pointers: It is sufficient to compute for each
variable xi a list of triples containing for each solution sj of Sol(D), the corre-
sponding unsigned integer 2 j, as well as the addresses of the beginning and the
end of the list containing sj(i) occurrences of the term associated with sj.

We can thus construct, for an elementary A C unification problem, a data structure
containing all the useful information for computing and constructing all the
solutions of the original problem. A function next-sol allows one to compute the
next solution, if any, from such a data structure. After a call to next-sol, the stack
for the generation of Hullot's tree is in such a state that the next call will provide
a different solution. There is no need to compute all the solutions of an elementary
A C unification problem at one time, which allows one to save space. Another
advantage of this data structure is that it can easily be re-initialized by only
re-initializing the stack. This makes it possible to enumerate several times the
solutions of an elementary A C unification problem, while most of the computations
are made only once.

We manage to compute the 1 044569 most general unifiers of the equation
9

x +i x +i x -- Xl +i x2 +i x3 +i x4 in less than 60 seconds on a Sun 4/330.

7. Branching and Failure

An implementation problem more directly concerning the combination algorithm
given in Section 2.3 is how to handle the non-determinism introduced by the rule
E-Res, when the subtheories are not unitary. This is the case of A C theories.

Applying E-Res to the subproblem Pi consists of replacing P/ by a solved form
yielded by the function next-sol. Some other rules may then be applied (or E-Res
itself to another subproblem), until a D A G solved form (which may be F in case
of failure) is reached for the whole original problem P. After that, it is necessary
to restore the state of the system and repeat the process with all the other most
general solutions of Pi-

To make this backtracking possible, the most natural approach is to make a copy
of the state of the problem before modifying it by applying the first solution of Pi,
and restoring it before applying the second solution of Pi, and so on.

The copy of a complex data structure, involving variable sharing like ours, is
expensive, and this operation may have to be repeated thousands or millions of
times. A solution is to physically copy the whole state of the system, rather than
copying a symbolic expression. To do this, we allocate a contiguous memory zone
at the beginning, and all memory allocation (for pointers and for data) will be
done in constant time (without any calls to the system). When non-deterministic

208 ALEXANDRE BOUDET

b r a n c h i n g o c c u r s , t h e p a r t o f t h e m e m o r y u s e d so f a r is c o p i e d o n t o a s t a c k , a s a

w h o l e . C a l l o w s us t o u s e a v e r y f a s t r o u t i n e f o r c o p y i n g s u c h a b y t e a r r a y . T o

r e s t o r e t h e s t a t e o f t h e s y s t e m b e f o r e t h e b r a n c h i n g , i t is s u f f i c i e n t t o c o p y b a c k

t h e m e m o r y i m a g e l o c a t e d o n t o p o f t h e s t a c k . T h e s y s t e m wi l l t h e n b e p h y s i c a l l y

in t h e s a m e s t a t e a s b e f o r e t h e b r a n c h i n g . M e m o r y i m a g e s a r e s a v e d in a s t a c k

b e c a u s e t h e b r a n c h i n g m a y h a v e a n a r b i t r a r y d e p t h . T h e r u l e s t h a t y i e l d F e s s e n -

t i a l l y ca l l a f u n c t i o n , fa i l , t h a t r e s t o r e s a m e m o r y i m a g e f r o m t h e t o p o f t h e s t a c k .

Table I. Computation times for elementary A C problems.

Problem No. sol

Lisp on Symbolics 36xx C on Sun

Stickel H. & S. K. & Z. Sun 4/330 Sun 3/260

*(x ,a ,b) = *(u ,c ,d ,e) 2 0.018 0.009 0.012 e e
*(x ,a ,b) = * (u , c , c ,d) 2 0.011 0.010 0.011 e e
* (x, a, b) *(u, c, c, c) 2 0.008 0.010 0.008 e e
*(x ,a ,b) = * (u , v , c , d) 12 0.047 0.031 0.031 e e
*(x, a, b) = *(u, v, c, c) 12 0.032 0.030 0.029 e e

*(x , y ,a) = * (u ,u , v ,w) 300 0.622 0.766 0.507 0.017 0.050
*(x , y ,a) = *(u ,u ,v , v) 216 0.347 0.473 0.314 0.017 0.017
*(x , y ,a) = *(u ,u ,u ,c) 92 0.166 0.197 0.140 e e
*(x , y ,a) = * (u ,u ,u , v) 196 0.323 0.464 0.276 e e
*(x , y ,a) = *(u ,u ,u ,u) 124 0.163 0.291 0.160 e 0.017

*(x , y , z) = * (u ,u , v ,w) 2,901 5.435 7.936 2.330 0.117 0.317
*(x ,y , z) = *(u, u, v, v) 3,825 5.673 8.913 2.584 0.133 0.367
*(x ,y , z) = *(u, u, u, c) 2,982 4.730 7.103 1.701 0.117 0.350
*(x ,y , z) = *(u, u, u, v) 7,029 10.695 19.321 4.615 0.283 0.750
*(x , y , z) = * (u ,u ,u ,u) 32,677 39.865 98.544 19.136 1.450 3.867

* (x, x, a) = *(u, u, v, w) 12 0.028 0.042 0.026 e e
*(x, x, a) = * (u, u, v, v) 0 0.003 0.004 0.004 e e
*(x, x, a) = * (u, u, u, c) 2 0.008 0.009 0.008 e e
*(x , x , a) = *(u ,u ,u ,v) 12 0.019 0.032 0.018 e e
* (x, x, a) = *(u, u, u, u) 0 0.002 0.003 0.004 e e

* (x , x , y) * (u ,v ,w ,c) 1,632 3.228 3.871 1.368 0.100 0.283
*(x, x , y) = *(u, v, w, t) 13,703 25.605 36.690 13.186 0.583 1.517
* (x , x , y) = * (u ,u , c ,d) 2 0.007 0.010 0.009 e e
*(x, x, y) = *(u, u, c, c) 4 0.007 0.014 0.008 e e
*(x, x , y) = *(u, u, v, c) 18 0.034 0.047 0.027 e e

*(x, x, x) = *(u, v, w, c) 6,006 9.499 14.671 3.218 0.283 0.767
*(x, x, x) *(u, v, w, t) 1,044,569 639.640 59.517 148.150
*(x, x, x) = *(u, u, c, d) 2 0.008 0.008 0.008 e e
*(x, x, x) = *(u, u, c, c) 2 0.004 0.009 0.005 e e
*(x, x, x) = *(u, u, v, c) 12 0.023 0.033 0.016 e 0.017

This table gives some computation times for the implementations of the algorithms of Stickel,
Herold and Siekmann, and Kaput and Zhang (in LISP), to be compared with those of our
algorithm (in C). The computation times are given in seconds. The value e means that the
computation time is too small to be measured, the system answering 0 for durations under 17
milliseconds. The missing times (-) denote durations too long for the experiment to succeed.
The data of the first three implementations are taken from [7].

COMPETING FOR THE AC-UNIFICATION RACE 209

8. Benchmarks

In the following, , , +, • denote AC operators, f , g , . . . , a , b , c , . . , free function
symbols and constants, and x, y, z, u, v, w, t, x l , . . , variables. Table I presents some
benchmarks taken from [7]. The table contains the elementary problems, the
number of minimal solutions, the computation time for several implementations
given in [7], and, in the last two columns, the computation time for our program
on a Sun 4/330 and on a Sun 3/260. We have run the program several times
for each problem, and we have kept the shortest time. The comparison of the
execution times is not easy since the algorithms of Stickel, Herold-Siekmann, and
Kapur-Zhang are implemented in LISP on LISP machines (Symbolics 36xx) with
an instruction fetch unit.

Table II. Computation times for some non-elementary problems.

Number of Number of
Problem solutions occur-checks Time

+(Yl ,Y2) = 4-(Y3,Y4) 7
*(x, x, x) = *(u, v, w, a) 6,006
f(+(Yl ,Y2), *(x, x, x)) = 42,042

f(+(Y3, Y4), *(u, u, w, a))
f (+(Yl ,Y2)," (zl, za), *(x, x, x)) = 294,294

f(Ar-(Y3, Y4)," (23,24)1 *(U, 't), W, a))
*(x,x,x) = *(~,.,v,c)
(x,x ,x)=(u,u,v,y) A y = f (z)
(x,x,x)=(~,u,~,y) A y = f (x)
(x,x,y) =(~ ,~ ,w,c)
(x,x,y) =(~ ,~ ,w, 0 A t = f (z)
*(x,x,y) = *(~,~,w,t) A t=h(x ,y)
(x,x,x)=(u,v,w,a)
(x,x,x)=(~,~,w,O A t = f (y)
.(x, x, x) = .(u, ~, w, t) A t = f (x)
• (x,y,z) = .(u, u, u, u)
• (x,y,z) = .(~,~,~,~) A w = f (w)
• (x,y, z) = ,(~, u, u, ~) A w = f (v)

0
0 0.283
0 2.667

0 23.533

12 0 c
12 13 e
0 I3 0.017

1,632 0 0.100
1,632 1,633 2.000

0 1,633 2.383
6,006 0 0.283
6,006 6,007 10.000

0 6,007 11.533
32,677 0 1.450

0 1
32,677 32,678 31.283

This table allows the measurement of the part taken by the occur-checks (and backtrackings) in the
computation times. If the problem involves non-constant free operators, an occur-check is done
before solving the AC subproblems, and another occur-check each time a new AC solution is tested.

The last three examples suggest an optimization, which has not yet been implemented. When
there are no shared variables, as defined in [5], there cannot be a compound cycle; hence the
occur-check is not necessary (except at the beginning for the free theory). Taking this fact into
account would reduce, by a factor of 20, the computation time for the last problem. Indeed, the
last three problems have the same AC subproblem. In the first case, the whole problem is pure
in the AC theory of *; therefore, occur-check and branching are not necessary, and 32 677 solu-
tions are computed in 1.450 seconds. The second case is the same problem, with an additional cyc-
lic equation w ~f (w) , in the free theory. The program stops with failure in negligibIe time after a
positive occur-check. Finally, the last problem still has the same AC equation, with an additional
non-cyclic equation in the free theory. The program performs 32 678 occur-checks (and 32 677 con-
text restorations) in 31 seconds. Since there are no shared variables, these occur-checks are useless,
and the computation time could be the same as for the first case.

210

Table III. Compared cost of the various subroutines.

ALEXANDRE BOUDET

Pb. No. sol. Time Mon. Point. Stack Bit Back. O.-C. Alloc.

1 1,044,569 59.517 4.7 93.1 1.1 0.0 0.0 0.0 0.0
2 6,006 0.283 22.7 59.0 9.1 4.5 0.0 0.0 0.0
3 42,042 2.667 9.7 79.4 1.0 6.2 0.0 0.0 0.0
4 294,294 23.533 6.9 78.9 1.9 8.7 0.0 0.0 0.0
5 6,006 10.000 21.5 2.8 0.0 0.1 28.8 6.4 6.7
6 32,677 1.450 11.5 84.7 0.0 1.0 0.0 0.0 0.0
7 32,677 31.283 14.9 4.2 0.0 0.0 59.5 1.4 0.0

This table shows the relative percentages of time spent by the program in the most important
subroutines. The monitoring is obtained using the -p option of the compiler. The first column gives
the problem number:

1: *(x ,x ,x) = , (u , v ,w , t)
2: *(x ,x ,x) = *(u,v,w,a)
3: f(+(Yl,Y2, *(x, x, x)) =U(+(Y3,Y4), *(t./, qd, w, a))
4: f (+(Yl, Y2)," (Zl, z2), *(x, x, x)) = f(+(y3, Y4)," (z3, z4), *(u, v, w, a))
5: *(x ,x ,x) = *(u,v,w,t) A t = f (y)
6: *(x,y ,z) = *(u,u,u,u)
7: *(x,y ,z) = *(u,u,u,u) A w = f (v)

The second and third columns give the execution time on a Sun 4/330, and the number of solutions,
respectively. The other columns give the percentage of time spent in the most important subrou-
tines:

Mon.: the monitoring itself.
Point.: moving the pointers to set a new solution.
Stack: the generation of Hullot's tree (generated with a stack).
Bit: the tests on the potential solutions (bitwise logic operations).
Back.: the backtracking (copying byte arrays).
O.-C.: the occur-check.
Alloc.: the memory allocation.

In Table II we also give some benchmarks for nonelementary unification

problems. The execution time is measured on a Sun 4/330. If the different A C sub-
problems have no variables in common, then the occur-check is not necessary. More-
over, it is possible to combine several instances of the data structure for enumerating
the solutions of an elementary problem. In this case, branching is not needed either.
The efficiency of the program in such cases is very good. Table II also shows that
most of the time may be spent in branching and occur-checks. Finally, Table III
shows, for several problems, the relative cost of the various subroutines.

9. Conclusion

We have proved that it is possible to write an efficient implementation of A C -

unification in C. The main advantages of C are the very good optimizations done by
the compilers and the possibility to go deep enough into the internal representations
of the data. Orl the other hand, C is not a very nice language for symbolic
computation; hence we suggest that it should be used for implementing very

C O M P E T I N G FOR THE A C - U N I F I C A T I O N RACE 21 i

frequently used high-level primitives, for larger systems written in more advanced

languages.
The data structure used in this program allows extension to theories other than

AC. The combination part needs no modifications for adding other regular
collapse-free subtheories: It is enough to have a unification algorithm for each of
them.

The problem of combining arbitrary theories has been solved by Schmidt-Schaul3
[29], who gave a highly non-deterministic algorithm. In [4, 3], an algorithm is given
that naturally extends the one implemented here. Adding non-regular or
collapsing theories like AC1, ACI, ACO, and Boolean rings requires adaptation of
the combination algorithm at two levels:

• The rules Conflietl and Conflict2 are no longer complete, and theory clashes
should be solved by using matching.

e The occur-check should not yield F, but compute the cycles that may be solved by
using either matching or variable elimination.

For arbitrary theories, it is required to have besides the unification algorithm, a
unification algorithm with free constants (i.e., a matching algorithm [6]), as well
as a constant elimination algorithm.

Acknowledgements

I thank Quing Bin Pan, who taught me the basic notions of C and helped me to
implement the data structure. Many thanks also to Judith Jakoubovitch, who
implemented the routines for memory allocation and context saving and restoring,
and who gave me the magic formula for the Boolean test 'small enough'. Pierre
Dauchy showed me several times that it was not the machine that was faulty during
nice debugging sessions. Last but not least, thanks to Jean-Pierre Jouannaud, who
really wanted me to compete for the AC unification race.

Notes

We make no distinction between the equations s ~ t and t ~ s, which is consistent with the semantics of
the predicate ~.

2 One may also require that all the variables in tl, • • •, t~ are in {YI, • . . , Yp}. This is the so-called protection
of variables.

3 It is, for instance, the case for f (x l , x2 x~) 7=f(h(x2, x2), h(x3~ x3) , h(xn+l, Xn~ 1)),
4 Stickel's algorithm goes back to '75 and Fages 's proof to '84.

That is, such that .~(uj) • N(e~) < 0, where • is the usual scalar product in Z ~.
6 To improve the efficiency, the value of an integer variable corresponding to a variable having a value

from another theory may be bounded by 1.

References

1. Adi, M. and Kirchner, C., 'Associative-commutative unification: The system solving approach' , in
AIfonso Miola (Ed.), Proc. DISCO'90. L N C S 429, Capri, Italy, April 1990. Springer-Verlag.

2. Birkhoff, G., 'On the structure of abstract algebras', Proc. Cambridge Phil. Society, 31 (1935).

2 1 2 ALEXANDRE BOUDET

3. Boudet, A., Unification dans les m~langes de theories equationnelles. Ph.D. thesis, Universit~ de Paris-
Sud, Orsay (February 1990).

4. Boudet, A., 'Unification in combinations of equational theories: An efficient algorithm, in Proc. lOth
Int. Conf. on Automated Deduction, Kaiserslautern. Springer-Verlag, July 1990.

5. Boudet, A., Contejean, E. and Devie, H., 'A new AC unification algorithm with a new algorithm for
solving diophantine equations', in Proc. 5th IEEE Symp. Logic in Computer Science, Philadelphia,
June 1990.

6. B~irckert, H.-J., 'Matching, a special case of unification?' J. Symbolic Computation, 8, 523 536 (1989).
7. B/irckert, H.-J., H6rold, A., Kapur, D., Siekmann, J. H., Stickel, M. E., Tepp, M. and Zhang, H.,

'Opening the AC-unification race', J. Automated Reasoning, 4(4), 465-474 (1988).
8. Christian, J. and Lincoln, P., 'Adventures in associative-commutative unification (a summary)', in

Proc. 9th Conf. on Automated Deduction, Argonne, LNCS 310. Springer-Verlag (May 1988).
9. Clausen, M. and Fortenbacher, A., 'Efficient solution of linear Diophantine equations', Research

Report 32/87, Univ. Karlsruhe, November 1987.
10. Comon, H., Unification et disunification: Th~orie et applications, Th6se de Doctorat, I.N.P. de

Grenoble, France (1988).
11. Contejean, E. and Devie, H., 'R+solution de syst~mes lin6aires d'6quations Diophantiennes', Comptes

Rendus de l'AcadOmie des Sciences, Paris, 313(1), 115-120 (1991).
12. Corbin, J. and Bidoit, M., 'A rehabilitation of Robinson's unification algorithm', Information

Processing Letters 1983.
13. Dershowitz, N. and Jouannaud, J.-P. Rewrite systems, in J. van Leeuwen (ed), Handbook of

Theoretical Computer Science, Vol. B, North-Holland (1990).
14. Fages, F., 'Associative-commutative unification', J. Symbolic Computation, 3(3) (1987).
15. Fortenbacher, A., 'An algebraic approach to unification under associativity and commutativity', in

Proc. Rewriting Techniques and Applications 85, Dijon, LNCS 202. Springer-Verlag, May 1985.
16. Guckenbiehl, Th. and H6rold, A., 'Solving linear Diophantine equations', Technical Report 85-IV-

KL, SEKI, University of Kaiserslautern, Germany, 1985.
17. Herold, A., Combination of unification algorithms in equational theories. Ph.D. thesis, Universit~t

Kaiserslautern, Kaiserslautern, Germany, 1987.
18. Huet, G., 'An algorithm to generate the basis of solutions to homogeneous linear diophantine

equations', Information Processing Letters, 7(3), April 1978.
19. Hullot, J.-M., 'Associative commutative pattern matching', in Proc. 6th IJCAI (Vol. I), Tokyo, pp~

406-412, August 1979.
20. Jouannaud, J.-P. and Kirchner, C., in J.-L. Lassez and G. Plotkin (eds), Alan Robinson's Anniversary"

Book, 'Solving Equations in Abstract algebras: A rule-based survey', MIT Press, 1990 (to appear).
21. Kapur, D. and Zhang, H., 'Rll: A rewrite rule laboratory', in Proc. 9th Conf. on Automated Deduction,

Argonne, LNCS 310, pp. 768-769. Springer-Verlag, 1988.
22. Kirchner, C., Mdthodes et outils de conception syst~matique d'algorithmes d'unification dans les theories

equationnelles. Th6se d'Etat, Univ. Nancy, France, 1985.
23. Lambert, J. L., 'Une borne pour les g6n6rateurs des solutions enti6res positives d'une ~quation

Diophantienne lin6aire', Comptes Rendus de l'AcadOmie des Sciences de Paris, 305 (1987). S6rie I.
24. Lankford, D., 'New non-negative integer basis algorithms for linear equations with integer

coefficients', Unpublished manuscript, 1987.
25. Livesey, M. and Siekmann, J., 'Unification of bags and sets', Research report, Institut fur Informatik

I, Univ. Karlsruhe, West Germany, 1976.
26. Martelli, A. and Montanari, U., 'An efficient unification algorithm', ACM Transactions on Program-

ming Languages and Systems, 4(2), 258-282 (1982).
27. Plotkin, G., 'Building in equational theories', in Marchine Intelligence 7, Edinburgh Univ. Press, 1972.
28. Robinson, J. A., 'A machine-oriented logic based on the resolution principle', J. ACM, 12(1), 23-4!

(1965).
29. Schmidt-SchauB, M., 'Unification in a combination of arbitrary disjoint equational theories', in Proc.

9th Conf. on Automated Deduction, Argonne, LNCS 310, Springer-Verlag, May 1988.
30. Stickel, M., 'A unification algorithm for associative-commutative functions', J. ACM, 28(3), 423-434

(1981).
31. Vuillemin, J., 'A data structure for manipulating priority queues', aT. ACM, 21(4) (1978).

