
Journal of Automated Reasoning 11:43 81, 1993. 43
© 1993 by Kluwer Academic Publishers. Printed in the Netherlands.

Implementing Tactics and Tacticals in a
Higher-Order Logic Programming Language

AMY FELTY
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974, U.S.A.

(Received: 28 August 1990; accepted: 24 September 1992)

Abstract. We argue that a logic programming language with a higher-order intuifionistic logic as its
foundation can be used both to naturally specify and implement tactic-style theorem provers. The
language extends traditional logic programming languages by replacing first-order terms with simply-
typed A-terms, replacing first-order unification with higher-order unification, and allowing implication
and universal quantification in queries and the bodies of clauses. Inference rules for a variety of inference
systems can be naturally specified in this language. The higher-order features of the language contribute to
a concise specification of provisos concerning variable occurrences in formulas and the discharge of
assumptions present in many inference systems. Tactics and tacticals, which provide a framework for
high-level control over search for proofs, can be directly and naturally implemented in the extended
language. This framework serves as a starting point for implementing theorem, provers and proof systems
that can integrate many diversified operations on formulas and proofs for a variety of logics. We present
an extensive set of examples that have been implemented in the higher-order logic programming language
AProlog.

Key words. Tactics, tacticals, theorem proving, proof systems, natural deduction, logic programming,
higher-order logic, logical frameworks.

1. In trod u c t ion

The opera t ions o f search and unif icat ion, which are essential for the imp lemen ta t i on

of mos t theorem provers , are di rect ly avai lable in logic p r o g r a m m i n g languages. This

fact suggests tha t such languages should p rov ide good imp lemen ta t i on languages for

t heo rem provers . In add i t ion , the declara t ive na tu re o f logic p r o g r a m s should a id in

p rov id ing high-level specificat ions o f the tasks involved in theorem proving. F o r

example , p ropos i t i ons in the logic p r o g r a m m i n g language Pro log [40] are clauses

wi th a top-level impl ica t ion where a clause body implies its head. The specif icat ion

o f inference rules expressing p rovab i l i ty in a pa r t i cu la r logic should m a p direct ly

to this setting: the conclus ion o f a rule maps to a head o f a clause while the premises

are specified by the body . A set o f clauses specifying a set o f inference rules then

serves as a specif icat ion o f a theorem prover for the logic in quest ion. Opera t ion -

ally, search and unif ica t ion can be used to de te rmine which inference rules can be

app l ied and to p roduce the p rope r instances o f these rules. In addi t ion , the decla-

rat ive read ing o f such logic p r o g r a m s should help in bo th unde r s t and ing and p rov-

ing formaI proper t ies , such as soundness o f an imp lemen ta t i on o f a pa r t i cu la r logic

or comple teness o f a represen ta t ion o f a logic as a logic p r o g r a m .

44 AMY FELTY

The functional programming language ML was originally developed as the meta-
language for the implementation of theorem provers and has been used for this pur-
pose in such notable theorem-proving systems as Edinburgh LCF [17], HOL [18],
Nuprl [3], and Isabelle [35]. ML contains many features that are useful for the
design of theorem provers. It has a secure typing scheme, and is higher-order, allow-
ing complex operations to be composed easily. In addition, it contains pattern-
matching capabilities which allow flexible manipulation of data objects. While ML
has been used with much success in implementing theorem provers, many of the
characteristics of logic programming languages suggest that such languages are
worth investigating as an alternative in which certain basic operations such as
search and unification are available more directly.

The basic data structure of traditional logic programming languages such as
Prolog is first-order terms. Such terms, however, cannot provide a direct represen-
tation of quantification in formulas in first-order logic, or in any other logic that
contains quantifiers. In particular, they cannot be used to characterize the notions
of variables and the scopes of variable bindings in such formulas. Of course, quanti-
fication can be specially encoded. For example, in Prolog, we can represent abstrac-
tions in formulas by representing bound variables as either Prolog free variables or
constants. The formula Vx3yp(x, y), for instance, could be written as the first-order term

forall(X, exists(Y,p(X,Y))) or fo ra l l (x , exists(y,p(x,y)))

(where capital letters represent free variables and lowercase letters represent con-
stants). In either representation, occurrences of variables inside the scope of quanti-
tiers must be distinguished from those outside it. In the first case, substitution and
unification that is available on free variables in Prolog cannot be used directly to
provide substitution for first-order formulas. In other words, Prolog's unification
cannot provide unification at the object-level. In either case, the programmer would
have to write special procedures that accomplish these tasks for the encoded repre-
sentation. Programs that manipulate such encodings are not generally declarative in
nature.

In this paper, we argue that a higher-order logic programming language based on
higher-order hereditary Harrop formulas [30] is well suited to the tasks of specifying
and implementing theorem provers. This language replaces first-order terms with
simply typed A-terms. These terms can be used to elegantly express the higher-order
abstract syntax of object-logics. For example, the abstractions built into A-terms
can be used to represent quantification. It is then possible to directly specify the
operations of quantifier instantiation and substitution in terms of application of
A-terms. Abstraction in A-terms also allows us to represent notions of abstraction
found in many proof systems. For example, eigenvariables in natural deduction
proofs provide a notion of variables bound inside proofs [39]. In addition, in natural
deduction, a proof of an implication A D B can be considered a function from proofs
of A to proofs of B. Terms representing proofs can be constructed in which these
notions are captured.

IMPLEMENTING TACTICS AND TACTICALS 45

The extended language also permits queries and the bodies of clauses to contain
both implication and universal quantification. We shall show how universal quanti-
fication can be used to specify the provisos on inference rules in many proof systems
concerning the occurrences of variables in formulas. Such uses of universal quanti-
fication are in fact essential for the correct implementation of various kinds of the-
orem provers for these logics. In addition, implication is useful for specifying the
discharge of assumptions in natural deduction systems.

In terms of implementation, depth-first search provided by most logic program-
ming languages is rarely sufficient for the complex task of theorem proving. We
shall show how tactics and tacticals, which provide more flexibility in controlling
search, can be directly implemented in the higher-order logic programming lan-
guage. For instance, quantification over higher-order objects such as predicates
allows an elegant implementation of tacticals, which provide basic control mechan-
isms for proof search. Such procedures take as parameters the various primitive
operations of a particular theorem prover and compose them in various ways to
form more complex operations and proof search strategies, known as tactics.
Tactics and tacticals provide a framework which can be extended modularly to inte-
grate many potentially diverse operations on formulas and proofs for a variety of
logics in one unified setting.

In Section 2 we present the extended logic programming language. In Section 3 we
illustrate how this language can be used to specify inference rules. We specify both
natural deduction and sequent proof systems for first-order logic, and then illustrate
the specification of a higher-order logic with quantification over simply-typed
A-terms. While these examples illustrate the specification power of the language, they
do not provide complete implementations of theorem provers because of the limi-
tations of depth-first search. However, they do provide complete proof checkers.
In addition, they provide simple direct encodings of logics which we use to illustrate
a general pattern for providing formal proofs of correctness. In Section 4 we prove
the correctness of the specification for natural deduction for first-order logic.

In the remaining sections, we focus on implementation of theorem provers. In
Section 5 we illustrate how inference rule specifications can serve as the basic search
operations of a tactic style theorem prover. Section 6 provides an implementation of
the general theorem-proving interpreter which includes the tacticals and basic
operations for providing user interaction in searching for proofs. Building upon
the tactics and tacticals implemented in Sections 5 and 6, we complete an implemen-
tation of a tactic-style theorem prover for natural deduction for first-order logic in
Section 7. Finally, we discuss related work in Section 8.

2. A Higher-Order Logic Programming Language

Higher-order hereditary Harrop (hohh) formulas extend positive Horn clauses in
essentially two ways. The first extension permits richer logical expressions in both
queries (goals) and the bodies of program clauses. In particular, this extension

46 AMY FELTY

provides for implications and universal quantification, in addition to conjunctions,
disjunctions, and existentially quantified formulas. The second extension to H o rn
clauses makes this language higher-order in the sense that it is possible to quantify
over predicate and function symbols. For a complete realization of this kind of
extension, several other features must be added. In order to instantiate predicate
and function variables with terms, first-order terms are replaced by more expressive
simply typed A-terms. The application of A-terms is handled by/3-conversion, while
the unification of A-terms is handled by higher-order unification.

The types of the language include a set of primitive types containing at least the
type symbol o which denotes the type of logic programming propositions, and is
closed under the formation of functional types, i.e., if rl and r2 are types then so
is rl ~ r2. The arrow type constructor associates to the right. If "Co is a primitive
type, then the type "q --* • • • -+ rn ~ ro has r l , . . . , rn as argument types and r0 as
target type. We say the order of a primitive type is 0, while the order of a non-
primitive type is one greater than the maximum order of its argument types. We
assume that there are denumerably many constants and variables of each type.
Simply-typed A-terms are built up in the usual way from these constants and vari-
ables using abstraction and application. Application associates to the left.

In this language, equality between A-terms is taken to mean/3r/-convertibility. We
shall assume that the reader is familiar with the usual notions and properties of a,/3,

and ~ conversion for the simply-typed A-calculus. See Hindley and Seldin [22] for a
fuller discussion. We just review some basic notions and our notation here. The relation
of convertibility up to a is written as =, up to a and/3 as =9, and up to a,/3, and z/as
=/~n" We say that a A-term is in ~3-normal form if it contains no beta redexes, that is,
subterms of the form (Axt)s. A A-term is in/3~7-longform if it is of the form

AXl . . .Ax, (h t l . . . tm) (n,m >~O),

where h, called the head of the term, is either a constant or a variable, where the
expression htl . . . t m is of primitive type, and where the terms t l , . . . , tm are also in
/3~7-1ong form. All A-terms /3r/-convert to a term in /3~/-long form, unique up to
a-conversion. We write [t/x]s to denote the term obtained by replacing all free occur-
rences of x in s with t, systematically renaming bound variables in order to avoid
variable capture.

A A-term which is of type o is called a proposition. Logical connectives and quan-
riflers are introduced into A-terms by introducing suitable constants as in Church [2].
In particular, the constants A, V, D are all given type o --* o --* o, and the constants V
and 3 are given type (a ~ o) ~ o for each type replacing the 'type variable' a.
(Negation is not used in this programming language.) The expressions V(AxA) and
3(AxA) are abbreviated to be VxA and 3 xA, respectively. A, V, and D will be written
as infix constants. A function symbol whose target type is o will be considered a
predicate. A A-term of type o such that the head of its/3r/-long form is not a logical
constant will be called an atomic formula.

We now define two new classes of propositions, called goal formulas and definite

IMPLEMENTING TACTICS AND TACTICALS 47

clauses (or just clauses). Let A be a syntactic variable for atomic formulas, G a
syntactic variable for goal formulas, and D a syntactic variable for definite clauses.
These two classes of formulas are defined by the following mutual recursion.

G := A I G l AG2tG1 V G N I 3 x G i D D GIVxG

D := A[G D AIVxD

Note that the top-level form of a definite clause is either Vx~...VxnA or
VXl . . .Vxn(G D A), where n >~ 0. The atomic formula A is called the head of the
clause, and in the latter case, G is called the body. There is one final restriction
on definite clauses: the head of a definite clause must have a constant as its head.
The heads of atomic goal formulas on the other hand may be either variable or
constant. A logic program or just simply a program is a finite set of definite
clauses.

Note that this logic allows for quantification over arbitrary predicates, a feature
which we will not make use of until Section 6. Quantification over function symbols
on the other hand, will be used extensively throughout the paper, although it will
generally be restricted to variables having types of order 1.

Given a set of primitive types N, a signature (over N) is a finite set N of constants
and variables such that there is at least one constant or variable of every primitive
type. If a is a constant or variable of type ~-, we sometimes write a:~- to make the
type explicit. Given a signature N, a term of type o is said to be a N-clause if it is
a definite clause built using only the constants and variables in E, the logical con-
stants, and application and abstraction. Similarly, a term of type o is a 2-goal if it
is a goal formula built from the constants and variables in E and the logical con-
stants. A term of any type is said to be a N-term if it is built using the constants
and variables in N and the logical constants except for D.

We present a search procedure for hohh whose soundness and completeness
follows from properties shown by Miller et al. [30]. In this procedure, it will be
important that instances of existentially quantified goal formulas and universally
quantified clauses are also goal formulas and clauses, respectively. One way to
ensure this property is to disallow implication in substitution terms. Thus, we will
only consider N-terms as substitution terms. See [30] for more details. The theorem
below provides a high-level description of the search procedure. In this theorem,
given a signature N and a set of N-clauses ~ , the set IN 1~ is defined to be the small-
est set of clauses such that ~ C_ ! ~ [~ and if VxD E [~ [z and t is a E-term of the
same type as x, then [t/x]D E [~ 1~.

T H E O R E M 2.1. A sound and complete (with respect to intuitionistic logic) non-
deterministic search procedure for hohh can be organized using the following six
search primitives. In these operations, N is the current signature and ~ the current pro-
gram. The clauses in ~ are E-clauses and the current goal is a N-goal.

AND: G 1 A G 2 is provable from N and ~ if and only if both G 1 and G 2 are provable from
N and ~.

48 AMY FELTY

OR: Gt V G2 is provable from E and ~ if and only if G1 or G2 is provable from E andS.

INSTANCE: 3xG is provable from Z and ~ if and only if there is some E-term t of the
same type as x such that [t/x]G is provable from E and ~.

GENERIC: Vxa is provable from ~ and ~ if and only if [c/x]G is provablefrom E U {c}
and ~ for any constant or variable c of the same type as x that does not occur in ~.

AUGMENT: D ~ G is provable from E and ~ if and only if G is provable from E and
u {D}.

BACKCHAIN: The atomic formula A is provable from Z and ~ if and only if either
A E [~ [~. or G D A E [~ [~ and G is provable from ~ and ~.

Note that the AUGMENT search operation extends the current program, while the
GENERIC search operation extends the current signature. Also, note that we do
not include a separate operation for conversion since we consider terms to be equiv-
alent up to/37/-conversion. This search procedure defines a fairly rigid structure for
meta-proofs showing that a given goal formula follows from a given program.
Proofs of this structure are called uniform proofs in Miller et al. [30].

An implementation of a deterministic interpreter must make choices which are left
unspecified by the high-level description of the non-deterministic interpreter. We
describe here the choices made in the AProlog language, many of which are similar
to those routinely used in Prolog.

The order in which conjuncts and disjuncts are attempted and the order for back-
chaining over definite clauses is determined exactly as in conventional Prolog: con-
juncts and disjuncts are attempted in the order they are presented. Definite clauses
are backchained over in the order they are listed in ~ using a depth-first search para-
digm to handle failures. In the extended language, clauses can be added dynamically
by the AUGMENT operation. We specify that new clauses get added to the top of the
list.

The non-determinism in the INSTANCE operation is extreme. Generally when an
existential goal is attempted, there is very little information available as to what
E-term should be inserted. Instead, the Prolog implementation technique of instan-
tiating the existential quantifier with a logic (free) variable which is later 'filled in'
using unification is employed. Thus instead of picking a E-term t, the INSTANCE
search operation will introduce a new logic variable as the substitution term. A simi-
lar use of logic variables is made in implementing BACKCHAIN: instead of choosing a
clause from [~ [z, a clause from ~ is chosen and an instance is made by replacing all
outermost universally quantified variables with new logic variables. Such logic vari-
ables are not part of the meta-logic hohh and thus are distinct from the variables that
occur in E. The universal instance of this clause is then unified with the current goal.
This operation may partially or fully instantiate the new logic variables.

The addition of logic variables in this setting requires higher-order unification
since these variables can occur inside A-terms. Also the equality of terms is not a
simple syntactic check but a more complex check of flr/-conversion. Higher-order

IMPLEMENTING TACTICS AND TACTICALS 49

unification is not in general decidable and most general unifiers do not necessarily
exist when unifiers do exist. AProlog addresses these issues by implementing a
depth-first version of the unification search procedure described by Huet [24]. It
was shown by Miller et al. [30] that such unification is sufficient for determining sub-
stitutions, and by Nadathur and Miller [31, 33], that this unification procedure can
be smoothly integrated into the usual backtracking mechanism of logic program-
ming languages. The higher-order unification problems we shall encounter in this
paper are all rather simple. In fact all such problems are decidable. The presence
of logic variables requires that GENERIC be implemented slightly differently than is
described above. In particular, if the goal VxG or the current program ~ contains
logic variables, the new signature item c must not appear in the terms eventually
instantiated for those logic variables. Several ways of handling the constraints on
unification imposed by the GENERIC operation are discussed by Miller [28]. Without
these checks, logic variables would not be a sound implementation technique. Note
that the new signature item in the GENERIC operation can be either a variable or
constant. In describing operational behavior of programs we will think of these new
signature items as constants to avoid confusion with logic variables, while in estab-
lishing formal results, it will be convenient to use variables as new signature items.

In presenting programs in this paper, we adopt the syntax of the eLP [8] imple-
mentation of AProlog. Variables are represented by tokens with an uppercase initial
letter and constants are represented by tokens with a lowercase initial letter.
A-abstraction is represented using backslash as an infix symbol. Terms are most
accurately thought of as being representatives of flU-conversion equivalence classes
of terms. For example, the terms X\ (f X) ,Y\ (f Y), (F\Y\ (F Y) f) , and f all repre-
sent the same class of terms.

The symbols , and ; represent A and V, respectively, and , binds tighter than ;.
The symbol : - denotes 'implied-by', while => denotes the converse, 'implies'. The
first symbol is often used to write the top-level connective of definite clauses as in
Prolog. Implications in goals and the bodies of clauses are always written using
;>. Free variables in a definite clause are assumed to be universally quantified, while
free variables in a goal are assumed to be existentially quantified. Universal and
existential quantification within goals and definite clauses are written using the
constants p i and sigma in conjunction with a A-abstraction.

Primitive types are introduced using kind declarations and signature items are
introduced using type declarations. For example, the type a and signature member
f : a ~ a -+ a can be introduced as follows.

kind a type.

type f a - > a - > a.

When type and kind declarations are omitted, they will be inferred by the interpreter.
AProlog permits a degree of polymorphism by allowing type declarations to contain
type variables (written as capital letters). It is also possible to build new 'primitive'

50 AMY FELTY

types from other types, using type constructors. In this paper, we will need to have
only one such type constructor, l i s t . We also introduce the standard constructors
for lists: n i l represents an empty list of polymorphic type (l i s t A), and :: is the
polymorphic cons operator of type A -> (l i s t A) -> (l i s t g). The latter will be
written as an infix symbol. The programs in this paper will use the following
operations on lists.

membX (X::L).

membX (Y::L) :-membXL.

memb_and_rest A (A: :Rest) Rest.

memb_and_rest A (B: :Tail) (B: :Rest) :- memb_and_rest A Tail Rest.

nth_item 0 A

nth_item I A

nth_item N A

List :- !, membAList.

(B::Rest) :- i, A=B.

(B::Tail) :- Mis (N- I), nth_itemMATail.

nth_and_rest 0 A List Rest :- !, memb_and rest A List Rest.

nth_and_rest I A (B::Rest) Rest :- !, A =B.

nth_and_rest N A (B::Tail) (B::Rest) :-

M is (N - i), nth_and_rest M A Tail Rest.

The memb predicate implements the standard test for membership in a list. The
predicate memb_and_rest is similar to memb but contains an additional argument
for the rest of the list minus the chosen item. The n th i tem and nth_and r e s t
programs are similar to memb and memb and_res t , respectively, but use an integer
argument to specify a particular member of the list. When the integer argument is
0, they behave like memb or memb_and_rest.

Several non-logical features of AProlog will be used in this paper. The cut (!), as
used above, is one such feature. It is used to eliminate backtracking points. It is a
goal which always succeeds and commits the interpreter to all choices made since
the parent goal was unified with the head of the clause in which the cut occurs
(see ref. [40]). We also make use of w r i t e and r ead predicates. As in Prolog,
(w r i t e A) prints the current binding of A to the screen and will always succeed.
The r ead predicate has polymorphic type (A -> o) -> o. A goal of the form
(read G) prompts the user for input of some term M, and then solves the goal (G
M). When this goal fails, (read G) also fails. The equality predicate (=) verifies
that its two arguments are unifiable. In nth item and nth_and_rest, the unifica-
tion of A and B is placed after the cut rather than replacing B with A in the head
of the clause. This implementation is chosen for control reasons. In particular, it
verifies that only the second clause can succeed when the integer argument is 1.

3. Specifying Inference Rules

In this section we illustrate the specification of inference rules in hohh using several

IMPLEMENTING TACTICS AND TACTICALS 51

examples. We begin by considering the specification of natural deduction for first-
order intuitionistic logic. We then consider the specification of sequent calculi,
classical logic, the simply-typed A-calculus, and higher-order logic. Since we will
be specifying logics within a logic, to avoid confusion we will refer to hohh as the
meta-logic and the logic being specified as the object-logic.

To represent a first-order logic, we introduce two primitive types: form for object-
level formulas and i for first-order individuals. The new type form serves to
distinguish formulas of the object-logic from formulas of the recta-logic (of type
o). The connectives of the meta-logic have a set meaning, for example as given by
the non-deterministic interpreter of the previous section, while the object-level con-
nectives will have only the meaning attributed to them by the programs that use
them. Given these new primitive types, we introduce constants for the object-level
connectives: and, or, and imp of type form -> form -> form, neg of type form ->
form, and f o r a l l and ex i s t s of type (i -> form) -> form. We use usual infix nota-
tion for the binary connectives. The constants f o r a l l and ex i s t s take a functional
argument, and thus object-level binding of variables by quantifiers is defined in terms
of meta-level A-abstraction. This representation of formulas is commonly adopted to
express the higher-order abstract syntax of object-logics (e.g. [4, 21, 29, 35, 37]).

We may also introduce non-logical constants into the logic such as a binary
function symbol f of type i -> i -> i and unary predicates p and q of type i ->
form. Using these definitions, the first-order formula Vx~y(p(x)D q(f(x,y))),
for example, is represented by the A-term (f o r a l l X\ (ex i s t s Y\ ((p X) imp (q
(f x Y))))) .

To specify the inference rules of natural deduction, we introduce the primitive type
nprf for proofs, and the infix constant # of type nprf -> form -> o for the meta-level
relation between an object-level formula and its proofs. The inference rules for
natural deduction as in Prawitz [38] are given in Figure 1.1 Each rule will be
expressed as a simple declarative fact about the # relation. Operationally, # can be
viewed as the theorem proving predicate. An operational reading will generally pro-
vide a goal-directed description of search for proofs in the object-logic.

Proof objects can be useful in theorem proving systems for various operations
such as extracting programs, generating explanations, or building analogous proofs
of related theorems. There are often many choices in representing and constructing
proofs which depend on how proofs will be ultimately used. The examples given here
serve to illustrate both how they can be specified and how they are constructed
during execution. Of course, a theorem prover need not build explicit proofs at all. In
this example, we may replace the binary predicate # by a unary predicate, say
provable, of type form -> o.

First, consider the A-I inference rule in Figure 1 which introduces a conjunction
in the conclusion. The declarative reading of this inference rule is captured by the
following definite clause.

(a n d _ i P 1 P 2) # (A andB) :- Pl # A , P2 # B .

52 AMY FELTY

A B A A B
A-I i A-E

A A B A

A B (A)
A V--'-"-B v'I A v B v'l A V B C

C

A A B
B

(B)
C

V-E

^-E

(A) A A D B
B B

A D B

D-E

(A)
±

-~A --,-I

A "~A
1 ~ E

[y/z]A V-I(y) VxA
VzA [t/z]A V-E(t)

[t/z]A 3-I(t) ([y/x]A)
3xA 3xA B

B 3-B(y)

_k -X J.-I

The V-I rule has the proviso that the variable y cannot appear free in VxA, or
in any assumption on which the deduction of [y/x]A depends.

The 3-E rule has the proviso that the variable y cannot appear free in 3xA, in
B, or in any assumption on which the deduction of the upper occurrence of B
depends.

Fig. 1. Natural deduction inference system for first-order intuitionistic logic.

This clause may be read as: (and_i Pl P2) is a p roof of (A and B) if Pl is a p roof of h
and P2 is a p roof of B. The rule can also be viewed as defining the constant and_i: it
is a function from proofs of the premises to a proof of the conclusion. Operationally,

this rule can be employed when the formula to be proved is a conjunction. Using the
BACKCHAIN search command, the formula and p roof of the query must unify with

the formula and proof in the head of this clause. I f there is a match, the AND search

operation is used to verify the two new subgoals in the body of this clause. The uni-
fication here is essentially first-order.

The two inference rules for proving disjunctions, the V - I rules in Figure 1, have a
very natural rendering as the following definite clause.

(o r _ i P) # (h or B) : - P # A ; P #B .

Declaratively, this clause specifies the meaning of a p roof of a disjunction. For
(o r_ i P) to be a proof of (h or B), P must be a proof of either h or B. Operationally,
this clause would use an OR search operation to determine which of the subgoals in
the body should succeed. Alternatively, we could choose to specify the two rules for

IMPLEMENTING TACTICS AND TACTICALS 53

V-I with two clauses which serve to indicate which instance of the rule is used.

(or_il P) # (A or B) :- P #A.

(or_J2 P) # (A or B) :- P #B.

We next consider quantifier introduction rules whose operational reading will use
the INSTANCE and GENERIC search operations and second-order unification. The 3 - I
inference rule can be written as the following definite clause.

(exists_i P) # (exists A) :- sigma T\ (P # (A T)).

Here A is a functional variable of type i -> form. The meta-level application (A T)
represents the object-level formula that is obtained by substituting T for the top-level
bound variable in 1. Declaratively, this clause reads: if there exists a term Y such that
P is a proof of (A T), then (e x i s t s _ i P) is a proof of (e x i s t s A). Operationally, we
rely on second-order unification to instantiate the logic variable A. The existential
instance (A T) is obtained via the interpreter's operation of/3-reduction. Note that
the implementation of INSTANCE will choose a logic variable with which to instan-
tiate T. By making use of a logic variable here, we do not commit to a specific
term for the substitution at the time the clause is invoked in backchaining. It will
later be assigned a value through unification, if there is such a value which results
in a proof.

It may be desirable here to keep a record of the substitution terms used by includ-
ing them in proof terms. For example, we may include T as an argument to
exists_i, as in the following clause.

(exists_iTP) # (exists A) :- P # (AT).

Note that the existential quantification over the body of the previous example
is replaced here with a universal quantification over the whole clause (not
shown explicitly here since, by convention, we assume universal closure at the top
level).

The V-I rule of natural deduction has the additional proviso that the variable y is
not free in VxA, or in any assumption on which the deduction of the premise [y/x]A
depends. Although our programming language does not contain a check for 'not free
in', it is still possible to specify this inference rule. This proviso is handled by using a
universal quantifier at the meta-level as in the following clause.

(forall_i Q) # (forall A) :-piY\ ((QY) # (AY)).

This clause can be interpreted declaratively as follows: if Q is a function that maps
arbitrary terms Y to proofs (Q Y) of the formula (A Y), then (f o r a l l _ i Q) is a proof
of (I o r a l l A). Operationally, the GENERIC search operation is used to introduce a
new constant of type i to be used as the substitution term. Since this constant will
not be permitted to appear in A, the proviso will be satisfied.

The D- I rule illustrates the specification of the discharge of assumptions. This rule
can be naturally specified as the definite clause below, which uses both universal

54 AMY FELTY

quantification and implication at the meta-level.

(imp_i Q) # (A impB) :- pi P\ ((P #A) => ((Q P) #B)).

Declaratively, this clause represents the fact that if Q is a 'proof function' which maps
an arbitrary proof of A, say P, to a proof of B, namely (Q P), then (imp_i Q) is a
proof of (A imp B). This clause illustrates a second way in which abstractions are
introduced in proof terms. Here, Q is an abstraction over proofs.

Operationally, the AUGMENT search operation plays a role in implementing the
discharge of assumptions. To solve the universally quantified subgoal in the above
clause, first the GENERIC operation is used to choose a new object, say p, to replace
P and play the role of a proof of the formula A. The AUGMENT operation is used to
add the assumption (p # A) to the current set of program clauses. This clause is then
available to use in the search for a proof of B. The proof of B may contain occur-
rences of p. The function Q is the result of fully abstracting p out of the proof of B.

The elimination rules and ± / c a n be specified similarly to the introduction rules.
Figure 2 contains a complete specification of natural deduction for intuitionistic
logic. In this specification, proof terms contain just enough information so that
given the proof term and the formula at the root, the corresponding natural deduc-
tion can be completely reconstructed. Many of the proof terms for elimination rules
contain formulas. For example, B is included as an argument to and_el to record the
conjunct that is dropped when applying the rule.

To illustrate the operational behavior of these clauses, we consider the construc-
tion of a proof for the formula pa D 3 xVy(py D px). Let ~ be the set of clauses
in Figure 2, and E the signature containing all of the constants that appear in these
clauses plus a unary predicate p and a constant a. To represent the state of the inter-

(and_i P1
(o r _ i l P)
(or_J2 P)
(imp_i Q)
(neg_i Q)
(exis~s_i

P2) # (A and B) :- P1 # A, P2 # B.
(A or B) :- P # A.

(A or B) :- P # B.

(A imp B) :- pi P\ ((P # A) => ((Q P) # B)).
(neg A) :- pi P\ ((P # A) => ((Q P) # false)).

T P) # (e x i s t s A) : - P # (A T).
(forall_i Q) # (forall A) :- pi Y\ ((Q Y) # (A Y)).

(false_i P) S A :- P S false.
(and_el B P) I A :- P # (A and B).
(and_e2 A P) # B :- P # (A and B).
(or_e A B P Q1 Q2) # C :- P # (A or B),

pi P l \ ((P l # A) --> ((Q1 P1) # C)),
p i P2\ ((P2 # B) --> ((Q2 P2) # C)).

(imp_e A P1 P2) # B : - P1 # A, P2 # (A imp B).
(neg_e A P1 P2) # f a l s e : - P1 # A, P2 # (neg A).
(e x i s t s _ e A P1 Q) # B : - P1 # (e x i s t s A),

p i Y\ (pi P\ ((P ~ (A Y)) => ((Q ¥ P) # B))) .

(f o r a l l _ e T A P) # (A T) : - P # (f o r a l l A).

Fig. 2. A complete specification of natural deduction for intuitionistic logic.

IMPLEMENTING TACTICS AND TACTICALS 55

preter, we write N; N ?- G where G is the goal to be attempted using program N and

signature ~. For this example, our initial state is

~; ~ ?- R# ((p a) imp (exists X\(forall Y\((p Y) imp (p X)))))

where R is the logic variable to be filled in with a proof. The following represents the
series of states and operations of the interpreter used in solving the query. Given
program N and clause D, we write ~ , D to denote ~ • {D}. Similar notation is
used for signatures. We write GEN for GENERIC, AUG for AUGMENT, and Be
followed by the name of an inference rule to indicate that the clause specifying that
rule is used by the BACKCHAIN operation.

BC D-I ~ ; p. 7- pi P\((P # (p a)) =>
((R1 P) # (exists Xk(forall Y\((p Y) imp (p X))))))

GEN ~ ; P.,r ?- (r # (p a)) =>
((R1 r) # (exists X\(forall Y\((p Y) imp (p X)))))

AUG ~,r # (p a); P.~r ?-
(RI r) # (exists X\(forall Y\((p Y) imp (p X))))

BC 3-I ~, r # (p a) ; ~,r 7- R2 # (forall g\((p Y) imp (p T)))
BCV-I ~,r # (p a) ; ~,r 7- pi Y\((R3 Y) # ((p Y) imp (p T)))
GEN ~,r # (p a) ; Z,r,c ?- (R3 c) # ((p c) imp (p T))
BC D-I, GEN, AUG ~,r # (p a),s # (p c) ; P.,r,c,s ?- (R4 s) # (p T)

Here, r, c, and s are constants introduced by the GENERIC operation, and gl , g2, R3,
Ft4 and T are new logic variables introduced in backchaining. A backchain on an
atomic clause completes the derivation. Note that there are two clauses in the pro-
gram which unify with the final goal. The latter is ruled out by the restriction on
the GENERIC operation. The constant c was introduced after the variable T, and
thus cannot appear in T. Thus the other atomic clause must be used to complete
the proof and T gets assigned a. The complete unification problem generated by uni-
fying the goal with the head of a clause in each of the above uses of BACKCHAIN is
the following:

R = (imp_i Rl), (RI r) = (exists_i T R2),R2=(forall_i R3),

(R3 c) = (imp i R4),(R4 s) = r,T = a.

After assigning a to T, it is easy to solve for R4, R3, and R2:R4 is assigned Pkr, R3 is
assigned YX(imp i P \ r) , and R2 is assigned (f o r a l l _ i Y\(imp_i PXr)). Since R1
cannot contain r, it must be assigned the term Q \ (e x i s t s _ i a (f o r a l l _ i
Y\(imp_i P \Q))) . Thus, as a final solution for R, we obtain the term

(imp_i Q\(exists_i a forall_i Y\(imp_i P\Q)))) .

In specifying natural deduction, we have considered both declarative aspects as
well as operational behavior of individual clauses. Now, consider the specification
in Figure 2 with respect to deterministic depth-first control. If we view this program
as a proof checker, that is, where initial queries contain closed proof terms, then
there is little problem in controlling execution. The top-level constant of a proof
term completely determines the unique definite clause which can be used in back-

56 AMY FELTY

chaining at each step. Not surprisingly, the execution of this program under depth-
first control is not sufficient for theorem proving. When proof terms in queries are
variables, there will in general be multiple definite clauses that could be applied to
any one formula. The clause for and_el , for example, can always be used in back-
chaining, since A in the head of the clause can be unified with any formula. The pro-
gram may enter an infinite loop repeatedly applying this rule. In some cases, it may
be possible to modify specifications so that they act as complete automatic theorem
provers under depth-first control. Such a theorem prover for the classical sequent
calculus can be found in Felty [10]. Beginning in Section 5, we consider the imple-
mentation of tactic-style theorem provers which provide more flexible forms of con-
trol. There, we will discuss a modified specification of inference rules, such that clauses
may be used as tactics implementing the basic operations of a theorem prover.

Before doing so, we continue using a simpler more direct specification in the
remainder of this section and the next. Here, we present a few more specification
examples and in the next section we discuss correctness of specifications and present
the correctness proof for natural deduction. We next briefly consider specifying a
sequent system for first-order intuitionistic logic. To define sequents, we introduce
a new primitive type seq and a constant --> of type (list form) -> form -> seq

written as an infix operator whose antecedent is a list of formulas and succedent is
a single formula. The basic relation between a sequent and its proofs will be repre-
sented by the infix constant >- of type s p r f -> seq -> o where s p r f is the type of
sequent proofs.

Rules that introduce a connective on the right of a sequent resemble introduction
rules in natural deduction. For example, the following rule from Gentzen [16] intro-
duces universal quantification on the right.

F --~ [y / x]A V - R
F -*VxA

The following clause encodes this rule.

(forall_r Q) >- (Gamma --> (forall A)) :-

pi Y\ ((Q Y) >- (Gamma--> (A Y))).

In this rule, the variable y cannot appear free in the lower sequent. As in natural
deduction, universal quantification at the meta-level is used to handle this proviso.
Introductions of logical constants into the antecedent of a sequent can be achieved
similarly. The main difference here is that the antecedent is a list instead of a single
formula. As an example, the rule introducing implication on the left and its specifi-

cation are given below.

F - + A B , F---+ C
D - L

A D B, F - - + C

(imp_l Pl P2) >- ((A imp B) : : Gamma --> C) :- Vl >- (Gamma --> A) ,

P2 >- ((B: :G~mma) --> C).

IMPLEMENTING TACTICS AND TACTICALS 57

The structural rules of contraction, thinning, and interchange can be specified by

simply manipulating lists of formulas. In addition, we need the clause below specify-
ing initial sequents, that is, a sequent whose antecedent contains one formula which
is also its succedent.

(initial A) >- ((A: :nil) --> A).

Classical logic can be specified similarly to intuitionistic logic. For the sequent
calculus, we must introduce lists on both sides of the sequent arrow, while for
natural deduction, we simply replace the clause for the / I rule with a clause for
the corresponding rule for classical logic [38].

We next consider the specification of a higher-order logic. For simplicity, we
consider a logic containing only the D and V connectives. This logic will allow quan-
tification over simply-typed A-terms of arbitrary types. Since A-terms are available at
the meta-level, a first approach to specifying formulas might be to use these terms
directly. We would then have to declare polymorphic quantifiers, i.e., to introduce
constants f o r a l l and e x i s t s of type (S -> form) -> form, where the type variable
S indicates that the argument to e x i s t s or f o r a l l can be an abstraction over an
object of any meta-level type. There are several reasons to avoid the use of type vari-
ables here. For instance, S can be instantiated with types we may not intend to quan-
tify over at the object-level, such as the type o of formulas of the metalanguage. Also,
such a use of polymorphism can cause undesirable operational behavior during uni-
fication. On simple unification problems, for example, there may be infinite branch-
ing in the search for instances of both types and terms. (See Felty [10] for a fuller
discussion of these problems.) Instead, we introduce a new type tm to represent
object-level terms, and a second type t y to represent object-level types. To construct
function types, we use the infix arrow - - - > of type t y -> t y -> ty . If our object-
language has a function symbol f of type (i ~ i) ~ i, we introduce meta-level
constants f of type tin, i of type ty , and write (i - -> i) - -> i to represent the
object-level type of f . To represent A-terms, we introduce the constants app of
type tm -> tm -> tm and abs of type (tm -> tm) -> tm to represent application
and abstraction, respectively.

We must now express the relation between a term and its type at the meta-levet.
We introduce the infix predicate #t for this relation. The clauses below specify
typing rules.

f #t ((i --> i) --> i).

(abs M) #t (R--> S) :-piX\ ((X#t R) => ((MX) #t S)).

(appMN) #t S :-M#t (R--> S), N#t R.

imp #t (form --> form --> form).

(forall S) #t ((S--> form) --> form).

q #t ((i --> i) --> i -> form).

The first formula expresses the relation between f and its type. The next two
formulas encode the usual rules for abstraction and application. In this example,

conv (app

cony (abs

cony (app

cony (abs

conv M M.

58 AMY FELTY

formulas must also be terms of type tm at the meta-level, and must be type-checked
in order to ensure that they have object-level type form. The remaining three rules
specify typing rules for formulas. In order to allow quantification at every type,
the constant forall takes a type as an argument. Thus (forall S) represents the
universal quantifier over objects of type S. Type assignment clauses must also be
included for all predicates. Here, q is a predicate specifying a relation between a func-
tion and an element of type i.

In this example, we consider equality up to/3~-conversion. This relation also must
be specified explicitly. To do so, we introduce the binary predicate conv on terms,
and provide the following clauses.

(abs M) N) (M N).

X\(app M X)) S.

MN) (appP Q) :- eonvMP, convNQ.

M) (abs N) :- piX\ (conv (MX) (NX)).

cony M N :- conv N M.

cony M N :- conv M P, conv P N.

The first two clauses specify the /3 and r/ axioms, while the next two clauses
specify convertibility inside an application and within the scope of an abstraction.
Finally, the remaining clauses express reflexivity, symmetry, and transitivity for
/3r/-convertibility.

To specify a natural deduction proof system for higher-order logic, we introduce
the predicate #p of type np r f -> tm -> o to represent the basic relation between a
formula and its proofs. The introduction and elimination rules of natural deduction
are given below. In these clauses, we assume that the term on the right side of #p in
the head of each clause has type form. As a result, very few type-checking subgoals
will be needed in the bodies of these clauses.

(convert A B P) #p A :- B #t form, P #p B, cony A B.

(imp_i Q) #p (app (app imp A) B) :- pi P\ ((P #p A) => ((Q P) #p B)).

(imp_e A Pl P2) #p B :- Pl #p A, A #t form, P2 #p (app (app imp A) B).

(forall_i S Q) #p (app (forall S) A) :-

pi Y\ ((Y#t S) => ((Q Y) #p (appAY))).

(forall_e S TAP) #p (appAT) :- T#t S, P #p (app (forall S) A).

The first clause specifies the inference rule that states that if a formula is provable,
any /3r/-equivalent formula is also provable. The next two clauses illustrate that
propositional rules are specified similarly to those for first-order logic, except that
formulas must now be written using the encoding of A-terms. The clause for D - E
also requires an additional type-checking subgoal to ensure A has type form. The
clause for V-I is also is similar to the first-order version except that here meta-level
implication is necessary to add an assumption about the type of the new signature
item introduced for Y. Note that in the case when A is an abstraction (has the

IMPLEMENTING TACTICS AND TACTICALS 59

form (abs B)), the object-level application (app 1 Y) is used to represent substi-
tution of the new signature item introduced for Y for the bound variable in the
abstraction, but no substitution occurs at the time that the rule is applied. However
if an application of the inference rule for /3r/-convertibility is then applied, the
/3-reduction rule of the cony program can be used to perform the necessary substi-
tution. Finally, in the V-E rule of higher-order logic, the quantified object can be of
any type and a subgoal must be added to verify correct typing of the substitution
term.

4. Correctness of Specifications

In specifying various logics, we represented terms, formulas, inference rules, and
proofs at the object-level as terms and formulas of the metalanguage. In the specifi-
cations, there was always a clear correspondence between objects in the two
languages. We now illustrate how to formalize this connection by proving the
correctness of the specification of natural deduction in Figure 2. The correspon-
dence between A-abstraction and the discharge of assumptions and variables in
natural deduction proofs is a well-known consequence of the Cur ry -Howard iso-
morphism [23]. The results presented here provide a formalization of this correspon-
dence for our representation of proofs and the specification of inference rules as
hohh formulas.

Although terms of the metalanguage are equivalent up to/3~-convertibility, we will
often need a representative from a 3~-equivalence class of terms. In this section, we
will always choose the 3~7-1ong form.

At the object-level, we assume a fixed set of constants, function symbols, propo-
sitions, and predicate symbols. We assume the existence of a bijective mapping
from these objects to constants of the metalanguage. • maps each object-level con-
stant to a constant of type i, each proposition to a constant of type form, and each
function symbol or predicate of arity n to a constant with target type i or form,
respectively, and n argument types ±. Using the functions and predicates given in
the example execution in the previous section, for example, we can define ~5 to be
the mapping: ~5(a)= a:± and ~ (p) = p : i -> form. We write dom(~5) to denote
the domain of ~5. We also assume a countably infinite set of first-order variables,
and a fixed mapping p from these variables to the meta-variables of type ±. Using
these functions, we can define an encoding on terms and formulas in the obvious
way which we give explicitly below. We write ((A}) to denote the encoding of
term or formula A.

((x)) := p(x) for variable x

: = <<tl>> . . .

for function or predicate symbol p E dom(~5) of arity n i> 0

<<A A e>> := (<<A>> <>)

((A V B)) : = (<(A)) or ((B)))

60 AMY FELTY

<<A z B>> := (<<A>> imp <>)
:= (meg <<A>>)

((VxA)) := (f o r a l l X\ ((A>>) where p(x) = X

<(3xA>) := (e x i s z s X\ <(A))) where p(x) = X

<<±>> := fal. o

Note that any first-order term or formula is mapped to a term in the metalanguage in
/3~/-long form. We will adopt the convention that p assigns an object-level variable
written as a lower case letter to the corresponding meta-variable written as an upper-
case letter, e.g., p(x) = X. The above encoding has the following property: given first-
order terms or formulas M and N, and variable x, (([N/x]M)) = [((N))/X]((M)).

Our encoding for first-order terms and formulas is essentially the same as the
encoding of first-order terms and formulas in LF given by Harper et al. [21].
There, the encoding of terms and formulas is defined within the sublanguage of
LF that corresponds to the simply-typed A-calculus. The proofs given there for
Adequacy of Syntax, I and II, can be applied here in a straightforward manner
by replacing the notion of LF canonical forms there with g~/-long forms here.
These proofs use a function which is shown to be the inverse of the encoding,
which we call a decoding here. Let F0 be the set containing the constants in
{and,or,imp,forall,exists,false}, the constants in the codomain of (b, and
the variables in the codomain of p. Let Y- be the set of simply-typed A-terms built

up from abstraction, application, and the constants and variables in ~0- The decod-
ing is defined in the obvious way from terms in g~/-long form of type i and form in J -
to first-order terms and formulas. We denote the decoding of term M as [[M [[.

Before proving the correctness of the natural deduction specification, we make
some notions about deductions precise. Several rules of natural deduction may dis-
charge assumptions. For example, in the D - I rule, (A) indicates that occurrences of
A at the leaves are discharged by the application of this rule. A formula occurrence B
in a tree is said to depend on an assumption A if A occurs as a leaf and is not dis-
charged by a rule application above B. A deduction of B from a set of formulas F
is a tree With root B constructed using the inference rules in Figure 1 in which all
assumptions on which B depends occur in F. Such a tree is a proof of B if F is
empty. We often write a set of assumptions F as a list of formulas in which it is
understood that a formula may occur more than once.

Given a deduction II of B from assumptions A1, . . . , A,, we say that a variable x
has a free occurrence in deduction II if x occurs free in A1, . . . A,, B, any node in II, or
in the substitution terms introduced in applications of 3 - I and V-E. In the results
that follow we will assume that all variables introduced by an application of V-I
or 3 - E are distinct, do ,not have free occurrences in A1, . . . ,An, B, and only have
free occurrences in the subtrees of II in which they are introduced, i.e., in the subtree
rooted at the premise of V-I or in the subtree rooted at the right premise of 3 -E .
Such variables can always be renamed to meet this criterion [39]. We define ~(II)

IMPLEMENTING TACTICS AND TACTICALS 61

to be the signature containing p(x) for every variable x that has a free occurrence in

H except for those occurring as parameters to V-I or 3 -E .
Let Y0 ~ be the set containing f0 plus all the constants used to build natural deduc-

tion proof terms. We denote the signature obtained by removing the infinite set of
variables from f o r as END. Let y r be the set of simply-typed A-terms built up
from abstraction, applications, and the constants and variables in J0 ~. Finally, let

~ND be the set of clauses in Figure 2.
It is easy to see that a variable x is free in a formula B if and only if p(x) is free in

((B)). For deduction II of B from A1, . . . ,An, it follows from this fact that ((A)),
((A1)), . . . , ((An)), ((B)} are all ~ND [.-j ~(II)-terms. Similarly, a meta-variable X is
free in term B E ~ if and only if p-l(X) is free in lib [[.

T H E O R E M 4.1 (Correctness). 1. Let II be a natural deduction proof of B. Let ~ be
~ND ['-j ~(H). Then there exists a S-term g of type n p r f such that (g # ((B))) is prov-
able from ~; ~UD"

2. Let B be a term of type form in J- and let R be a term of type npr f in ~--t. Let E be
the signature containing ~ND and possibly a finite number of variables of type i includ-
ing at least all those that occur free in B and R. I f (R # B) is provabIe from ~; ~lVD, then
][B [[has a natural deduction proof.

Proof: (1) follows from the slightly more general statement: let H be a deduction of
B from A1, . . . ,An where n~>0. Let P l , . . .Pn be n distinct variables of type nprf . Let

and ~ be the following signature and set of clauses.

E := ~ND [--j Y](H) U {Pl) ' ' ' , Pn}
:= ~ND U {(P # <(A1))),...~(Pn # ((An))) }

Then there exists a E-term I~ of type np r f such that (g # ((B})) is provable from
E ; ~ .

The proof is by induction on the height of H. We show a few cases. First, if H is a
one-node tree then it must be Ai for some i, 1 ~< i <~ n. We know (Pi # ((Ai))) is prov-
able by BACKCHAIN on an atomic clause, and thus we can take R to be Pi.

If the last step in the deduction is an application of B-I(t), then B has the form
3xB' , and the premise has the form [t/x]B'. All the variables free in ((t)) are in
E(II) and thus ((t}) and (<[t/x]B')) are E-terms. By the induction hypothesis, there
exists a E-term 8 of type npr f , such that (S # (([t/x]B'))) is provable from ~; ~ .
Note that

<<[t/x]B')> = [<<t>>/X]<<B'>) =9 (X\<<B'>)(<t>>).

By BACKCHAIN on the clause for h- I , (e x i s t s _ i ((t)) S) # (e x i s t s X\((Br))) is
provable from ~; ~ .

If the last step in the deduction is an application of V-I(y) , then B has the form
VxB ~, and the premise has the form [y/x]B ~. Since y is a parameter to this appli-
cation of V-I, Y is not in E. Let II' be the deduction rooted at the premise of this
application, i.e., of [y/x]B ~ from A1,. . . ,An. Note that ~(H ~) is E(H)U {Y : i} .

62 AMY FELTY

Let E' := E U {Y : ±}. By the induction hypothesis, there exists a E'-term S such that
(S # (([y/x]B'))) is provable from E' ;~ . We have

(([y/xJB')) = [Y/XJ((B')) =~ (X\((B'))Y).

Let Q be the Z-term with bound variable Y and body S. The above goal can be
rewritten as ((Q Y) # (X\((B')) Y)). Note that Y does not occur free in Q or in
Xk((B')). By the GENERIC operation, pi Y\((Q Y) # (Xk((B')) Y)) is provable
from ~ ;~ . Thus, by BACKCHAIN on the clause for V-I, (f o r a l l _ i Q) # (I o r a l l
X\((B'))) is provable from E;~.

If the last step in the deduction is an application of D-I, then B has the form
B1 D B2, and we know that B2 is provable from A1,... ,An, B1. Let P be a variable
of type nprf that does not occur in E. Let Z' :---ZU{P :nprf} and let
~ ' := ~ IA {p # ((B1))}. By the induction hypothesis, there exists a E'-term S such
that (S # ((B2))) is provable from ~ ' ; ~ ' . By the AUGMENT operation, (P #
((B1})) --> (S # ((B2))) is provable from P/;N. Let Q be the E-term with bound vari-
able P and body S. The above goal can be rewritten as (P # ((B1))) => ((Q P) #
((B2)}). Note that P does not occur free in Q, ((B1)), or ((B2)). By the GENERIC
operation, pi P\((P # ((B1))) ;> ((Q P) # ((Ba)))) is provable from N;N. Thus,
by BACKCHAIN on the clause for D-I, (±mp_i Q) # (((B1)) imp ((B2))) is provable

from E; ~.
The reverse direction (2) follows from the following more general statement: let 13,

A1,... ,An be terms of type for,, in Y- and let t~ be a term of type nprf in J ' . Let
Pl, .- . ,Pn be n distinct variables of type nprf. Let E be the signature containing
END, the variables Pi , . . . ,Pn, and possibly a finite number of variables of type i
including at least all those that occur free in B, A1,... ,An, R. Let N be the set of
clauses ~ND U {(Pl # A1) , ' " , (Pn # An)}" If (R # B) is provable from E;~ , then
there is a deduction of IIB I1 from assumptions {[I A1 [[,..., [I An []}.

The proof is by induction on the structure of R, and is similar to the proof of (1). It
relies on the existence of proofs of the form described by Theorem 2.1. We start with
a provable goal, and based on the structure of the goal, determine the last step that
had to be taken by the interpreter described in that theorem. For an atomic goal, the
constant at the head of the proof term determines which clause must be used in back-

chaining. []

Note that these proofs illustrate more than just correctness of the specification in
Figure 2. They in fact illustrate a step-by-step correspondence between proofs in the
object-language and proofs in the metalanguage. It is clear that each application of a
rule at the object-level corresponds to a BACKCHAIN on a particular clause at the

metalevel.
Proof terms can be considered as a means to record more precisely the correspon-

dence between object- and meta-proofs. When proof terms contain enough informa-
tion, it is possible to state and prove correctness results by defining an encoding and
decoding between proof terms and object-level proof trees, and proceed by establish-

IMPLEMENTING TACTICS AND TACTICALS 63

ing the bijectivity of these functions. To do so for the natural deduction specification
above would require a more precise formulation of deductions at the object-level and
their correspondence to proof terms. 2 This is the approach taken by Harper et al.
[21] in the proof of adequacy for proofs for the LF specification of natural deduc-
tion. There, instead of natural deduction as defined by Prawitz [38], a notion of
natural deduction that corresponds a bit more directly to the proof term represen-
tation is used. This approach is also taken by Gardner [15] where a bijection, called
a natural encoding, is established between object-level proofs and their encoding as
terms in the LF + type theory.

5. Inference Rules as Basic Tactics

In the remainder of this paper, we focus on a more general setting for proof search
and construction: the implementation of tactic style theorem provers. Generally
tactics and tacticals have been implemented in the functional programming langu-
age ML. We shall illustrate that their logic programming implementation is quite
natural and extends the usual meaning of tacticals by permitting them to have
access to logic variables and all six search operations. A comparison between the
ML and AProlog implementations is contained in Section 8. In our setting, primitive

tactics implement the basic inference rules of a particular proof system. A compact
but powerful set of tacticals provides the basic control over search. They implement
an interpreter on top of AProlog which must itself function well under depth-first
search. They provide a mechanism for composing tactics in a principled manner,
and can be viewed as a programming language for writing proof search strategies.
Such proof strategies which are built up from primitive tactics and tacticals will be
called compound tactics.

As an example, in this and the next two sections, we will implement a theorem
prover for natural deduction for first-order logic. We begin in this section by modify-
ing the specification of the natural deduction inference rules as discussed in Section
3, so that the clauses may now serve as the primitive search steps of the tactic
theorem prover. We call the specification given here the tactic specification of
inference rules as opposed to the direct specifications given there. In Section 6 we
implement the theorem-proving interpreter which includes an implementation of
the basic tacticals, as well as capabilities for interactive theorem proving. This imple-
mentation of tacticals is generic in the sense that it is used without modification for
any object-logic we may implement. Then, in Section 7 we complete the natural
deduction theorem prover and give an example of its use.

First, we introduce a new primitive type goal for goal structures that will be
manipulated by the new interpreter. These goals are distinct from logic program-
ming goals of type o, which have a specific meaning given to them by the depth-first
interpreter. Goals of type goal will only be given meaning by the new programs we
write to manipulate them. We want to have each of the search operations of the
metalanguage available to our interpreters, so we introduce one goal constructor

64 AMY FELTY

corresponding to each and give them types as below.

type tt goal.

type ff goal.

type ~& goal -> goal -> goal.

type vv goal -> goal -> goal.

type all (A -> goal) -> goal.

type some (A -> goal) -> goal.

type ==>> A -> goal -> goal.

Here, tt corresponds to the trivially satisfied goal, ff corresponds to failure, ~
corresponds to the AND search operations, vv to OR, a l l to GENERIC, some to
INSTANCE, and ----->> to AUGMENT. Note that each of the goal constructors except
=-->> has a type similar to the corresponding logical connective of the meta-
language, where the type o is replaced by goal everywhere. The reason for the
type of--=>> will become apparent later. Note that the goal quantifiers a l l and
some have polymorphic type. In general, for each theorem prover, quantification
in goals will be limited to a small number of primitive types.

Primitive tactics specifying inference rules will be named facts where the name is a
predicate of type goal -> goal -> o. The first argument is the input goal specifying
the conclusion, and the second is the output goal specifying the premises. Basic goals
will encode the relation between a formula and its proof, a sequent and its proof, a
term and its type, etc., as they did in Section 3. We will call these goals atomic goals
as opposed to compound goals built from the constructors above. (Note that atomic
goals of type goal representing object-level relations are distinct from atomic goal
formulas of the meta-logic of type o defined in Section 2.)

Any direct specification of inference rules can be converted to a set of tactics by a
few minor syntactic changes. As an example, consider the specification of the A-I
rule of natural deduction in Figure 2. The following clause is the corresponding tactic.

and_i_tac ((and_i P1 P2) # (A and B)) ((PI # A) ~ (P2 # B)).

First, we provide a name for the tactic, in this case and_i_tac. Second, predicates
used in the direct specification of inference rules become goal constructors for
atomic goals. For the tactic specification of natural deduction, we again use the infix
constant # to encode the relation between a formula and its proof, but in this case its
target type is goal. Third, search connectives used in the direct specification must be
replaced by the corresponding goal constructors defined above. In this tactic, the
output goal is a conjunctive compound goal containing two atomic goals. The
declarative reading of this clause is the same as in the direct specification. The
operational reading, however, is similar but indirect since it depends on the fact
that the goal structures ~g~, vv, etc., will be implemented in terms of their correspond-
ing search connectives.

In Section 3 we showed that it was quite natural to specify the discharge of
assumptions using universal quantification and implication at the meta-level. In

IMPLEMENTING TACTICS AND TACTICALS 65

interactive theorem proving, it may be desirable to have more direct control over the
manipulation of assumptions. We can gain more explicit control of assumptions by
storing them in a list and making the manipulation of these lists explicit in the defi-
nite clauses specifying the inference rules. To do so here, we will use lists of pairs of
formulas associated with their proofs. We must make several modifications to incor-
porate such lists. We will again use the constant # for the relation between a formula
and its proof, but now it will have target type judg, a new primitive type representing
the basic judgment for natural deduction. We then use the sequent arrow --> to
form 'judgment sequents', of type (list judg) -> judg -> goal. A list of assump-
tions associated with their proofs appears on the left of the arrow, and the formula to
be proved and its proof appear on the right. We will call such lists of pairs c on t e x t s .

To specify introduction rules that do not involve the discharge of assumptions, we
simply add a list and sequent arrow to form a judgment sequent in the input and
output goals of each tactic. For example, the tactic for A-I becomes the following clause.

and i_tac (Gamma--> (and_i Pl P2) # (A and B))

((Gamma --> Pl # A) ~a (Gamma --> P2 # B)) .

For readability, we assume that the infix operator # binds tighter than -->. The
discharge of assumptions as in the D - I rule is specified as below where the new
assumption gets added to the context rather than the program.

imp i_tac (Gamma --> (imp_i Q) # (A imp B))
(all P\ (((P # A) ::Gamma) --> (Q P) # B)).

The elimination rules can be specified similarly. For example, we may have the
following two tactics for the A-E rules.

and_el_tac (Gamma --> (and el B P) # A) (Gamma --> P # (A and B)) .

and e2_tac (Gamma --> (and_e2 A P) # B) (Gamma --> P # (A and B)) .

Alternatively, we can specify elimination rules so that they are applied in a forward
direction from the assumptions, another useful capability in interactive theorem
proving. For example, we specify the A-E rule as the following tactic.

and_e_tac N (Gamma --> PC # C)

((((and_el B P) # A) : : ((and_e2 A P) # B) : :G~mma) --> PC # C) :-

nth_item N (P # (A and B)) Gamma.

The integer argument provides the capability to choose a specific formula within the
list to which the rule will be applied. The n th_ i t em program was given in Section 2.
This clause operates by finding a conjunction paired with its proof in position N in
the context, applying both versions of the A-E rule to it, and then expanding the
context with the resulting new hypotheses, one for each conjunct. The attempt to
find a proof PC of formula C then continues in the new context.

By similarly specifying the remaining natural deduction inference rules, we obtain
the set of tactics in Figure 3. For the elimination rules, we include specifications that

66 AMY FELTY

apply these rules in a forward direction since these are the tactics that will be used in
the example execution in Section 7. We must also provide a t a c t i c , c l o s e _ t a c , to
complete proofs.

The specifications of p roof systems in Section 3, on several occasions, made use of

disjunctive, existential, and implicational goals in the bodies of clauses, which
operationally correspond to the use of the OR, INSTANCE, and AUGMENT search

operations, respectively. Note, on the other hand, that the disjunctive, existential,
and implicational goal constructors are not used in Figure 3. In fact, although these

three connectives are useful for specification, in general they are not essential. Speci-

fications can always be modified to remove them.
The manner in which the rules are specified in Figure 3 is essentially the same as a

elose_tac N (Gamma --> P # A) t t :- nth_item N (P # A) Gamma.
and_i_tac (Gamma --> (and_i PI P2) # (A and B))

((Gamma --> P# # A)~ (Gamma --> P2 # B)).

or.il_tac (Gamma --> (or_il P) # (A or B)) (Gamma --> P # A).

or.i2_tac (Gamma --> (or.J2 P) # (A or B)) (Gamma --> P # B).

imp_i_tac (Gamma --> (imp_i Q) # (A imp B))
(all P\ (((P # A)::Gamma) --> (Q P) # B)).

neg_i_tac (Gamma --> (neg_i Q) # (neg A))
(all P\ (((P # A)::Gamma) --> (Q P) # false)).

forall.i_tac (Gamma--> (forall_i Q) # (forall A))
(a l l Y\ (Gamma --> (Q Y) # (A Y))).

e x i s t s . i _ t a c (Gamma --> (ex is t s_ i T P) # (exists A)) (Gamma --> P # (A T)).
false_i_tac (Gamma --> (false_i P) # A) (Gamma --> P # false).

and_e_tac N (Gamma --> PC # C)
((((and_el B P) # A)::((and_e2 A P) # B)::Gamma) --> PC # C) :-

nth.item N (P # (A and B)) Gamma.

imp_e_~ac N (Gamma --> PC # C)
((Gamma --> PI # A) &~
((((imp_e A P1 P2) # B)::Gamma) --> PC # C)) :-

nth.item N (P2 # (A imp B)) Gamma.

ne~_e_tac N (G~mm~t --> PC # C)

((Gamma --> P! # A) ~
((((neg_e A Pi P2) # false)::Gamma) --> PC # C)) :-

nth.item N (P2 # (ne E A)) Gamma.

forall.e_¢ac N (Gamma --> PC # C)
((((forall e T A P) # (A T))::Gamma) --> PC # C) :-

nth_item N (P # (forall A)) Gamma.

or_e_tac N (Gamma --> (or_e A B P QI Q2) # C)
((all PI\ (((PI # A)::Gamma) --> (QI PI) # C)) a&
(all P2\ (((P2 # B)::Gamma) --> (Q2 P2) # C))) :-

nth_item N (P # (A or B)) Gamma.

exists_e_tac N (Gamma --> (exists_e A Pl Q) # B)
(all Y\ (all P\ (((P # (A Y))::Gamma) --> (Q Y P) # B))) :-

nth_item N (PI # (exists A)) Gamma.

Fig. 3. Tactics for natural deduction.

IMPLEMENTING TACTICS AND TACTICALS 67

specification given for natural deduction in Felty [12] which has the property that
only deductions in 'sharpened normal form' as defined by Prawitz [39] get built.
We can state correctness theorems similar to those in Section 4 for this set of

tactics. Such theorems have proofs similar to those in that section, except that
they illustrate the correspondence between proof terms constructed by the program
and deductions in normal form. Clearly, such a correctness theorem will play a large
role in establishing the correctness of a tactic theorem prover. Full correctness will
also depend on the correctness of the implementation of the interpreter described
in the next section. Correctness of tactic theorem provers will be discussed further
in Section 8.

For more flexibility, it may be desirable to include additional tactics for user-
guided proof search. For example, it may be useful to remove an assumption
when it is no longer needed. It is straightforward to do so when assumptions are
stored as a list inside atomic goal structures. For example, we may want to include
the following tactic for the A-E rule in addition to the one in Figure 3.

and_e_rm N (Gamma --> PC # C)

((((and_el B P) # a) : : ((and_e2 A P) # B) : :Gammal) --> PC # C) :-

nth_and_rest N (P # (A and B)) Gamma Gammal.

Such tactics can be useful in writing partially automated search strategies where we
may only want to consider using each assumption once.

As another example, note that the tactic for 3 - I inserts a logic variable for the
substitution term. In interactive proof, the user may want the flexibility to specify
the substitution instance directly at the time the rule is invoked. This can be
achieved with the following tactics.

exists_i_sbst (Gamma--> (exists_i T P) # (exists A))

(Gamma --> P # (A T)) :-

write "Enter substitution term: ", read X\ (T = X).

A user may enter a partially or fully instantiated term for T.
As a final example, in interactive theorem proving, the introduction and use of

lemmas is quite useful, if not essential. Consider the following modus_ponens tactic
for natural deduction.

modus_ponens (Gamma --> P # A)

((G~mma --> Q # B) && (((Q # B) : :Gamma) --> P # A)) :-

write "Enter lemma: ", read X\ (B = X).

It allows the user to add a hypothesis as a lemma, prove it, and then use it in proving
the original theorem.

6. Implementing a Tactic Interpreter

The core of the tactic interpreter is implemented by a small set of tacticals which

68 AMY FELTY

define some basic control mechanisms. These tacticals generally take one or more
tactics as arguments and compose them in various ways. We first present this basic
set of tacticals, then implement some tactics and tacticals that are useful for inter-
active proof search, and finally, discuss the implementation of tactics which define
general proof search strategies.

For clarity in displaying types in this and the next section, we will write t a c t i c to
abbreviate the type (goal -> goal -> o).3 First, the mapi;ac tactical in Figure 4
applies tactics to compound goals. It takes a tactic as an argument and applies it
to the input goal in a manner consistent with the meaning of the goal structure.
In the clause implementing ==>>, the polymorphic predicate memo allows the intro-
duction of new clauses containing information of arbitrary type into the program.
The last clause is used once the goal is reduced to an atomic form. It simply applies
the tactic directly.

Six common tacticals are implemented by the clauses in Figure 5. The then
tactical performs the composition of tactics. Tacl is applied to the input goal, and
then Tac2 is applied to the resulting goal. In this tactical and all others, we assume
that the input goal is atomic. The maptac program is used in the second subgoal
since the application of Tacl may result in an output goal (MidGoal) with com-
pound structure. This tactical plays a fundamental role in combining the results of
step-by-step proof construction. The substitutions resulting from applying these
separate tactics get combined correctly since MidGoal provides the necessary shar-
ing of logic variables between the two calls to tactics. The ore lse tactical simply

type maptac tactic -> tactic.

type memo A -> o.

maptac Tactt it.

maptac Tac (InGoall &~ InGoal2) (OutGoall && OutGoal2) :-

maptac Tac InGoall OutGoall, maptac Tac InGoal2 OutGoal2.

maptac Tac (all InGoal) (all OutGoal) :-

pi T\ (maptac Tac (InGoal T) (OutGoal T)).

maptac Tac (InGoall vv InGoal2) OutGoal :-
maptac Tac InGoall OutGoal; maptac Tac InGoal20utGoal.

maptac Tac (some InGoal) OutGoal :-

sigma T\ (maptac Tac (InGoal T) OutGoal).

maptac Tac (D ==>> InGoal) (D ==>> OutGoal) :-
(memo D) => (maptac Tac InGoal OutGoal).

maptac Tac InGoal OutGoal :- Tac InGoal OutGoal.

Fig. 4. Interpreting compound goa|structures.

I M P L E M E N T I N G TACTICS A N D TACTICALS 69

type then tactic -> tactic -> tactic.

type orelse tactic -> tactic -> tactic.

type idtac tactic.

type repeat tactic -> tactic.

type try tactic -> tactic.

type complete tactic -> tactic.

then Tacl Tac2 InGoal OutGoal :- Tacl InGoal MidGoal,

maptac Tac2 MidGoal DutGoal.

orelse Tacl Tac2 InGoal OutGoal :-

Tacl InGoal OutGoal; Tac2 InGoal OutGoal.

idtac Goal Goal.

repeat Tac InGoal OutGoal :-

orelse (then Tac (repeat Tac)) idtac InGoal OutGoal.

try Tac InGoal OutGoal :- orelse Tac idtac InGoal DutGoal.

complete Tac InGoal ~t :- Tac InGoal OutGoal, goalreduce OutGoal it.

Fig. 5. Some common tacticals.

uses the OR search operation so that Tacl is attempted, and if it fails (in the sense
that the logic programming interpreter cannot satisfy the first of the two logic pro-
gramming subgoals), then Tac2 is tried. The third tactical, i d t a c , returns the input
goal unchanged. This tactical is useful in constructing compound tactic expressions
such as the one found in the r e p e a t tactical. The r e p e a t tactical is recursively
defined using the three tacticals, then, o r e l s e , and id t ac . It repeatedly applies a
tactic until it can no longer be applied. The t r y tactical prevents failure of the given
argument tactic by using ±dtac when Tac fails. It might be used, for example, in the
second argument of an application of the then tactical. It prevents failure when the
first argument tactic succeeds and the second does not. Finally the complete tactical
tries to completely solve the given goal. It will fail if there is a non-trivial goal
remaining after Tac is applied. It requires an auxiliary procedure g o a l r ed u ce to
simplify compound goal expressions by removing occurrences of t t from them.
The complete tactical succeeds only if the output goal is simplified to t t .

The tactics and tacticals in Figure 6 provide an implementation of a simple inter-
active component. The first tactical provides an alternative implementation of the
o r e l s e tactical. In the previous version, if Tacl succeeds, a backtracking point
will be set up so that if there is a subsequent failure, control may return to this
clause to find other ways to apply Tacl , or if there are none, to attempt Tac2.
The o r e l s e ! tactical eliminates this backtracking point by introducing a cut. If
Tacl succeeds once, no other attempts will be made to apply Tacl or Tac2. This
new version relies on a non-logical feature of the metalanguage to obtain the desired
operational behavior. There are a few other occasions where the use of cut is crucial

70 AMY FELTY

type orelee!

type query

type basic_io

type readtac

type backup

type report.fail

type quit

type inter_repeat

type inter

type with_tats

tactic -> tactic -> tactic.

(goal -> tactic -> o) -> tactic.

(goal -> o) -> (tactic -> o) -> goal -> tactic -> o.

tactic -> o.

tactic.

tactic.

tactic.

tactic -> tactic.

(goal -> tactic -> o) -> tactic.

modul -> tactic -> tactic.

orelse! Tacl Tat2 InGoal OutGoal :- Tacl InGoal OutGoal,!; Tat2 InGoal DutGoal.

query IO InGoal OutGoal :-

IO InGoal Tac,

((Tac = backup), !, fail;

orelse! Tac report_fail InGoal OutGoal;

query IO InGoal OutGoal).

basic_io PrintPred ReadPred Goal Tac :- PrintPred Goal, ReadPred Tac.

readtac Tac :- writesans "Enter tactic: ", read X\ (Tac= X).

report_fail Goal Goal :- writesans "Tactic failed.", nl.

quit InGoal ff.

inter_repeat Tac InGoal 0utGoal :-

Tac InGoal MidGoal,

((MidGoal = ff),), (DutGoal = InGoal);

maptac (inter_repeat Tac) MidGoal 0utGoal).

inter I0 InGoal 0utGoal :- inter_repeat (query I0) InGoal 0utGoal.

with_tats M Tac InGoal 0utGoal :- M ==> (Tac InGoal 0utGoal).

Fig. 6. Interactive component for tactic interpreter.

in defining operational behavior in clauses in this section since more fine-tuned con-
trol is important for good user interaction.

The o r e l s e ! tactical is used by the query tactic, which is the primitive operation
of the interactive component. The task of this tactic can be divided into three steps.
The first step is to output some information about the state of the interpreter. The
second step is to get input from the user about what action to take, and the third
step is to perform the action specified by the input. The first two steps are handled
by the first subgoal of the query tactic, The predicate IO is a parameter to this tactic
since the actual procedure for input and output will depend on the particular object-
language for which we are building a theorem prover. The bas ic_±o and r e a d _ t a c
clauses provide simple operations that can be used in building a specialized input/

IMPLEMENTING TACTICS AND TACTICALS 71

output procedure. For example, in a natural deduction theorem prover, if ndoutput

is the name of a procedure to print out the state of a natural deduction theorem pro-

ver, the I0 argument to query may be (b a s i c _ i o ndoutput r e a d t a c) .
There are then three options in applying the tactic Tac input by the user, given by

the three disjuncts in the query tactic. In the first disjunct, notice the use of cut (!)
and f a i l . One requirement of a good interactive system is to provide the user with
some capability to backup the search to previous points. In this implementation, the
user will be allowed to incrementally backup the search one step at a time, by invok-
ing the backup tactic. Here backup is implemented by causing the logic program-
ming interpreter to fail to a previous point. The use of cut here insures that the
other two disjuncts will not be attempted. Implementing backup using failure has
both advantages and disadvantages. The main advantage is that all information
about the previous state is handled automatically by the logic programming inter-
preter. We need not introduce extra data structures or implement additional control
mechanisms to keep track of this information. The main disadvantage of this
approach is that extreme care must be taken to strategically place cuts in all of
the clauses that make up the interactive component so that invoking the backup
tactic takes the interpreter to the desired backtracking point, the one corresponding
to the last invocation of the query tactic.

If a backup is not requested by the user, the second disjunct attempts to apply the
requested tactic. It either applies the tactic successfully, or reports failure when the

tactic fails. The o r e l s e ! tactical is used inside query since if the tactic succeeds,
we do not want the interpreter to be able to later report failure. The third disjunct
is best understood in the context of an interactive loop which repeatedly calls the
query tactic. A simple loop might be defined simply as the following tactic.

inter 10 InGoal OutGoal :- repeat (query I0) InGoal OutGoal.

At a particular invocation of query, if a backup is requested by the user, control will
return to the previous invocation of query. At this point, we do not want to fail
further, but instead return the search to the state it was in upon entering this invo-
cation of query. In order to achieve this behavior, the third disjunct of query makes
a recursive call to itself.

Since the r e p e a t tactical loops until the tactic fails, and since the query tactic only
fails when the backup tactic is invoked, the above implementation of i n t e r will
terminate in one of two ways. It will fail if backed up all the way to the begin-
ning, or will succeed when the input goal is completely solved by the user. In the
latter case, the first clause of maptac terminates each branch of the search as the
input goals are reduced to t t . A good interactive interpreter must also provide
the user with the capability to stop the search without losing the work done so
far, or to stop particular branches of search in favor of pursuing others. For this
task we define the q u i t tactic, and the i n t e r r e p e a t looping tactical given in
Figure 6. This tactical terminates search when the q u i t tactic is invoked and returns
the current input goal as the output goal. The i n t e r tactic in Figure 6 uses

72 AMY FELTY

i n t e r _ r e p e a t and thus provides a top-level interactive loop that allows both back-
ing up and stopping search branches.

For a particular theorem prover, as the set of existing theorems and specialized tac-
tics grows, it may be desirable to organize them into modules containing sets of related
tactics and theorems. We can provide the user with the flexibility to access modules as
they are needed at different points during proof construction. The with_tacs tactical in
Figure 6 allows the user to dynamically extend the current theorem proving environ-
ment. The type of the first argument M is modul, the meta-level primitive type for
AProlog module names. The ==> symbol is the meta-level connective that instructs the
interpreter to load the module M into memory and add all of the clauses in M to the
current program. The tactic Tac is applied in the new environment. Tac may be, for
example, a new call to a top-level interactive loop. If execution continues after success-
ful completion or failure of this tactic, the clauses of M will no longer be available unless
explicitly added again. Such a tactical may also be used to extend the definition of exist-
ing tactics. In particular, M may contain clauses with the same name as a tactic in the
current environment. In the new environment, the new clauses get attempted before the
existing ones when this tactic is invoked.

Using the data structures for goals that we have defined and the maptac program
for traversing goal structures, several general search strategies can be implemented as

tactics. For example, the program below implements depth-first search.

type app_lis_tac list tactic -> tactic.

type dfs list tactic -> tactic.

app_lis_tac (Tac: :Rest) InGoal OutGoal :- Tac InGoal OutGoal.

app_lis_tac (Tac: :Rest) InGoal OutGoal :-

app_lis_tac Rest InGoal OutGoal.

dfs Tacs InGoal OutGoal :- app_lis_tac Tacs InGoal MidGoal,

maptac (dfs Tacs) MidGoal OutGoal.

Such a strategy may be useful in domains where depth-first search may be sufficient
for proving various simple subproofs.

Using this strategy, if all subgoals are reduced to t t , the top-level call to dfs
terminates with success. OutGoal will then be a compound goal structure containing
only t t as its atomic subgoals. Otherwise depth-first search fails. Since the dfs tactic
will either completely solve the input goal or loop indefinitely, the output goal will con-
tain no useful information. Alternatively, we could modify this tactic so that it applies
as many tactics from Tacs as possible until no more can be done, and then returns the
unfinished subgoals to be solved by the user in some other manner. This can be achieved
by simply adding the following clause to the end of the definition of app l i s _ t a c .

app_lis_tac Tacs Goal Goal.

It is straightforward to implement several other general search strategies within
this framework. For example breadth-first search, a complete search strategy, can

IMPLEMENTING TACTICS AND TACTICALS 73

be implemented, For an implementation of depth-first iterative deepening as defined

by Kor f [25], a variant of depth-first search that is also a complete search strategy,
see Felty [10].

7. A Tactic Theorem Prover for Natural Deduction

We have presented a general tactic interpreter with an interactive component as
well as a set of primitive tactics for proof search in natural deduction. We can
continue to build on this structure adding new tactics and strategies for natural
deduction. We illustrate here with a few simple examples. Depending on the logic
or theory being implemented, a user will want to provide more sophisticated auto-
mation tactics specialized to that logic. For example, term rewriting tactics can be
useful in logics that have a notion of equality between terms. For more on how
both general and specific rewriting tactics can be implemented in this setting, see
Felty [13].

The following tactics implement an interactive loop and a simple tactic that
repeatedly applies some of the introduction rules, respectively.

type inter_nd form -> nprf -> goal -> o.

type intros_tac tactic.

inter_rid A P OutGoal :-

inter (basic_io ndoutput readtac) (nil --> P # A) OutGoal.

intros_tac (Gamma--> 3) OutGoai :-

repeat (orelse! and_i tac (orelse! imp_i_tac

(orelse ! neg_i_tac forall_i_tac))) (Gamma --> J) OutGoal.

We assume here that ndoutput is a procedure to print out the current list of assump-
tions and formula to be proved in a natural deduction goal. To execute this inter-
active loop, the user provides a formula A, and after an interactive session, P will
be instantiated to the proof or partial proof and 0utGoal will contain the subgoals
that remain to be proved.

In the same setting, we can build a complete proof checking tactic in one of
many ways. For instance, we could use dfs with a list containing tactics for all
of the inference rules of natural deduction. If we use the specification of tactics
that is a direct modification of the clauses in Figure 2 so that elimination as
well as introduction rules are applied in a backward direction, we obtain a
tactic with the same operational behavior as the clauses in the figure. Such a
tactic would not be useful for theorem proving in general, but illustrates how the
tactic setting provides a uniform framework for both theorem proving and proof
checking.

The following is a simple example session with the tactic theorem prover for
natural deduction where the formula q(a) V q(b) D 3xq(x) is proved. Notice that a
bad attempt to prove this formula is backed out of before the right solution is found.

74 AMY FELTY

?- in te r_nd (((q a) or (q b)) imp (e x i s t s X\(q X))) Proof OutGoal.

Assumptions:

Conclusion:
((q a) or (q b)) imp (exists X\(q X))
Enter tactic: ?- imp_i_tac.

Assumptions:
i (q a) or (q b)

Conclusion:
exists X\(q X)
Enter tactic: 7- exists_i_tac.

Assumptions:
I (q a) or (q b)

Conclusion:
qT
Enter tactic : ?- or_s_tac i.

Assumpt ions :
lqa
2 (q a) or (q b)

Conclusion:

qT
Enter tactic: ?- close_tac O.

Assumptions:

I q b
2 (q a) or (q b)

Conclus ion:
qa

Enter tactic: ?- backup.

Assumpt ions:
lqa
2 (q a) or (q b)

Conclusion:
qT
Enter tactic: ?- backup.

Assumptions :
I (q a) or (q b)

IMPLEMENTING TACTICS AND TACTICALS 75

Conclusion:
qT
Enter tactic: ?- backup.

Assumptions :
i (q a) or (q b)

Conclusion:

exists X\(q X)
Enter tactic: ?- then (or_e_tac 1) (then exists_i_tac (close_tac 0)).

Proof = (imp_i P\(or_e (q a) (q b) P (Pl\(exists i a PI))
(P2\(exists_i b P2)))

OutGoal = (all P\((all P l \ t t) ~tl (all P 2 \ t t))) .

The application of the e x i s t s _ i _ t a c tactic introduces a logic variable T for the
substitution term. Then, when (close_tac O) is applied, T is instantiated to a, the
proof branch is completed, and this unifier is carried over to the second branch of
the proof. Since this branch cannot be completed, the user backs the proof up to
the point where it can be corrected. The final compound expression that completes
the proof first applies o r_e_ t ac causing the search to branch, and then applies
e x i s t s _ i _ t a c followed by (c l o s e _ t a c 0) to each of the branches. Thus a new
logic variable is introduced in each branch separately. The first is instantiated to a
and the second to b, allowing the proof to be completed. Thus Proof is instantiated
to a complete proof, and 0utGoal is a compound goal expression whose atomic sub-
goals are all instances of t t .

8. Related Work

The programming language ML is the metalanguage used in all of the other tactic
theorem provers mentioned earlier. There are several differences in the implemen-
tations of both tactics and tacticals in these two languages. First, in ML, tactics
are functions that take a goal as input and return a list of subgoals, and in some
cases (such as LCF) also return a validation. In contrast, tactics in AProlog are
relational, which is natural when the relation being modeled is 'is a proof of ' .
Although, as we noted earlier, the direct specification of natural deduction in Figure
2 can only be used for proof checking, tactics can be used for both theorem proving
and proof checking. The functional aspects of ML do not permit input and output
distinctions to be blurred in this manner.

As stated in Gordon et al. [17], tacticals encourage the programming of valid
tactics. In fact, as long as the tacticals are implemented correctly, all compound
tactics built from valid tactics will also be valid. This fact holds for both the ML
and logic programming settings.

In LCF, the basic inference rules for a particular logic are implemented as func-
tions taking instances of the premises of the rule to an instance of the conclusion.
The input arguments are required to be theorems (type thin), and thus the result is
also a theorem. When writing tactics for backward proof search, these functions

76 AMY FELTY

are the building blocks used by the programmer to construct validations. The use of
validations in tactics in this way provides an extra level of security. The programmer
has complete freedom to write tactics without being concerned with their validity.
After successful completion of backward search for the proof of a particular for-
mula, the resulting validation must be executed. If invalid tactics were used, the vali-
dation will fail, and the formula will not be added as a theorem. Of course the
functions implementing the primitive rules in the forward direction must be
sound. As long as this is the case, only formulas that are truly theorems will be
recorded as such.

The ML notion of validations is replaced in our system by (potentially much
larger and more complex) proof objects. If we also give the programmer complete
freedom to write tactics that construct such objects, we must insure that the terms
constructed during proof search correspond to actual proofs. To do so, we can
simply use the core set of tactics implementing the basic inference rules for the
purpose of proof checking. We need not implement additional code for this task.
We can even require that such a check is performed before accepting a formula as
a theorem. In contrast to ML, such security must be provided at the program level
rather than by the type system. While in ML, it is the functions implementing the
primitive rules in the forward direction that must be sound, here it is the basic set
of tactics that must be implemented correctly. The declarative nature of tactics in
the logic programming setting makes it straightforward to prove their validity
formally as was illustrated by Theorem 4.1.

The implementation of the then tactical in ~Prolog is quite different from its ML
counterpart. The)~Prolog implementation of then reveals its very simple nature:
then is very similar to the natural join of two relations. In ML, the then tactical
applies the first tactic to the input goal and then maps the application of the second
tactic over the list of intermediate subgoals. The full list of subgoals must be built as
well as the compound validation function from the results. These tasks can be quite
complicated, requiring some auxiliary list processing functions. In AProlog, the com-
position of tactics is handled correctly by the sharing of logic variables between the
two calls to tactics. The analogue of a list of subgoals is a nested ~ structure. These
are processed by the clause of maptac which handles &~. The maptac procedure is
richer than the usual notion of a mapping function in that, in addition to nested
&~ structures, it handles all of the other goal structures. The a l l goal structure,
for example, provides a principled way in which to descend through abstractions
in formulas and proofs as illustrated by its uses in the primitive tactics for natural
deduction in Section 5.

In the AProlog implementation of then that we presented in Section 6, if the first
tactic succeeds and the second fails, the logic programming interpreter will backtrack
and try to find a new way to successfully apply the first tactic, exhausting all
possibilities before completely failing. For example, if there are several possible
instantiations of the substitution term used to instantiate the existential quantifier
in e x i s t s _ i _ t a c in Figure 3, they will all be attempted before failure occurs. As

IMPLEMENTING TACTICS AND TACTICALS 77

another example, if the first tactic is o r e l s e applied to two arguments, all possible
ways in which either of these arguments can succeed will be examined before failure
occurs. It is also possible to implement then so that if the second tactic fails after a
successful call to the first tactic, the full tactic still fails. To do so requires the use of
cut (!) after the first subgoal to restrict its backtracking behavior.

Another difference in the ML and logic programming approaches is in the
manipulation of quantified formulas. In ML, first-order syntax is used and thus
manipulating quantified formulas requires that the binding be separated from its
body. In logic programming, we use higher-order syntax. We identify a term as a
universal quantification if it can be unified with the term (forall A). However,
since terms in AProlog represent fl~-equivalence classes of A-terms, the programmer
does not have access to bound variable names. Although such a restriction may
appear to limit access to the structure of A-terms, we have seen that sophisticated
analysis of A-terms is still possible to perform using higher-order unification and
the universal quantifier pi. In addition, there are certain advantages to such a
restriction. For example, in the case of applying substitutions, all the renaming of
bound variables is handled by the metalanguage, freeing the programmer from
such concerns. The programmer may find it desirable to have more control over
the names of variables in the printed form of a A-term. Current implementations
do not allow this, although, whenever possible, names are generated based on the
names given by the user either in the original input or ir~ program clauses, using a
numbering scheme to avoid name clashes.

In the AProlog setting, we make use of logic variables for lazy determination of
substitution instances. The example in Section 7 illustrated how such variables can
be used so that substitution instances do not have to be given at the point where
the substitution takes place.

The Isabelle theorem prover [35] contains a specification language based on a frag-
ment of higher-order logic with implication and universal quantification that is
essentially a subset of higher-order hereditary Harrop formulas. This language is
used to specify inference rules for various object-logics. In fact, if we drop proofs
from the specification of natural deduction in Figure 2, the resulting specification
is similar to the one given in [35]. In addition, all the object-logics we have specified
here could be very similarly specified in Isabelle.

The proof theory of the meta-logic of Isabelle is given in terms of natural
deduction. In [35], a proof of correctness of the specification of natural deduction
as an object-logic is given, illustrating the correspondence between object-
level proofs and meta-level natural deduction proofs. The existence of proofs
in the meta-logic in the form described by Theorem 2.1 (uniform proofs)
corresponds in [35] to the existence of expanded normal form proofs in natural
deduction [39].

In this paper, we have used the same metalanguage for specification of inference
rules and for implementation of search. In Isabelle, ML is used to implement
tacticals and specify tactics. As a result, there is a more significant difference

78 AMY FELTY

operationally in the two approaches. It seems very likely that Isabelle could be rather
directly implemented inside AProlog. Although such an implementation might
achieve the same functionality as is currently available in Isabelle, it is not likely
to be nearly as efficient. This is due partly to the fact that a AProlog implementation
implements a general purpose programming language. The development of more
efficient implementations of AProlog is currently underway [1, 9, 32]. Another
approach is to modify AProlog's depth-first interpreter to use a different control
strategy. For example, tacticals and interactive tactics could be implemented at the
level of the metalanguage. This approach to control is more like that found in
Isabelle.

Universal quantification and implication are used in the same manner here and in
Isabelle to specify eigenvariable conditions and the discharge of assumptions.
Operationally, although both systems are similar in their use of goal-directed proof
search, it is worth noting that the mechanisms to handle these two constructs differ.
In AProlog, eigenvariables are handled by the introduction of new constants by the
GENERIC operation. When backchaining on the clause for the V-I rule of natural
deduction, for example, the universal quantifier is 'stripped off' the goal and a
new constant is introduced to replace the bound variable and allow us to descend
through the A-abstraction in the formula. This constant may appear in instances
of clauses used in subsequent backchaining steps. Neither backchaining nor the
GENERIC operation is present in Isabelle. There, a technique called lifting [35] is
used. When applying the V-I rule, the object-level universal quantification is
replaced by a meta-level quantifier exactly as in AProlog, but this quantifier is not
stripped off. Instead, the form of clauses used in further proof steps is modified to
take into account the universal quantifier in the goal. For example, to apply the
following v-I rule:

provable (A or B) :- provable A.

Isabelle would first modify this formula to obtain the following formula.

provable ((AX) or (BX)) : - p i X \ (provable (AX)).

(Recall that there is implicit universal quantification at the top level over the vari-
ables g, B, and the free occurrences of X.) Using this formula, a goal of the form
pi X\ (provable ((g X) or (B X))) would be replaced by the subgoal pi
x\ (provable (1 X)). A similar lifting operation is used to handle implication in
goals. Although the mechanism is different, the behavior is quite similar to the use
of AUGMENT in AProlog.

Both the theorem provers developed here and the Isabelle system adopt an intu-
itionistic logic with quantification over the simply typed A-terms as a metalanguage
for specifying inference rules. Various forms of typed lambda calculi with dependent
types have also been proposed as specification languages for representing a wide
variety of logics. Examples include the AUTOMATH languages [5], type theories
developed by Martin-L6f [26], the Logical Framework (LF) [21], LF + [15], and

IMPLEMENTING TACTICS AND TACTICALS 79

the Calculus of Constructions [4]. In [11], we show that LF signatures can be
encoded directly and naturally as formulas in the subset of hohh that does not allow
predicate quantification. This encoding demonstrates a close correspondence
between the two approaches. In addition, an encoded signature can serve as a set
of tactics providing a direct implementation of a simple tactic theorem prover for
the object logic.

Pfenning [36] adopts LF as the logical foundation of the higher-order logic pro-
gramming language Elf. A non-deterministic interpreter can be described for Elf
in much the same way as for hohh by providing a small set of search operations
which, in this case, give an operational interpretation to types. To implement this
language, a more complex unification procedure is required to handle dependent
types [7]. Proof checkers and theorem provers similar to those presented here can
also be implemented in this language. In such implementations, the Elf interpreter
will construct LF terms corresponding to object-level proofs, and thus explicit proof
terms need not be included in the programs. If proof terms other than those of the
form constructed by the interpreter are desired, as is often the case, programs to
transform proofs must be written. In many cases, partial correctness of such proof
transformers (as well as many other programs) can be guaranteed by Elf. The
operational behavior of proof-checking and theorem proving programs under the
two kinds of interpreters is also different. In Elf, the type checker for dependent
types can handle some of the work that must be performed by logic programming
search in the corresponding AProlog programs.

Although the programs in this paper make extensive use of many of the higher-
order features of the metalanguage, such features are used in a fairly limited way.
For example, quantification over both functions and predicates has been restricted
to types of order at most 2. Operationally, the unification problems that arise in
executing these programs are all fairly simple. In fact, with minor modification,
most of the programs presented here fall within the La sublanguage of hohh
described by Miller [27]. The most significant modification required is to eliminate
uses of application of terms at the recta-level to perform object-level substitution
such as those found in the specification of the 3-! and V-E rules of natural deduc-
tion. Instead, an explicit implementation of substitution as described in [27] must be
used. In this language, quantification over predicates is not allowed and quantifi-
cation over function variables is greatly restricted. As a result, unification for this
language is very simple; it is decidable and most general unifiers always exist. An
efficient implementation of L~ should contribute significantly to the efficiency of
our programs.

In this paper we have shown how various features and techniques of higher-order
logic programming are useful for the specific task of manipulating formulas and
proofs.)~Prolog and related metalanguages have also been successfully applied to
several other meta-programming tasks. Other applications that have been explored
include program manipulation [20], natural language processing [34], and generaliz-
ation [6, 19].

80 AMY FELTY

Acknowledgements

The author would like to thank Robert Constable, Elsa Gunter, John Hannah, Dale
Miller, and Frank Pfenning for valuable discussions and comments, as well as the
anonymous reviewers for many very helpful suggestions. This research was supported
in part by grants ARO-DAA29-84-9-0027, ONR N00014-88-K-0633, NSF CCR-87-
05596, DARPA N00014-85-K-0018, and ESPRIT Basic Research Action 3245.

Notes

1 Note that substitution terms are given as parameters to the quantifier inference rules in this presentation.
Making this information explicit will allow us to establish a more direct correspondence between deduc-
tion trees and our representation of them.
2 For example, a formulation of natural deduction that uses discharge functions is given in [38]. Such func-
tions can be shown to correspond to abstractions from proofs to proofs in our definition of proof terms.
3 AProlog, however, does not allow such type abbreviations.

References

1. Brisset, Pascal and Ridoux, Olivier, 'The architecture of an implementation of AProlog: Prolog/Mali',
in Dale Miller (Ed.), Proceedings of the Workshop on the AProlog Programming Language, University
of Pennsylvania Technical Report MS-CIS-92-86, pp. 41-64 (1992).

2. Church, Alonzo, 'A formulation of the simple theory of types', J. Symbolic Logic 5, 56-68 (1940).
3. Constable, Robert L. et al., Implementing Mathematics with the Nuprl Proof Development System,

Prentice-Hall (1986).
4. Coquand, Thierry and Huet, Gbrard, 'The calculus of constructions', Information and Computation

76(2/3), 95-120 (1988).
5. deBruijn, N. G., 'A survey of the project AUTOMATH', in To H. B. Curry: Essays in Combinatory

Logic, Lambda Calculus, and Formalism, pp. 579-606, Academic Press (1980).
6. Dietzen, Scott and Pfenning, Frank, 'Higher-order and modal logic as a framework for explanation-

based generalization', in Alberto Maria Segre (Ed.), Sixth International Workshop on Machine Learn-
ing, pp. 447-449, Morgan Kaufmann (1989).

7. Elliott, Conal, 'Higher-order unification with dependent types', in Rewriting Techniques and Appli-
cations, pp. 121-136, Springer-Verlag Lecture Notes in Computer Science (1989).

8. Elliott, Conal and Pfenning, Frank, 'eLP, a Common Lisp Implementation of AProlog', (1990).
9. Elliott, Conal and Pfenning, Frank, 'A semi-functional implementation of a higher-order logic

programming language', in Peter Lee (Ed.), Topics in Advanced Language Implementation, pp. 289-
325, MIT Press (1991).

10. Felty, Amy, Specifying and Implementing Theorem Provers in a Higher-Order Logic Programming
Language, Ph.D. thesis, University of Pennsylvania, Technical Report MS-CIS-89-53 (1989).

11. Felty, Amy, 'Encoding dependent types in an intuitionistic logic', in G6rard Huet and Gordon Plotkin
(Eds.), Logical Frameworks, pp. 215-251, Cambridge University Press (1991).

12. Felty, Amy, 'A logic program for transforming sequent proofs to natural deduction proofs', in Peter
Schroeder-Heister (Ed.), Proceedings of the First International Workshop on Extensions of Logic Pro-
gramming, pp. 157-178, Springer-Verlag Lecture Notes in Artificial Intelligence (1991).

13. Felty, Amy, 'A logic programming approach to implementing higher-order term rewriting', in Lars-
Henrik Eriksson, Lars Hallnfis, and Peter Schroeder-Heister (Eds.), Proceedings of the Second Inter-
national Workshop on Extensions of Logic Programming, pp. 135-161, Springer-Verlag Lecture Notes
in Artificial Intelligence (1992).

14. Felty, Amy and Miller, Dale, 'Specifying theorem provers in a higher-order logic programming
language', in Ninth International Conference on Automated Deduction, pp. 61-80, Springer-Verlag
Lecture Notes in Computer Science (1988).

IMPLEMENTING TACTICS AND TACTICALS 81

15. Gardner, Philippa, Representing Logics in Type Theory. Ph.D. thesis, University of Edinburgh,
Technical Report CST-93-92 (1992).

16. Gentzen, Gerhard, 'Investigations into logical deductions, 1935', in M. E. Szabo (Ed.), The Collected
Papers of Gerhard Gentzen, pp. 68-131, North-Holland Publishing Co., Amsterdam (1969).

17. Gordon, Michael J., Milner, Arthur J. and Wadsworth, Christopher P., Edinburgh LCF: A Mechan-
ised Logic of Computation, Lecture Notes in Computer Science, Vol. 78, Springer-Verlag (1979).

18. Gordon, Mike, 'HOL: a machine oriented formulation of higher-order logic', Technical Report 68,
University of Cambridge (1985).

19. Hagiya, Masami, 'Programming by example and proving by example using higher-order unification',
in Tenth International Conference on Automated Deduction, pp. 588-602. Springer-Verlag Lecture
Notes in Artificial Intelligence (1990).

20. Hannan, John and Miller, Dale, 'A meta language for functional programs', in H. Abramson and
M. Rogers (Eds.), Meta Programming in Logic Programming, Ch. 24, pp. 453-476, MIT Press (1989).

21. Harper, Robert, Honsell, Furio, and Plotkin, Gordon, 'A framework for defining logics', J. ACM
40(1), 143 184 (1993).

22. Hindley, J. Roger and Seldin, Jonathan P., Introduction to Combinatory Logic and Lambda Calculus,
Cambridge University Press (1986).

23. Howard, William A., 'The formulae-as-type notion of construction, 1969'~ in To H. B. Curry: Essays
in Combinatory Logic, Lambda Calculus, and Formalism, pp. 479-490, Academic Press (1980).

24. Huet, G~rard, 'A unification algorithm for typed h-calculus', Theoretical Computer Science 1, 27-57
(1975).

25. Korf, Richard E., 'Depth-first iterative-deepening: an optimal admissible tree search', Artificial Intel-
ligence 27, 97-109 (1985).

26. Martin-L6f, Per, Intuitionistic Type Theory, Studies in Proof Theory, Lecture Notes. BIBLIOPOLIS,
Napoli (1984).

27. Miller, Dale, 'A logic programming language with lambda-abstraction, function variables, and simple
unification', J. Logic and Computation 1(4), 497-536 (1991).

28. Miller, Dale, 'Unification under a mixed prefix', J. Symbolic Computation 14, 321-358 (1992).
29. Miller, Dale and Nadathur, Gopalan, 'A logic programming approach to manipulating formulas and

programs', IEEE Symposium on Logic Programming, pp. 379-388 (1987).
30. Miller, Dale, Nadathur, Gopalan, Pfenning, Frank, and Scedrov, Andre, 'Uniform proofs as a

foundation for logic programming', Annals of Pure and Applied Logic 51, 125-157 (1991).
31. Nadathur, Gopalan, A Higher-Order Logic as the Basis for Logic Programming, Ph.D. thesis, Univer-

sity of Pennsylvania, Technical Report MS-CIS-87-48 (1987).
32. Nadathur, Gopalan and Jayaraman, Bharat, 'Towards a WAM model for),Prolog', in Ewing Lusk

and Ross Overbeek (Eds.), Proceedings of the North American Conference on Logic Programming,
pp. 1180-1198 (1989).

33. Nadathur, Gopalan and Miller, Dale, 'Higher-order horn clauses', J. ACM 37(4), 777-814 (1990).
34. Pareschi, Remo and Miller, Dale, 'Extending definite clause grammars with scoping constructs', in

D. H. D. Warren and P. Szeredi (Eds.), International Conference in Logic Programming, pp. 373-389,
MIT Press (1990).

35. Paulson, Lawrence C., 'The foundation of a generic theorem prover', J. Automated Reasoning 5(3),
363-397 (1989).

36. Pfenning, Frank, 'Logic programming in the LF logical framework', in G~rard Huet and Gordon
Plotkin (Eds.), Logical Frameworks, pp. 149-181, Cambridge University Press (1991).

37. Pfenning, Frank and Elliot, Conal, 'Higher-order abstract syntax', in Proceedings of the ACM-
SIGPLAN Conference on Programming Language Design and Implementation, pp. 199-208 (1988).

38. Prawitz, Dag, Natural Deduction, Almqvist & Wiksell, Uppsala (1965).
39. Prawitz, Dag, 'Ideas and results in proof theory', in J.E. Fenstad (Ed.), Proceedings of the Second

Scandinavian Logic Symposium, Vol. 63 of Studies in Logic and the Foundations of Mathematics, pp.
235-307, North-Holland (1971).

40. Sterling, Leon and Shapiro, Ehud, The Art of Prolog: Advanced Programming Techniques, MIT Press,
Cambridge, MA (1986).

