
Journal of Automated Reasoning I0: 15-58, 1993. t 5
© 1993 Kluwer Academic Publishers. Printed in the Netherlands.

Experimenting with Isabelle in ZF Set Theory

P. A. J. NOEL
Department of Computer Science, University of Manchester, Manchester, M13 9PL, England

(Received: I8 January 1990; accepted: 3 July 1991)

Abstract. The theorem prover Isabelle has been used to axiomatise ZF set theory with natural deduction
and to prove a number of theorems concerning functions. In particular, the well-founded recursion theorem
has been derived, allowing the definition of functions over recursive types (such as the length and the
append functions for lists). The theory of functions has been developed sufficiently within ZF to include
PP2, the theory of continuous functions forming the basis of LCF. Most of the theorems have been derived
using backward proofs, with a small amount of automation.

Key words. Set theory, Isabelle, theorem proving.

1. Introduction

Although various forms of set theory have been used in attempting to formalise the
foundation of mathematics, set theory is often considered too clumsy to use for
reasoning about functions. Some higher order formal systems are generally con-
sidered more suitable. However, because of the intuitive aspect of set theory and the
acquired knowledge about its properties, attempts are often made to express the
semantics of the higher-order formal systems in terms of set theory (see [3] for the case
of type theory). For the same reasons, new and more expressive set theories are also
considered: for instance, the theory of non-well-founded-sets [1] allows a set to belong
to itself (taking 'belong' to be a transitive relation), and consequently, allows self-
application of set-theoretic functions, as well as the definition of a type of types.

The aim of my research was twofold: firstly to experiment with the theorem prover
Isabelle [13, 14], using different kinds of proof mechanisms: secondly to prove, within
ZF set theory, a collection of useful theorems concerning functions. In particular, the
well-founded recursion theorem has been derived, allowing the definition of functions
over recursive types (such as the length and the append functions for lists). The theory
of functions has been developed sufficiently within ZF to include PP2, the theory of
continuous functions forming the basis of LCF [7]. The developed theory may be used
to define set theoretic semantics for other theories, and to derive the axiomatisation
of the theories within ZF. This is illustrated in Appendix C, where an axiomatisation
of simple type theory is derived, and in Appendix D, where an axiomatisation of
intuitionistic first-order logic is derived from a semantics in which the formulae are
interpreted as the set of their proofs. The set theoretic concept of function is adequate
for each of these theories. It is worth noting here that, when defining a function in set
theory, one has the choice to use either a function of predicate logic, or a set theoretic

16 P.A.J. NOEL

function. The application of a function of the first kind, say f l , to the term a is
expressed by f l (a) . The application of a function of the second kind, say f2 , to a will
be expressed by f 2 ^ a. When the type of a is known, it is preferable to use the second
form in order to be able to reason about the function. The function f l is too big to
be an object of set theory, since its domain is not a set. However, it is possible to define
the restriction o f f l to a set A. In the following, such a restriction will be named
lain(A, f l) .

Isabelle is a theorem prover that is well suited for the task of deriving axioms and

inference rules, since, in their general form, Isabelle's theorems are inference rules. In
particular higher order unification, which is provided in Isabelle, is required when
using the schematic axioms and rules of set theory, or any schematic theorem which
may be derived in it. ZF set theory has been defined as an extension of a first order
theory already set up in Isabelle.

The main part of the paper is divided into four sections: Section 2 contains an
overview of Isabelle; Section 3 presents some of the theorems which have been proved,
and the definitions used in the process; Section 4 is concerned with some of the issues
relating to the proofs themselves; Section 5 mentions some related work.

2. An Overview of Isabelle

Isabelle is a generic theorem prover both designed and written in ML by Larry
Paulson [13-15]. Isabelle's pure theory (or meta-theory) is a fragment of higher order
logic defined within a simply typed lambda calculus. The basic inference rules of the
meta-theory are 'built' into Isabelle, together with some derived ones, and in par-
ticular a resolution rule. Other theories may be defined as extensions of the meta-

theory, by specifying their signature (i.e. their types and typed constants) and their set
of inference rules (including axioms, which are simply inference rules without antece-
dents). The following sections give a brief overview of Isabelle. Detailed descriptions

may be found in the papers referenced above]

2.1. ISABELLE'S META-THEORY

The signature of the meta-theory has one basic type: the type of propositions, prop.

The main constants in the signature are the implication ~ , of type prop ~ prop

prop, and, for every type o-, a universal quantifier A~ of type (o- ~ prop) ~ prop.

Another notation for A , P is A x~. P(x~). The inference rules of meta-theory,
expressed in natural deduction style, are given below.

Implication introduction and elimination rules:

[~]

i m p l i e s _ i n 0 . i m p l i e s _ e l i m :

EXPERIMENTING WITH ISABELLE IN ZF SET THEORY

Quantifier introduction and elimination rules:

17

¢(x) A~O
forall intr: forall_elim:

A~ • O(a)

where x is a variable of type a not free in the assumptions, and a is an expression of
type a. The rule implies_intr allows one to use meta-level assumptions when specifying
theorems. The quantifier introduction and elimination rules allow theorems to be
expressed with or without outermost quantification. From the rule implies_elim and
the quantifier rules, derived rules may be obtained which describe the principles
underlying the various object-level inferences. One of the most useful of these rules
is the resolution rule:

in which the iterated implications associate to the right. 0 is some unifier resulting
from a higher order unification of the propositions qbi and O, and F0 represents the
result of applying the substitution 0 to the proposition F. Not all of the free variables
need to be instantiated during the unification. Variables of a new kind, schematic
variables, are used to identify the free variables which are to be instantiated. Schematic
variables are represented by symbols, the first character of which is a question mark.
Free variables behave as constants in the resolution. Both kinds of variable are
normally involved when the resolution rule is used in backward proofs. In this case,
the right premise represents the state of the proof of the formula q?: it asserts that qJ
is provable if the propositions Oj(0 ~< j ~< n) are provable. The free variables of ~?
are interpreted as constants during the proof. The left premise is a derived inference
rule which is used to replace @~ (a 'goal') by new propositions ('subgoals'). In order
to perform the appropriate unification of @ and O~, all the free variables are replaced
by schematic variables before the rule is used as a left premise in the resolution rule.

The resolution rule used in the basic tactic for backward proofs is one in which •
has the simple form [P~. However, Oi may be a complex proposition involving
implication and quantification. Isabelle may apply two extra derived rules to the left
premise in order to obtain a proposition with the same structure as O~. If Oi is the
implication ® ~ qb~, a left premise of the appropriate form is obtained by using
implication lifting:

(o ~ ~) ~ . . . ~ (o ~ / L) ~ (o ~ o)

If • i is in the form A u~. q)i(G), a left premise of the appropriate form is obtained by
using quantification lifting:

(A G ' f l , O) ~ . . . ~ (A u o ' f l . O) ~ (A G . O 0)

18 P .A . J . NOEL

where 0 represents a substitution in which schematic variables are 'lifted' to become
functions of u~: any expression of the form ? x (v l , v2 %) is substituted by
?x ' (v l , v2 % , u~). The point of the lifting is that ?x'(v~, v2, • • • , % , u~) may
unify with expressions involving the bound variable uo, while ?X(Vl, v2 , %) may
not. When qb i is in the form A u~ • (®(u~) ~ ~(u~)), both kinds of lifting are used.

2.2. PROOFS IN ISABELLE

Resolution is the basic step of both forward proofs and backward proofs. Backward
proofs are actually processed in a forward manner: given a proposition qJ, a proof of
it will be a forward proof starting with the theorem q~ ~ q~, and producing q~ after
a repeated use of the resolution rule. At every stage of the proof an intermediary
theorem (the current proof state) is derived. As mentioned in Section 2.1, the left
premise of the resolution rule may be any previously proved theorem in which the
outer quantification has been removed and schematic variables have been used in
place of free variables. The right premise is the previous proof state. When the proof
of only one instance of qS(x~) is required, the right premise may contain schematic
variables. In this case, the initial theorem to be used is q~(?x~) ~ q~(?x~) in which ?x~
is a schematic variable which may be instantiated during the proof.

The resolution rule exhibits clearly how a goal ~i produces a set of subgoals,/71 0,
/72 0, etc. Isabelle provides a basic tactic, 'resolve tac', to perform resolution: the tactic
'resolve_tac ths i' attempts to resolve the ith goal of the current proof state with one
theorem from the specified sequence 'ths'. If more than one unifier exists, Isabelle
chooses one resolvent and stores the others in a lazy list, to be retrieved if backtrack-
ing occurs. Tacticals are provided which may be used to define sequences of tactics,
alternative tactics, backtracking, etc. The user may also use these predefined tactics
and tacticals to specify his/her own ones in ML.

2.3. DEFINITION OF THEORIES

A new theory is created by completing the signature of another theory and adding new
axioms to it, or by merging existing theories. Isabelle comes equipped with a few
theories defined within the meta-theory. The set theory described in this paper has
been built on top of an intuitionistic logic with natural deduction already present in
Isabelle and described in Figure 1. The logic includes two basic types: the type of
terms, exp , and the type of formulae, f o r m . A constant of type f o r m ~ prop , rep-
resented by the brackets ~ and ~, associates to any formula the corresponding meta-
level proposition: if f is a formula, ~f~ is the corresponding proposition. The Isabelle
notation for the metal level constants and the brackets is as follows:

e x p r e s s i o n I sabe l le n o t a t i o n

ram)

A xo. @ (x ~) !(x~)~,(x~)

~...]] [I . . . I]

EXPERIMENTING WITH ISABELLE IN ZF SET THEORY

*** Constants ***

Internal notation:

symbol meta-type precedence description
= (exp, exp) ---* form left 6 equality

(form, form) --~ form right 5 conjunction
] (form, form) --+ form right 4 disjunction

-~> (form, form) --+ form right 3 implication
<-> (form, form) ---* form right 3 hi-implication

False f o r m false formula
ForM1 (exp ---* form) ---+ form universal quantifier
Exist (exp ~ form) --* form existential quantifier

Alternative notation for input/output:

ALL x. P(x) stands for Forall P
EXISTS x. P(x) stands Dr Exists P

19

*** Axioms ***

Equality

refl:
sym:
trans :

*Propositional

conj_intr:
conjunctl:
conjunct2
disj intr1:
disj_intr2:
disjelim:

imp_intr:
mp:
False_slim

iff_def:

Quantifiers

all_intr:
spec:
exists_intr:
exists elim:

[I a=a I]
[I a : b i] : : > [I b=a i]
[I a=b l] ==> [I b=c i] ==> [I a=c aS

logic*

[I P i] ==> [I q I] ==> [J F~Q i]
[I P~q [] ==> [i P I]
[I P~Q [] ==> [I Q []
[[P [] ==> [1 PIQ I]
[I q I] ==> [[PIQ I]
[I PIQ I] ==> ([I P I] :=> [I ~t I]) ==> ([I Q I] ==> [d ~ I])
==> [I ~, I]
([I P I] ==> [I q I]) ==> [I P- ->Q []
[I P-->Q I] ==> [I P I] ==> [I q I]
[I False I] :=> [I P I]
F<->q == (P - - > ~) ~ (~ - - > P)

(!(y) [] P(y)]]) ==> [J ALL x.P(x)]]
[[ALL x.P(x) [] ==> [] P(a) []
[[P(a)]3 =:> [[EXISTS x.P(x) []
[I EXISTS x.P(x) [] ==> (! (y) [[P(y) J] ==> [i R]]) ==> [I R I]

Fig. 1. First-order intuitionistic logic.

where x~ is a variable of type a. The axioms of Figure 1 are meta-level formulae
defining the inference rules of first-order intuitionistic logic with natural deduction.
For instance, the axiom

(~P~ ~ ~Q~) ~ ~P --+ Q]]

20 P . A . J . NOEL

specifies the implication introduction rule:

[/'1
Q

P ~ Q

The meta-level implication may be used to represent a premise with assumption, as
well as an inference. The quantifier introduction rule of the metal-level logic allows
the above axiom to be expressed without an outermost meta-level quantification of
P and Q. Some axioms, however, require the use of quantification. This is the case,
for instance, for the axiom specifying the universal quantifier introduction rule:

(A y . ~ ' (y)~) ~ EVx . P(x)~

Here the scope of the quantification of y is the antecedent of the rule. Such an
expression may resolve with theorems of the form EQ~ ~ (A y . ~P(y)~) but not of
the form ~Q(y)~ ~ ~P(y)~, thus embodying the condition under which the corre-
sponding rule can be applied, namely that the free variable which is to be quantified
must not be free in the assumptions. The bi-implication symbol is defined using
meta-level equality - - :

P*-+Q = = (P--+ Q) /x (Q--+ P)

Meta-level equality is simply a means of defining new symbols standing for more
complex expressions. In the rest of the paper, object-level equality will be used for this

purpose.
Note that there is no built-in facility to reason about theories. Should there be any

such requirement, the meta-theory itself should be defined as a new logic in Isabelle.

3. Developing ZF Set Theory

The main aim of the work described in this paper was to develop enough of ZF set
theory to be able to reason about functions, and in particular recursive functions. Set
theory has been first defined on top of the first order intuitionistic logic mentioned
earlier. Its axiomatisation consists of some variant of the standard axioms, together
with a set of definitions for commonly used concepts such as subset, product etc. The
other theories defined in this paper are simply extensions of ZF with non-recursive
definitions, and are thus conservative extensions of ZF. Most of these definitions
concern terms, rather than predicates: i.e. a deliberate choice has been made to define
properties by terms, say ~ , with the corresponding predication to a term x represented
by x ~ P~, rather than define predicates P/ with the corresponding properties rep-
resented by {x I P/(x)}. This approach seems to be more in the spirit of set theory, and
is well suited to reason about types.

The axioms and rules of inference which have been chosen for set theory are
presented first. Then a set of definitions concerning functions is introduced and some

EXPERIMENTING WITH ISABELLE IN ZF SET THEORY 21

relevant theorems, including recursion theorems, are discussed. An axiomatisation of

typed lambda calculus is included in these theorems.

3.1. ZF SET THEORY

Set theory has been constructed on top of the first-order intuitionistic logic mentioned

earlier. The logic is first extended by two inference rules:

• The substitution of equals by equals, 'eq_elim', which is required for a logic with
equality:

a = b P(b)

P(a)

The axioms concerning the reflexivity, symmetry and transitivity of equality are
already in the basic theory. In fact, the symmetry and transitivity axioms may be
derived from the above axiom and the reflexivity axiom (which may be seen as an
'equality elimination' rule)

• an axiom used to extend intuitionistic logic to classical logic, the refutation
axiom:

[Not(A)]

A

A

with the following definition of Not:

No t (A) +--, (A ~ False)

The theory is then extended to include the new constants displayed in Figure 2 and
the ZF axioms, displayed in Figure 3. Three new constants are required in ZF set

theory: the membership predicate ~, the empty set 0, and a constant to define pairs
(the constant ': :', defining the insertion of a set into another, and used simply to insert
two sets into the empty set). All other constants may be defined in terms of these basic
ones. For convenience, however, the axiomatisation given in Figure 3 introduces
other basic constants, such as 'Union', 'Pow', . . . (the justification for this approach
will be given later in this section). When a defined constant is required by an axiom,
its definition appears before the axiom in Figure 3. Other useful definitions are listed
in Figure 4. The symbols other than the constants are taken to be universally
quantified meta-level variables. In ZF6, for instance, x and A are universally quan-
tified over the type exp, and P over exp ~ fo rm . From a syntactic point of view, the
variables quantified over exp may be seen as standing for free variables, and the other
quantified variables for schematic variables (i.e. uninstantiated constants) of various
orders.

22 P . A . J . N O E L

*** internal notation ***

Basic
symbol meta-type

: (exp, exp) ~ f o r m
0 exp
:: (exp, exp) -.-* exp

Pow exp ---* exp
Union exp ~ exp

Collect (exp, exp ---* f o r m) ----* e z p
Repl (exp ---* exp ~ f o r m , exp) ~ exp
INF exp

precedence

right 6

right 7

description

membership: 6
empty set:

inclusion: a :: b :: 0 = {a, b}
power set

union of a family of sets
C o l l e c t (A , P) = {x 6 A] P (x) }

gepl (a ,B) = {~ I ~ . U e B ^ R(y, ~)}
infinite set

Defined
symbol meta- type precedence

<= (exp, exp) ---* f o r m right 6
<< (exp, exp) -4 f o r m right 6

Inter exp --* exp

Un (exp, exp) ~ exp right 7
suc¢ e z p ~ exp
I n t (exp, exp) ~ exp right 8

Keplace (exp ~ exp, ezp) --* exp
Pair (exp, exp) ~ exp
Hd exp --.* exp
T1 exp --~ exp
* (exp, exp) --* exp right 8
- (exp, exp) ---* exp right 7

Functional (exp ---* exp ---* f o r m) ---* f o r m
Total (exp ---* exp ---* f o r m) ---* f o r m

description

subset:C
strict subset: C

intersection of a family of sets
union of two sets
successor function

intersection of two sets
Rep lace(f ,B) ----- {f (x) [x 6 B}

ordered pair
H d (P a i r (a , b)) = a

T l (P a f r (a , b)) = b
product of two sets

difference of two sets
predication of a functional relation

total functional relation

*** Alternative notation for input /ou tput ***

{a ,b} stands for a :: b :: 0
{a} stands for {a , a}
<a,b> stands for P a i r (a , b)
[x [I x:A, P (x)] stands for Co l l ec t (A ,P)
[~(x) 1{ x:B] stands for Rep lace (f ,B)

Fig. 2. ZF constants.

In [17] and [8], ZF1 is axiomatised as A ___ B /x B ~_ A ---, A = B. However, the
bi-implication is easily obtained by using the substitution rule of equality (eq_elim).
Note that ZFI may also be introduced as an extension of classical logic without
equality. In [9] for instance, equality is defined by the extension axiom of Figure 3,
and the extension axiom becomes the axiom schema:

V x . Vy " x = y ~ (P (x) *-~ P (y))

From these, the properties of equality are derivable.
Usually, the axioms ZF2 and ZF8 are given in the form of existentially quantified

statements: e.g. 'there is a set with only elements a and b' (pairing). In each case, the
uniqueness of the set may be proved, thus allowing the definition of a new term to
represent it. For ZF3 to ZF7, the defining formulae are used as axioms, in place of

E X P E R I M E N T I N G W I T H I S A B E L L E I N Z F SET T H E O R Y

s u b s e t : [I A <= B <-> ALL x. x:A - -> x:B I]

ZF I - extension [I A = B <-> A <= B & B <= A t]

ZF 2 - null: [i Not(a:O) I]

ZF S - pairing: [i x : {a,b} <-> x=a I x=b I]

ZF 4 - Union: [i A : Union(C) <-> EXISTS B. A:B & B:C J]

ZF S - Power: [L A : Pow(B) <-> A <= B ~]

ZF 6 - Collect: [l x : Collect(A,P) <-> x : A ~ P(x) I]

Functional: [I Functional(R) <->

ALL x. ALL y. ALL z. R(x,y) & R(x,z) --> y=z I]

ZF 7 - Replacement: [[Functional(R) i] ==>

[I y : RepI(R,B) <-> EXISTS a. a : B & R(a,y) i]

Un: [I A Un B = Union(£A,B}) i]

suet: [I eucc(n) = n Un {n} I]

ZF S - INF_O: [i O:INF i]

INF_succ: [I n:INF I] ==> It succ(n):INF l]

Inter: [I Inter(C) = [x I I x:Union(C), ALL y. y:C --> x:y] i]

Int: [I k Int B = Inter(£A,B}) I]

ZF 9 .- foundation: [i Not(A=O) i] ==> [i EXISTS u. u:A & u Int A = 0 I]

Fig. 3. Z F ax iomat i sa t ion .

23

Total: [i Total(R) <-> Functional(R) & ALL x. EXISTS y. R(x,y) i]

strict_subset: [j A << B <-> A <= B ~ Not(A=B) i]

Replace: [i Replace(f ,A) = Repl(Y.(x)%(y)(y=f(x)),A) i]

Pair: [I <a,b> = {{a}.fa,b}} I]

Hd: [{ Hd(A) = Union(Inter(A)) I]

Tl: [I Tl(A)= Union([X Jl X:Union(A),
Not(X:Inter(A)) i Union(A) = Inter(A)])J]

Product: [i A*B = [x i l x:Pow(Pow(A Un B)),
EXISTS a. EXISTS b. a:A ~ b:B ~ x= <a,b>]l]

Dif: [I A- B = [y If y: A, Not(y:B)] i]

Fig. 4. Simple definit ions.

the usual existent ial ones. This is the same form of ax ioma t i sa t ion as the one for the

sequent form of Z F in [13].

There are m a n y ways o f formal is ing the "null' axiom:

® as an existential s ta tement a b o u t the null set;

24 P.A.J. NOEL

• as an expression of the defining property of the null set, if the null set is taken as
a primitive symbol;

• as a definition of the null set.

The axiom may even be omitted completely, since the existence and uniqueness of a
null set may be derived from the other axioms. The formalisation which has been
chosen here is the second one above: 0 is taken as a primitive symbol.

ZF8 ensures the existence of an infinite set. In the chosen axiomatisation, the
primitive symbol INF represents one such set, and its defining properties are given by
INF_0 and INF_succ. Note that INF has been introduced for convenience only. It
is possible to define the set of natural numbers, co, directly from the existential version
of ZF8: it is the intersection of the sets which satisfy the properties specified by the
axiom. It can then be shown that co itself satisfies these properties.

The foundation axiom is given in its usual form. From it has been derived the
theorems:

~ (a ~ a) and -n (a e b /x b ~ a)

One point to note in the definitions of Figure 4 is the use of the % symbol in place
of the abstraction symbol)[. In the definition of Replace, % (x) % (y) (y = f (x)) is an
expression of type exp ~ exp ~ fo rm , as required by the typing of Repl. The follow-
ing theorem has been derived using the definition of Replace:

x E Rep lace(f , B) ~ ~ a . a ~ B /x x = f (x)

Although less general than Repl, the constant Replace has been used whenever
possible because of its simpler expansion.

A number of other basic theorems have been proved, which are required in order
to proceed with the development of a theory of relations and functions. Some of them,
and their proof in sequent style, may be found in [15].

3.2. RELATIONS AND FUNCTIONS

Set theory has been developed with the particular aim of reasoning about functions.
A new theory, consisting of a set of new constants together with a set of axioms
defining them, has been built on top of ZF set theory. However, since the axioms are
simply definitions of well formed expressions of ZF, the new theory is a conservative
extension of ZF. The first part of this section consists of a general discussion about
definitions and specific comments concerning some of the definitions which have been
introduced to reason about relations and functions. Next, some of the theorems which
have been proved are discussed, and in particular several recursion theorems. Finally,
the two last subsections mention some possible applications of the work presented in
this paper: reasoning about the set theoretic semantics of other theories and reasoning
about types. For the sake of clarity, only the definitions and main theorems involved
in the proof of the recursion theorems have been displayed in the main part of the

EXPERIMENTING WITH ISABELLE IN ZF SET THEORY 25

paper (further developments are described in appendices, while simple definitions

which have not been required for these developments, such as the ones concerning

currying, have been omitted).

3.2.1. Definitions

New concepts are introduced in a theory through definitions. I f the form of the

definitions satisfies adequate criteria, adding definitions does not alter the basic
theory, but merely provides syntactic variants for some of the expressions of the
theory. For this to be the case, the definition of new constants must satisfy the

following requirements (see [17], Ch. 2):

• a theory T t o which a new definition D is added must form a conservative extension

of T: i.e. the only sentences not containing the new symbol which are provable in

T /~ D are the ones which are provable in T.
• any new definition must satisfy the eliminability criterion: i.e. every sentence which

contains the defined symbol must be equivalent to one without it.

Sometimes, conditional definitions seem appropriate. For instance, the application
of a term to another term is defined only if the first term is a function, and the second

term is from an appropriate set. An unconditional definition may still be used if a

meaning is given to fAa when f i s not a function or a is not in the domain o f f .
We then have to ensure that any theorem concerning function application includes
the appropriate typing hypotheses. Although a conditional definition, in which the

definition itself is subject to the typing constraints, would result in simpler theorems,

it would not satisfy the criterion of eliminability: any sentence involvingfAa could not
be eliminated in favour of a sentence not involving A when a does not belong to the

domain o f f or f is not a function.
The choice which has been made in this paper was to use unconditional definitions

whenever appropriate, most of them of the simple form new_symbol(x) = exp(x),
where x is a set of variables, possibly empty, and exp(x) is a term not involving the

new symbol (recursive definitions are thus disallowed) and having the variables in x
as the only free variables. The free variables may be higher-order variables, as long
as the terms being defined are well-formed terms of set theory. This is the case, for
instance, in the definition of lambda abstraction:

lam(A, E) = {~x, E (x)) l x~A}

where E is a variable of type exp --, exp. Unconditional definitions have sometimes
a domain of application which is more general than is required. For instance, Domain,
Range and Image apply to any set, not just relations; the application FAa is also
defined for any sets F and a. Care must be taken when using such general definitions:
for instance, most theorems concerning an application should be subject to the
conditions that F is a function, and a is in the domain of F. When using an uncon-
ditional definition, the existence and uniqueness of the defining term are obviously

26 P.A.J. NOEL

Some properties of reIations:

Reflexive(D) = [R i

Anti_symmetric(D) = [R 1

Tr~sitive(D)

Partial_order(D)

Total_order(D)

Well_founded(D)

R:Pow(D*D), ALL x. x : D --> <x,x> : R]

R:Pow(D*D),

ALL x. ALL y. <x,y> : R ~ <y,x> : R --> x=y]

= [R [R:Pow(D*D), ALL x. ALL y. ALL z.

<x,y> : R ~ <y,z> : R --> <x,z> : R]

= [R I R:Pow(D*D), R : Reflexive(D)

R : Anti_symmetric(D) & R : Transitive(D)]

= [R I R:Partial_order(D),

ALL x. ALL y. x:D ~ y:D --> <x,y> : R I <y,x> : R]

= [R [I R:Pow(D*D), ALL Y. Y <= D & Not(Y=0)

--> EXISTS x. x:Y & Not(EXISTS y. y:y ~ <y,x> : R)]

Some attributes of relations:

Domain(R) = [a

Range(R) = [b

Image(R,X) = [y

Composition:

Ra @ Rb = [X

Transitive closure:

T_clos(R)

Initial segment:

Init(R,x)

a:Union(Union(R)), EXISTS b. <a,b> : R]

b:Union(Union(R)), EXISTS a. <a,b> : R]

y : R~mge(R), EXISTS x. x:X & <x,y> : R]

X: Domain(Ra)*R~nge(Rb), EXISTS x. EXIST y.

X = <x,y> ~ EXISTS z. <x,z> : Rb ~ <z,y> : Ra]

= Inter([S II S:Pow(Domain(R)*Range(R)), R<=S

ALL x. ALL y. ALL z. <x,y> : S & <y,z> : R --> <x,z> : S])

= [y I[y:Domain(R), <y,x> :T_clos(R)]

Fig. 5. Definitions concerning relations.

ensured. However, to ensure that the meaning of the new symbol is the desired one,
some conditions of existence and uniqueness must normally be satisfied. For instance,
the set of least fixed points is defined in Figure 15, Appendix A. Defining the least fixed
point as the union of this set makes sense only if the set is a singleton. Checking
conditions of this kind constitutes a significant part of the work involved in proving
theorems within set theory.

Despite the general use of unconditional definitions in this paper, there are cases
where conditional definitions have been preferred. The function grecs_s which is used
to define generalised simple recursion in Figure 6, for instance, is defined only when
the predicate P in its arguments defines a total function. The reason for choosing a
conditional definition is that the existence and the uniqueness of the defining
expression may be guaranteed under the stated conditions.

EXPERIMENTING WITH ISABELLE IN ZF SET THEORY 27

Some properties of functions:

Partial functions:
Function(A,B) = [F II F:Pow(A*B),

ALL x. ALL y. ALL z. <x,y> : F ~ <x,z> : F --> y=z]

Total functions:
A->B = [F l] F:Function(A,B),

ALL x. x : A --> EXISTS y. <x,y> : F]

F u n c t i o n a p p l i c a t i o n a n d l a m b d a a b s t r a c t i o n :

F'a = Union(Image(F,{a}))

lam(A,E) = [<x,E(x)> [I x:A]

Restriction of a function to an initial segment:

Restrict(f,g,x) = [<y,f'y> [l y:Domain(f), y : Ini~(R,x)]

Definitions of the natural numbers:

successor_set(A) = [X II X:Pow(A), O:X ~ ALL x. x:X --> succ(x):X]

Omega = Inter(successor_set(INF))

Function defined by simple recursion:

recs(f,a) = Inter([R II R:Pow(Omega*Domain(f)), <O,a> : R
ALL n. ALL y. <n,y> : R --> <succ(n), f-y> : R])

Function defined by generalised simple recursion:

Function over n < Omega (conditional definition):

[I Total(P) I] ==> [l grecs s(P,a,n) = f <-> EXISTS A. f : (n Un {n})->A ~ f-O = a
ALL i. i:n --> P(f-i,f'succ(i))

Total function over Dmega:

grecs(P,a) = lam(0mega,~(n)grecs_s(P,a,n)'n)

Special case where R(x,y) is y=F(x):

gfrecs(F,a) = grecs(X(x)Z(y)(y=F(x)), a)

Function defined by well-founded recursion:

Set of functions over restrictions of f in R:
wrec_s(X,Y,R,f) = [F I[F : Function(X,Y),

ALL x. x : Domain(F) --> F'x = f'x'Restriot(F,R,x)

ALL y. y:Init(R,x) --> y : Domain(F)]

Recursive function:
wrec(X,Y,R,f) = Union(wrec_s (X,Y,R, f))

Fig. 6. Definitions concerning functions.

The definitions of Figures 5 and 6 are generally straightforward. The type of the
new constants may easily be inferred from their definition. Amongst the constants,
there are three infix operators: the composition symbol °@', the total function symbol

' - - > ' and the function application symbol `^ '. Both '@' and ' - - > ' are right associative
while `^ ' is left associative. All three symbols have precedence 8. The remainder of this

section consists of specific comments concerning the definitions.

28

General properties of functions:

P. A. J. NOEL

Extensionality:

(i) [J f : A->B] ==> [I g : A->B [] :=> [J f:g <-> ALL x. x:A --> f'x : g'x J]

Total functions with empty domain:

(2) El O->B : {0 } I]

Total functions with empty range:

(3) [I Not(A=O) 13 ==> El A->O = 0 I]

Image of singleton:

(4) [I f : Function(A,B) J]

==> [J a : Image(f,{x}) I] ==> [I b : Image(f,{x}) i] ==> [[a=b]]

composit ion
(5) [I ~ : S -> C I] ==> [I g : a -> s L] ==> [i ~ © g : A -> C

(6) El ~ : B - > c 13 ==> El g : A - > B 13 ==> El a : A I]

==> [I (~ © g) " a = ~ " (g ' a) I]

Typed Lambda Calculus:

application t y p e :

(7) [I ~ : A->B 13 ==> [I x: A 13 ==> [I f - x : ~ 13
abstraction type:

(8) (!(x)[t x:A %]=:>[I E(x):B I]) :=> [I lam(A,e) : A->B I]

beta conversion:

(9) [I a : A I] :=> [I lam(A,E) " a : E(a) 13
eta conversion:

(l o) [I f : A->B 13 ==> [I l a m (A , % (x) f ' x) = f I]

x i rule:

(xl) (!(x)[I x:A l]==>[I E(x) = F(x) I]) ==> El lam(A,E) = lam(A,F)]]

Properties of the natural numbers:

(1 2) [I 0 : Omega I]
(1 3) [I n : Omega I] ==> [I s u c c (n > : Omega]3
(14) [I n : Omega [] ==> [[m : n [] ==> [1 m <= n []
(l S) El m : omega I] = = > [I n : Omega 13 = = > [I m:n I n:m I m=n 13
(16) [~ n : Omega <-> n=O I EXISTS m. n=succ(m) ~ m:Omega I]

Fig. 7. General theorems concerning relations and functions.

Properties have been defined by sets. Thus Partial_order(D) is a set o f partial orders

which may be constructed on the set D; Function(A, B) is the set o f partial functions

f rom the set A to the set B.

The definition o f funct ion application by F ^ a = Union(Image(F, {a}) is justified

by Theorem (4) in Figure 7 which states that, when F is a function and the image of

a under F exists, then that image is unique.
The definition o f natural numbers given in Figure 6 has proved cumbersome to use.

Suppes [17] defines natural numbers, i.e. the members o f co, as the ordinals which are
well-ordered by the inverse o f the membership relation. An ordinal is a complete set

EXPERIMENTING WITH ISABELLE IN ZF SET THEORY 29

(or transitive set, i.e. such that every member is also a subset of the set), connected

by the membership relation. Because it expresses more explicitly the properties of the

membership relation over the natural numbers and the ordinals, such a definition

could result in simpler proofs than the ones resulting from the definition of Figure 6.

For example the theorem stating that, for any two ordinals m and n, either m ~ n or
n ~ m or n = m is a direct consequence of the property of connectedness in Suppes'
definition.

The simple recursion theorem states that, i f f i s a function of type A ~ A and a is

an element of A, then there exists a unique function g of type co ~ A with the
following properties:

gA0 = a

Vn" n e co --+ g A succ(n) = f A(g A n)

The definiens in the definition of the term recs(f , a) represents one possible expression
of this function. The p roof that recs(f , a) is actually a function follows the informal

proof of [8]. An alternative definition is

recs(f , a) = U ({recs_s(f , a, n) ln E co})

with

recs_s(f , a, n) = {g ~ n • {n} ~ Domain(. f) tgAO = a

/x Vi" i e n ~ g~succ(i) = fA(gA/)}

A proof that recs(f , a) as defined here, is a function is given in [17].

Finally, notice that the term lain(A, % (x) f A x) may not be used to describe the

restriction of a partial function,f, to the set A. This is because f ~x is defined for every
value of x, and thus lain(A, % (x) f ~ s) is a total function over A, whereas the

restriction of f to A need not be total on A. Restrict has been defined to remedy this

problem: every element of Restr ic t (f , R, x) is an element o f f

3.2.2. Some Theorems Concerning Functions

Some theorems concerning functions, proved within set theory, are listed in Figures

7 and 8. The Theorems (7)-(11) form a set of axioms for a typed 2 calculus with
equality. The main difference between this form of 2 calculus and the more standard
forms (2~, with equality in [10] pp. 162-165, for instance) lies in the representation of
typing. In set theory, typing must be explicit; it is not part of the syntax. Accordingly,
there are two rules related to typing inferences, one concerning application, the other
abstraction. The fl, r /and ~ rules correspond to the rules of the same name in 2~n. The
other rules of 2~ are simply instances of the substitution rule. Note that the rules
which have been proved within set theory are more general than the rules of,i~,, since

E(x) and F(x) are not restricted to be in functional form.

30

Simple recursion:

P. A. J. NOEL

Mathematical induction:

(I) [[X <= Omega [] ==> [[X : successor_set(A) []==> [I X = Omega []
(2) [~ a : Omega IJ ==> [I P(O) l] =

==> [1 ALL n. n: Omega --> P(n) --> P(succ(n)) I] ==> [[P(a) I]

Simple recursion:

(3) [I f : A->A 13 ==> [I a : A I] ==> [I r e c s (f , a) : Omega->A 1]
(4) [I f : A->A 13 ==> [I a : A 13 ==> [I recs(f,a)'O = a []

(S) [I f : A->A 13 = = > [I a : A 13 ==> [I n : Omega 13
==> [{ recs(f,a)'succ(n) = f'recs(f,a)'n }]

Generalised simple recursion:

(6) [I Total(P) 13 ==> [] grecs(P,a)'O = a 13

(7) [1 Total(P) 13 ==> [I n: Omega 13

==> [[P(grecs(P,a)'n,grecs(P,a)'succ(n))]]

(8)
(9)

[[gfrecs(F,a)'0 = a []
[I n: Omega l] ==> [[gfrecs(F,a)'succ(n) = F(gfrecs(F,a)'n) I]

Well-founded recursion:

Well-founded induction
(11) [I a : X I] ==> [[R : Well_founded(X) I]

==> [] ALL x . x : X - - > (ALL y . < y , x > : R - - > P (y) - - > P (x) []
==> [l P(a) 11

(12) [[a : X 1] ==> [[R : Well_founded(X) []
==> [[ALL x. x:X --> (ALL y. y : Init(R.x) --> P(y)) --> P(x)]3

==> U V(a) l]

Well-founded recursion
(13) [[R : Well_founded(X) I] ==> [[x : X I]

==> (!(y) [[y:Init(R,x) 1] ==> [[f'y'Kestrict(grec(X,Y,R,f),R,y) : Y [])
==> [[Restrict(wrec(X,Y,R,f),R.x) : Init(R,x)->Y 1]

(14) [l R : Well_founded(X) i] ==> [i x : X l]
==> (!(y) [l y:Init(R,x) l] ==> [l f'y'Restrict(.rec(X,Y,R,f),R,y) : Y l])
==> [l f'x'Restrict(wrec(X,Y,R,f),R,x) : Y l]
==> [l wrec(X,Y,R.f)'x = f'x'Reetrict(.rec(XoY.K,f),R,x) l]

(15) [[R : W e l l _ f o u n d e d (X) []
==> (!(x) !(g) [1 x : X]] ==> [] g : (Init(R,x)->Y) [] ==> [[f-x'g : Y 13)
==> [1 wrec(X,Y,R,f) : X->Y []

(16) [[R : Well_founded(X) [3 = = > [[x : X []
==> (!(x) !(g) [] x : X i] ==> [[g : (Init(R,x)->Y) 1] ==> [i f-x'g : Y]]1
==> [[wrec(X,Y,K,f)-x = f*x*Restrict(wrec(X,Y,K,f),R,x) I]

Fig. 8. Recursion theorems.

The basic properties of co lead to the two forms of mathematical induction: (1) and
(2) in Figure 8. Note that A in theorem (1) is a free variable of type exp (i.e. a term).
Since free variables are required in ZF to represent higher order types (there is no way,
for instance, of representing the replacement axiom of Figure 3 within the object
language, and a free variable R has to be introduced to refer to the relations of the

EXPERIMENTING WITH ISABELLE IN ZF SET THEORY 31

language), it seems natural to allow their use in the representation of terms as well.

The alternative form of theorem (1) in which A is existentially quantified within the

second premise would be slightly more difficult to use in proofs. Theorems (1) and (2)
are used in the proof of the simple recursion theorem, formalised in (3), (4) and (5).
A proof of the recursion theorem for primitive recursion may be derived from the
proof for simple recursion. First notice that the definition of r e c s (f , a) includes the
case where a and f A b (for b : A) are functions of the same type. In the case of curried
functions, the conditions satisfied by recs may then be rewritten:

r e c s (f , a) A 0 A x l ~ . . • x,,, = aA x l A. . . x , ,

V n . n e co ~ r e c s (f , a) ^ succ(n) ^ x , A . . . xm

= f ~ (r e c s (f , a) An ~x lA . . . x m) A x l ~ . . .xm

(for any instance of x~, . . . Xm satisfying the type restriction on a and f) . Thus, to
obtain primitive recursion, it remains only to allow the given function, f , to depend
on the iteration step, n (i.e. f = h A n). This could be achieved by redefining recs as a
function of h rather than f , and proving the corresponding properties. Alternatively,
a primitive recursive function based on the function h, of type co ~ A ~ A, and the
set a, of type A, could be derived from simple recursion in the following way:

1. define a f u n c t i o n f o f type co . A ~ A b y f (x) = (s u c c (H d (x)) , h A H d (x) ~ T l (x))

2. define a function g by simple recursion: g = r e c s (f , (0 , a))

3. define the required primitive recursive function as

precs (h , a) = 2n ~ co. T l (g ~n)

The function precs (h , a) is such that:

precs (h , a)A 0 = a

precs (h , a) ~ succ(n) = h A H d (g ~ n) ~ T l (g ~ n)

in which T l (g A n) may be seen, from the definition of precs , to be equal to
precs (h , a) ~ n, and H d (g ~ n) may be shown by induction to be equal to n.

The generalised theorem for simple recursion (see [8] p. 143) states that if a formula
P (x , y) is such that y has a unique value for every x, then there exists a unique
function F such that F~0 is any set a and P (F A n, F A succ(n)) holds for each n in co.

The Theorems (6) and (7) in Figure 8 show that the function grecs (P , a) possesses
these properties. There is no typing theorem for the generalised simple recursion.
However, from the definition it may be deduced that it is a total function with domain
co. The recursive function g f recs (F , a) is a weaker version o f g r e c s (P , a): one in which
the functional expression P (x , y) is of the form y = F (x) . Theorems (8) and (9) are
the specialisation of (6) and (7) for this particular case.

The theorems concerning well-founded recursion are presented in two pairs. The
second pair, consisting of the Theorems (15) and (16), has been derived from the first
pair, (13) and (14), by using the well-founded induction formalised in (12). Although

32 •. A. J. NOEL

(15) and (16) are easier to use, (13) and (14) have been retained because they are
stronger: they do not require t h a t f ^ x ^ g E Ybe true for every g ~ (Init(R, x) ~ Y),
but only for restrictions of the recursive function.

It is worth noting that ordinal recursion may be seen as a special case of well-found-
ed recursion: all that is required is to prove that the membership relation mem(~)
defined on any ordinal ~ is a well-founded relation, f i s a function which must accept
as an argument the restriction of the recursive function at the current ordinal, but
need not be a function of the ordinal itself in order to obtain the full generality of
ordinal recursion. The form of ordinal recursion which may be obtained from the
well-founded recursion theorem is as follows:

[y 6 ~ g~y - -+ Y]
ordinal(a) f ^ g ~ y x ~

orec(c¢, Y, f) ^ x = f ^ Restrict(oree(~, Y, f) , mem(~), x)

where the recursive function is:

orec(~, Y, f) =- wree(c¢,]1, mem(~), lam(~, %(x) f)

lam(~, %(x) f) is the function which returns f for every element of ~.
Notice that for each kind of recursion, the set of theorems specifies the basic

properties of the corresponding function. It should be straightforward to prove by
induction that the function satisfying these basic properties is unique.

3.2.3. Example of the Use of Recursion: Lists

Lists may be represented by sequences. The type of finite sequences may be defined

in the following way:

Seq(type) = [.) ({n ~ type In ~ ~0})

The abstract data type for lists is then obtained by defining the constructors hd, tl, and

CONS.

Alternatively, a list of a given type, type, may be represented by ordered pairs, the
first element of the pairs being of type type, the second element being either a list of
type type or a null element. We take the null list to be type, and thus ensure, by the
foundation axiom, that it is not an element of type. The types of lists of length n and
the type of lists of any length are defined in Figure 9, and the main theorems
concerning them in Figure 10. Binary trees could be defined similarly:

tree(type, n) = gfrecs(2x" type • x u type * (x * x), {type}) A n

Tree(type) = U ({tree(type, n) ln E co})

In order to process lists by well-founded recursion, a well-founded relation must be
found. The relation of immediate sublist has been used for this purpose.

E X P E R I M E N T I N G W IT H ISABELLE IN ZF SET T H E O R Y 33

Type of lists of length n:
list(type,n) = gfrecs(~(x)type*x,{type})'n

Type of finite lists:
List(type) = Union([iist(type,n) 11 n:Omega])

Immediate sublist relation:
Sublist(type) = Union([[<x,<y,x> > IS y:type]]I x:List(type)])

An example of recursive function, the function 'length(type)':

When(x,S,A,B) = Union(IX]i X: {A} Un {B}, (x:S & X=A) I (Not(x:S) ~ X=B)])

f_length(type) = lam(List(type),~(u)lam(Function(List(type),Dmega),X(v)
When(v,Init(Suhlist(type),u)->0mega,

When(u,{type},0,succ(v'Tl(u))),0)))

length(type) = wrec(List(type),Omega,Suhlist(type),f_length(type))

Fig. 9. Definitions concerning lists.

(1)
(2)
(3)
(4)
(s)

[i list(type,0) = {type} i]
[] n : omega l] ==> [l list(type,succ(n)) : type * list(type,n) l]

[i type : List(type) i]
[I x : type b] :=> [i y : List(type) I] :=> [i <x,y> : List(type) I]
[[x : List(type)]] ==> [I Not(x : <type}) []
==> [l x : type*List(type)]]

Theorems concerning the function length:

(6) [I l e n g t h (t y p e) : L i s t (t y p e) -> Omega I]
(7) [i l e n g t h (t y p e) " type = 0]]
(8) [{ y : type [] ==> [i x : List(type) i]

==> [] length(type)- <y,x> = succ(length(type)~x) I]

Fig. 10. Theorems concerning lists.

The function length(type) illustrates the use of well-founded recursion in the defini-
tion of recursive functions. The function When, which is used in its definition is simply
a conditional operator satisfying the following properties:

a e S ~(a E S)

When(a, S, A, B) = A When(a, S, A, B) = B

The definition of the basic function f_length is cumbersome. It is defined as a total
function over Function(List(type), o0) and therefore must be such that for all functions
g, not just restrictions of total functions,f _length(type)Aa A g is of type co. This is the

purpose of the first occurrence of When. All the recursive functions over lists may be
defined in a similar way.

34 P.A.J. NOEL

3.2.4. Further Developments

Further developments of ZF concerning functions are given in the appendices.
Appendix A concerns Tarski's fixed point theorem; Appendix B concerns the part of
domain theory which form the logical basis of LCF. Another line of work consists in
defining the semantics of other theories within ZF set theory, and then proving the

axioms of the theory. Appendix C includes a semantics for simple type theory,
together with an axiomatisation of it derived within ZF. Appendix D includes a
semantics for intuitionistic first-order logic in which formulae are interpreted as sets
of proofs, together with a derived axiomatisation of the logic. The same approach has
also been used to define a semantics for a first-order temporal logic. In this case, the
formulae are interpreted as sets of sequences (or lists) of states, where states are

themselves defined by sets of variables. This is an example where a means of reasoning
about both functions and sets is required. The basic theorems of the temporal logic
have been derived within ZF. A set of more specific theorems has also been derived,
which, when sequenced by an appropriate tactic in a backward proof, generates
automatically models of propositional temporal formulae.

3.3. REASONING ABOUT TYPES

The previously described developments show that set theory is suitable for reasoning
about functions. Despite the restriction imposed by the foundation axiom, set theory
seems also to be well suited for reasoning about types. Given some basic types, such
as ~o or the type of truth values bool, one may construct the standard types such as
cartesian product, disjoint union, dependent product and dependent function space.
The dependent product D_product(A, P) is the set of all pair {x, y) such that x ~ A
and Y c P(x):

D_product(A, P) = U ({{x) * P(x) Ix ~ A))

The dependent function space D_function(A, P) is the set of all total func t ionsfover
A such that, i f x ~ A t h e n f ^ x E P(x):

D_ function(A, P) = {FE A ~ U ({P(y) Iy ~ A})]Vx- x ~ a ~ F ^x ~ P(x))

In fact every set denoted by terms of set theory may be considered as representing a
type. Thus, types need not be disjoint. Subtypes are easily defined: for instance
the type of continuous functions over the cpo RA, defined over the set A, may be
seen as a subtype of A ~ A, itself a subtype of the set of partial functions over
A, Function(A, A).

Recursive types may be constructed in the same way that the type of lists was
constructed in Section 3.2.3. Taking as an example the simple case in which there
is a unique type constructor, the total function symbol, and the chosen form of
recursion is simple recursion, one may define the function f such that:

f A O = A

EXPERIMENTING WITH ISABELLE IN ZF SET THEORY 35

f A succ(n) = f A n u {Hd(x) ---, Tl(x) Ix e f A n *fA n}

where A is a set of basic type, e.g. {09, booI}. This function defines a hierarchy of

types. At any given level of the hierarchy, every new type has the form A ~ B, in

which A and B are types of the previous level. The set of all the types constructed in

this way is type o = U ({fAn [n e co}).

The more complicated case in which the type constructor is the dependent function
space may be treated similarly. The recursive f u n c t i o n f should now be specified by:

f A O = A

fAsucc(n) = f a n u {X e Pow(Function(U (fAn) , U (fAn))13T" 3F.

X = D_function(T, %(x)F A x)

A T e f ~ n A F E T ~ f A n }

The dependent function space defines a new type at a given level of the hierarchy for
all types T of the previous level, and all functions F associating to every element of

T a type of the previous level. As previously, the set of types, typeo, is the union of
all the sets in the hierarchy.

I f the types are polymorphic, i.e. if they are allowed to depend on types and not just

on elements of types, the set of types must itself be considered as a type. To this end,
following [3], one could specify a second hierarchy, in which the first level is typeo and
the level n + 1 consists of all the types constructed recursively from the types in the

level n and the level n itself. The set of all the polymorphic types constructed in this

way is Type = U ({type n In e co}).
The method illustrated above may be applied to define recursive types whenever the

collection of basic types forms a set and the number of type constructors is finite.

4. Comments Concerning the Proofs

The main purpose of the research described in this paper was to develop set theory
sufficiently to be able to reason about functions. The emphasis has been to obtain a

large number of theorems, formulated in a simple way, without much regard to the

form of the proofs themselves and to the level of automation. This section gives a brief
outline of the approach taken in the development of the proofs, together with the

reasons for taking this approach and some comments and criticisms concerning it.
Most of the proofs have been carried out in backward style. The last part of the

section describes an at tempt at producing natural deduction proofs in forward style.

4.1. CHOICE OF SYSTEM OF DEDUCTION

Before developing set theory with natural deduction, I was using the set theory in
sequent calculus style already set up in Isabelle (see [16], for instance, for a com-

parison between systems of deduction). The rules of sequent calculus are well suited

36 P.A.J. NOEL

to backward proofs because they consist only of introduction rules. They can be used
to systematically eliminate the constants in the goals. However, when compared with
natural deduction, the sequent calculus contains an extra formalism to express
implication which is not necessary and may be confusing: the object-level and meta-
level implications are sufficient. The antecedents of meta-level implications may be
interpreted as object-level assumptions, and thus the assumptions of natural deduc-
tion fit naturally in the meta-level logic. Furthermore, derived rules may be obtained
in the natural deduction system which simulate the sequent rules, thus ensuring that
natural deduction is also suitable for backward proofs. The introduction rules of
natural deduction have the same form as the right rules of sequent calculus. However,
the elimination rules have generally a form different from the left rules. In the case of
intuitionistic first-order logic (Figure 1) three elimination rules are not in sequent
style: the ones concerning conjunction, implication and universal quantification. Here
are the three corresponding sequent-style rules:

conj_elim: ~P A Q~ ~ (~P~ ~ [Q~ ~ [R~) ~ [R~

imp_elim: ~P ~ Q] ~ [P] ~ (~Q~ ~ ~R~) ~ ~R~

all_elim: ~ALL x . P(x)] ~ (liP(a)] ~ ~R]) ~ ~R~

For ease of use, the chosen derived rules are such that the connectives to be
eliminated are in the leftmost position. It should be clear, however, that the rules
above are equivalent to the corresponding left rules of sequent calculus. In the case
of a logic with equality, one more pair of rules is required: the reflexivity rule,
~a = a], which is an equality introduction rule, and the substitution rule [[a = b]
~P(b)] ~ [P(a)~, which is an equality elimination rule. The resulting set of rules in
sequent style may be used to eliminate the constants on the right and on the left of
any given goal. There are several problems concerning the 'exists_intr' and 'all_elim'
rules. First, they introduce new schematic variables which are likely to be instantiated
later on in the proof. Usually, only some of the possible instantiations lead to a proof,
and backtracking is necessary when a wrong choice is made. Second, more than one
instantiation may be required during the course of a proof. Thus the rules are not
complete. A complete rule should be expressed in such a way that the quantification
is carried through the proof. A complete 'all elimination' rule, for instance, could be

expressed in the form:

EALL x " P (x)] => (EP(a)~ ~ ~ALL x " P(x)~ ~ ER~) ~ F-R~

However, such complete rules must be used with care in automatic tactics, as they may
lead to circularities. Also, as discussed in [13], when several quantifier rules apply,
they should be applied in such a way that the schematic variables which are intro-
duced impose the least possible constraints on future unifications: the variables
must be functionally dependent on the previously introduced universally quantified
variables. Thus, 'all_intr' should precede 'exists_intr' and 'exits_elim' should precede
'all elim'.

E X P E R I M E N T I N G W I T H I S A B E L L E I N Z F SET T H E O R Y 37

In the sequent-style rules discussed above, it is the rightmost meta-level implication

which stands for the symbol ~- of the corresponding sequent rules. Thus the natural
deduction formalism allows only a single formula on the right of ~-. While this is

adequate for intuitionistic logic, it is not for classical logic. The extra sequent rules for
classical logic may be expressed as:

not_right: [H, P ~ R~ ~ [H ~ R, ~ P ~

not_left: [H ~ R, P~ ~ [H, -qP ~- R~

A possible natural deduction formulation of the extra rules is:

not_intr: ([P~ ~ [Q~) ~ ([P~ ~ [~Q~) ~ [-~P~

not_elim: [~ P ~ ~ [P~

In backward proof, the elimination of negation by 'not_intr' reintroduces a new
negation, leading to the possibility of circularities in automatic proofs. In Section 4.4

a natural deduction formulation of classical logic which is closer to the sequent
formulation will be discussed.

The new constants of ZF on the right-hand-side of a membership symbol may
be eliminated in the same way as the other constants of classical logic. The main
problem concerns equality, for which ZF provides an extra axiom, the extension
axiom. A method for dealing with equality in automated tactics will also be discussed
in Section 4.4.

4.2. TACTICS

The basic tactics of Isabelle are described in [13] and [15]. The tactic 'resolve_tac
ths i' resolves the ith goal of the current proof state with one of the theorems in the
list ths. The tactic 'assume tac i ' attempts to find a unifier between the consequent of
goal i and one of its antecedents. The goal is eliminated from the proof state if the
unification is successful. Both the tactics just mentioned produce a new proof state,
together with a lazy list of alternatives.

A third basic tactic is the resolution 'with elimination': the tactics 'eresolve tac
ths i' performs the same function as the sequence of tactics 'resolve_tac ths i T H E N
assume_tac i', except for the fact that the assumption which allows the elimination of
the first subgoal is eliminated from the other subgoals. The tactic is generally used
with elimination rules (i.e. left rules of sequent calculus). As an illustration of the way
'eresolve_tac' works, consider the tactic 'eresolve_tac [eq_elim] i', where 'eq_elim' is

?a = ?b ?P(?b)

?P(?a)

and the ith goal of the current proof state is

C 1 = C 2 H

Q(e3, e l)

38 P.A.J. NOEL

The resolution step produces initially the new subgoals:

C l : C 2 O c I : c 2 H

c3 = ?b Q(?b, ci)

The subsequent assumption step fails. Backtracking occurs and the next proof state
generated by the resolution step is retrieved. The subgoals are now:

cl = c2 H Cl = C2 H

c, = ?b Q(c3, ?b)

which are further reduced, after the assumption step and the elimation of the antece-
dent c, = c2, to:

H

Q(e3, c2)

In effect, the tactic ensures that Q(c3, c1) is interpreted as a function of Cl, during its
unification with P(a).

More complex tactics have been constructed in ML from these basic Isabelle
tactics. 'REPEAT(step_tac i)' attempts to solve a goal automatically using the rules
of classical logic and the assumption rule. The tactic is applied to the ith goal. If the
goal is solved, goal i + 1 becomes goal i, and an attempt is made to solve this goal.
The tactic usually results in the instantiation of schematic variables. These instantia-
tions depend on the order in which the goals are solved, and thus the tactic is not
always suitable.

Some of Isabelle's tactics perform rewriting using the meta-level equality. However,
the development of ZF described in this paper uses exclusively object-level definitions.
Specific tactics for rewriting have been written using object-level equalities. Some
tactics perform conditional rewriting, using rules of the form

hi h2 . • •

form, ~ form2

o r

h i h 2 . . .

term I -: term2

where the his are hypotheses, which may or may not be present, the termis are terms,
and the formis are formulae.

With rules of the first form, the tactic 'unfold_right [rules] i' replaces each formula
in the conclusion of goal i which unifies with a formula form, by the corresponding
formula form2, while new goals are created from the corresponding hypotheses h,,
h 2 Similarly, the tactic 'unfold_left [rules] i ' performs the same function in the
hypotheses of the selected goal, and 'unfold_all [rules] i ' in both the conclusion and
the hypotheses. With a rule of the second form, the tactic 'rewrite_right_l [rule] i '
performs a one-step rewriting of the conclusion of the ith goal.

E X P E R I M E N T I N G W I T H I S A B E L L E IN Z F SET T H E O R Y 39

• val asm = goal ND_Tunction_set_thy

"[I F : A->B l] ==> [I x : A 13 ==> [I F'x : B 13";

> by (discharge_tac asm 1);

1. [I F : A -> B I] ==> [I x : A l] ==> [I F " x : B I]

> by (unfold left [bimp Totalfunc,Col!ect] I);

1. [t x : A I] ==>

[I F : Function(A, B) & ALL x. x : A --> EXISTS y. <x, y> : F I] ==>

[I F " x : B []

> by (REPEAT(step_tac 1)) ;
1. [I x : A t] =:>

[I F : Function(A, B) I] ==> !(ka)[1 <x, ka> : F I] ==> [i F - x : B []

> by (rewrite_right_l [Apply] I);

1. [l x : A l] ==> [[F : Function(A, B) l] ==>

!(ka)[[<x, ka> : F I] ==> [I F : Function(?Al(ka), ?Bl(ka)) []

2. [I x : i% l] ==> [l F : Function(A, B) I] ==>

!(ka)[l <x, ka> : F I] ==> [I <x, ?bl(ka)> : F I]

3. [1 x : A I] ==> [I F : Function(A, B) 1] ==>

!(ka)[] <x, ka> : F I] ==> [] ?bl(ka) : B I]

> by (REPEAT(assume_tac 1)) ;
i. [I x : A I] ==>

[l F : Function(A, B) l] ==> !(ka)[i <x, ka> : F I] ==> [1 ka : B []

> by (unfold_left [bimp Function,Collect] I);

I. [I x : A I] ==>

!(ka)[l <x, ka> : F 13 ==>

[I F : Pow(A * B) &

ALL x. ALL y. ALL z. <x, y> : F ~ <x, z> : F --> y = z [] ==>

[I ka : B I]

> by (REPEAT(step_tao I));

I. [I x : A I] ==> !(ka)[l <x, ka> : F I] ==>

[I F : Pow(A * B) I] ==> [I ka = ka I] ==> [l ka : B []

> by (unfold_left [Pow,subset] I);

I. [I x : A I] ==> !(ka)[i <x, ka> : F 13 ==> [i ka = ka I] ==>
[l ALL x. x : F --> x : A * B i] ==> [i ka : B }]

> by (REPEAT(step_tat I));

I. [I x : A i] ==> !(ka)[l <x, ka> : F I] ==>
In ka = ka I] ==> [I <x, ka> : A * B I] ==> [I ka : B I]

> by (unfold_left [prod_iffl] 1);

I. [1 x : A I] ==> !(ka)[[<x, ka> : F I] ==>

[l ka = ka I] ==> [I x : A • ka : B I] ==> [i ka : B []

> by (REPEAT(step_tac 1)) ;
(proof complete)

Fig. 11. Example of p r o o f (l) : app l i ca t ion type.

Simple ML functions have been written to perform conversions between various
forms of the same rule. One such function, which is used in the examples of Figures
11 and 12 is the function b i m p . This is a function which rewrites rules of the second
form above into the first form:

hi h2 . . .

x e t e r m l ~-~ x E t erm2

40 P. A. J. NOEL

> val asm = goal ND_set_thy

"[i x : I * B 1] ==> [I x = <Hd(x),Tl(x)> l]";

> by (discharge_tac asm i);

i. [I x : I * B [] ==> [[x = <Hd(x), Tl(x)>]]

> by (unfold_left [bimp Product,Collect] I);.

1. [[x : Pow(Pow(A Un B)) &
EXISTS a. EXISTS b. a : A ~ b : B & x = <a, b> [] ==>

[[x = <Hd(x), Tl(x)> []

> by (REPEAT(step_tat I));

I. [I x : Pow(Pow(A Un B)) [] ==>

!(ka,kb)[] ka : A [] ==>

[i kb : B l] ::> [I x = <ka, kb> i] ==> [I x : <Hd(x), Tl(x)> l]

> by (eresolve_tac [eq_elim] i);

I. [l x : Pow(Pow(A Un B)) I] ==>

!(ka,kb)[[ka : ~ I] ==>

[] kb : B]] ==> [I <ka, kb> = <Hd(<ka, kb>), Tl(<ka, kb>)> I]

> by (rewrite right_l [Pair_eq3] 1);

i. [[X : Pow(Po~(A Un B)) [] ==>

!(ka,kb)[[ka : A I] ==>

[I kb : B]] ==> [i <ka, kb> = <ka, Tl(<ka, kb>)> I]

> by (rewrite_right_l [Pair_eq4] I);

1. [] x : Pow(Pow(A Un B))]] ==>

!(ka,kb)[l ka : A [] ==> [I kb : B l] ==> [~ <ka, kb> = <ka, kb> I]

> by (resolve_tac [refl] I);

(proof complete)

Fig. 12. Example of proof(2): decomposition of an ordered pair.

4.3. EXAMPLES OF P R O O F

An example of backward proof is given in Figure 11. The required theorem and the
specified tactics appear after the symbol '>'. The command specifying a tactic results
in a list of new goals. The proof is initiated by specifying the theorem to be proved:
here the theorem is

F E A - - * B x e A

F ^ x e B

The object-level assumptions F E A ~ B and x e A in the first goal are interpreted by
Isabelle as recta-level assumptions (this may be a bit confusing since normally
object-level assumptions are represented by meta-level implications). The first step
consists of a tactic which discharges these assumptions. The second step unfolds the
'total function' and 'Collect' symbols, according to the definitions of Figures 6 and 3.
The third step performs a classical deduction on the current goal. In the next step,
'Apply' is the following theorem:

F e Function(A, B) <x, y> e F

F ^ x = y

EXPERIMENTING WITH ISABELLE IN ZF SET THEORY 41

Isabelle has to lift the rule over the meta-level quantifier in order to perform the

required unification. In particular it replaces the variables A, B, and y, respectively,
by ?Al(ka), ?Bl(ka) and ?bl(ka) (recall that variables preceded by a question mark
are schematic variables). Rewriting F A x with this conditional equality produces three
subgoals. Two of them can be solved immediately by assumptions. The process
consisting of unfolding followed by a classical deduction continues until the remain-
ing subgoal is solved. The theorem 'prod iffl ' , which has not been mentioned
previously, is

< a , b > ~ A * B ~ - - ~ a ~ A & b ~ B

Although this proof is simple, one of the problems my proofs suffer may be
highlighted here. The goal

x ~ A F 6 Function(A, B) <x, k a > ~ F

k a E B

which appears somewhat near the middle of the proof, may itself be a useful theorem.
It should have been proved first, and then used in the main proof. The reason for not
doing so was to minimise the number of theorems. However, this advantage is more
than offset by the disadvantage of lacking basic theorems. To prove the above basic
theorem in the middle of a large proof may require many more steps than is required
here: in particular, a selective unfolding on the left may require a shift of the relevant
formula to the leftmost position, and a non selective one may perform some unwanted
unfolding; also, the automatic tactic for classical deduction is more likely to produce
unwanted results when performed within a large proof. It is worth noting that

breaking down a proof into some smaller constituents is much more easy in forward
style than in backward style since the result of every step of a forward proof is a
theorem which may be used in the rest of the proof.

The example in Figure 12 illustrates the use of the standard resolution tactics
'resolve_tac [rules] i ' and 'eresolve_tac [rules] i ' , and in particular the tactic perform-
ing a substitution from an equality in the hypothesis, 'eresolve_tac [eq_elim] i'. r e f l
is the reflexivity axiom for equality, x = x. The theorems appearing in the proof, and
not mentioned before are:

P a i r _ e q 3 : Hd(<x, y>) = x

P a i r _ e q 4 : TI(<x, y>) = y

where x and y are free variables.

The two previous examples of proof are very simple. Many of the theorems
mentioned in Section 2 have much more complex proofs. The well founded recursion
theorem was the hardest to prove. It involves forty lemmas, some of them having
proofs of more than a hundred steps. The size of the proofs is in part a consequence
of my style, and there are many ways of reducing it. Obviously, for any given theorem,

42 P.A.J. NOEL

some proofs are better than others. Some of the other factors which affect the length
of a proof are listed below:

• Choice of definition: several examples of alternative definitions have been suggested
in the last section of the paper. For instance, the definition of natural numbers as

particular ordinals simplifies some proofs, as well as making them more general.
• An appropriate partition of the proofs into lemmas and theorems: it seems worth-

while to produce as many lemmas and theorems as possible.
• The use of general tactics, in which the relevant rules are stored in some appropriate

sequence: i.e. an increase in the level of automation.

4.4. LEVEL OF AUTOMATION

Most of the theorems mentioned in this paper have been proved using the simple

tactics mentioned in the previous section. However, some initial work has been done
on automation and a tactic has been written with which a number of simple theorems
have been proved automatically. This tactic uses a basic enumerative strategy. It
eliminates the constants and performs all the possible substitutions until a goal may
be solved by contradiction, or by an application of the 'null' axiom. The current
implementation of the tactic is restricted in several ways. In particular, it applies only
to formulae with predicate variables and function variables of arity at most 1, and it
does not check whether the specified goal may be solved by the infinity axiom or the
foundation axiom. Two problems had to be solved: how to avoid circularities when
eliminating negation in natural deduction, and how to eliminate the equality symbols
in a way which does not introduce incompleteness.

The tactic deals with the first problem by expressing every goal in the form

H ~ ~False~

This can be achieved by resolving the goal with the following rule:

(~ P ~ ~ ~False~) ~ ~P~

The resulting goal may be interpreted as a sequent in which all formulae preceded by
a negation symbol appear to the right of the F- symbol and all other formulae to the
left. In this way, every sequent may be represented in natural deduction style. The
introduction rules have to be converted into elimination rules. For instance, the
conjunction introduction rule

[~P~ ~ WQ~ =~ ~P A Q~

becomes the elimination rule:

~-n(P /x Q)~ ~ (E~P]] ~ ~R~]) ~ (W-qQ]~ ~ ~R~]) ~ [~R~

(note that the constant False could be used in place of the variable R), The negation
rules of sequent calculus, which simply move the negation symbols to the right or to

EXPERIMENTING WITH ISABELLE IN ZF SET THEORY 43

the left of the ~- symbol are not required. However, a rule to eliminate double negation

is necessary:

With respect to the equality symbol, its introduction and elimination rules need to
be more general than in the case of classical logic. They are based on the extension
axiom:

However, to perform substitutions one must now take account of the fact that
equality may be present without being explicit.

Automation is achieved by using the following tactic with a depth first strategy:

fun basic_tac r i = simp_tac i
ORELSE DETERM(eresolve_tac r i)
ORELSE (subs_tac i

APPEND eresolve_tac unsafe_r i)

where i specifies the goal to which the tactic applies and r specifies a list of elimination
and introduction rules. The list of rules which has been used concerns the following
constants: Replace, Collect, the pairing symbol, the symbols defining both kinds of
intersection and union, the powerset, subset and equality symbols, and the classical
connectives. It does not contain the 'all elimination' rule nor 'exists introduction' rule:
these two rules are contained in the list unsafe_r. The 'ORELSE' and 'APPEND'
tacticals specify a choice of tactics. They differ in the following way: if one of the
specified tactics is successful, the other one will be attempted after backtracking in the
case of 'APPEND', but will not in the case of 'ORELSE'. Here are the functions of
the various part of the tactic:

• simp_tac i attempts to solve the goal by contradiction, or using the null axiom.
To improve efficiency, it also attempts to solve the goal using equality reasoning
(making use of reflection, symmetry, transitivity and congruence).

• D E T E R M (eresolve_tac r i) eliminates a constant using the first applicable rule of
r. The tactical D E T E R M makes this choice deterministic: no alternative proof state
is generated. This may be done because the order in which the rules of r are used
does not affect the provability of a proposition.

® subs_tac i is the tactic which chooses one of the negated formulae in the goal as a
target for substitution (it moves the formula to the right) and performs the possible
substitutions. The general substitution rule may be expressed as:

~e(x)~ ~ ~y = x~ ~ ~P(Y)I (1)

Used on its own, this rule may lead to circularities after y = x has been expanded.
Thus two more rules have been used, specialised to the case where P (y) is of the
form y ~ _"

I x eF(u)~ ~ Iv = u~ ~ ~y = x~ ~ ~ y ~ F (v) ~ (2)

44 P.A.J. NOEL

~[x~A~ ~ ~y = x~ ~ ~ y ~ A ~ (3)

Rule (2) is applied only if rule (3) cannot be applied. Similarly, rule (1) is applied
only if rule (2) cannot be applied. Also, rule (2) must not be applied to the case
where F is the identity function, as this may lead to circularities. As the identity
function is the one produced by the first unification, all that is required is to
consider only the alternative unifications. Rule (1) deals with the case where P is
a monadic predicate variable.

• eresolve_tac unsafe_r i is the tactic performing the 'all introduction' and 'exists
elimination' rules. It uses the uncomplete form of the rules.

Here are examples of the theorems proved by the tactic:

3x" x e X *--~ ~ X = 0

x ~ {a} ~ x = a

{a, b} : {b, a}

x c _ A ~ x c ~ y ~ _ A

A e C - - , N C c _ A

U { B } = B

{P(x)[x: { Q (y) l y ~ A}} = { P (Q (y)) I y ~ A}

The proofs took between a few seconds to 1 minute on a Sun 4. However, other
simple theorems took much longer: the proof of x ¢~ y ~ y ¢~ x took 7 minutes. It
is clear that an increase in the complexity of the formulae, and an increase in the set
of constants to eliminate would result in very inefficient proofs. The problem could
be alleviated by providing relevant lemmas and theorems to guide the proofs, and by
making sure that the unfolding of definitions occur only when necessary. Much more
work is required to pursue this line of research.

4.5. FORWARD PROOFS

Although most of the proofs have been written in backward style, some experiments
have been carried out in forward style. The main disadvantage of the forward
approach is the lack of automation: the process involved is proof checking rather than
theorem proving. On the other hand, forward proofs present several advantages:

• As previously mentioned, every step produces a theorem, any one of which is easily
available as a lemma if required.

• The proofs which are not trivial must be planned before being carried out. Many
proofs are derived from an informal description. Such a description is normally
provided in a forward style.

EXPERIMENTING WITH ISABELLE IN ZF SET THEORY

Assumptions:

45

as_mono: [I F : Monotone(L, L) I]

[[l F : Monotone(L, L) I]]
as el: [] L : Complete_lattice(A) J]

[[] L : Complete_lattice(h) I]]
as_x: [l x : [x II x : A, <x, F " x> : L 3 13

[[I x : [x II x : A, <x, F " x> : L] 13]

Lemmas (previously proved):

Trans:

[[<?x, ?y> : L --> <?y, ?z> : L --> <?x, ?z> : L []
[[I L : Complete_lattice(h) I]]
Anti_sym:

[I <?x, ?y> : L --> <?y, ?x> : L --> ?x = ?y 13
[[] L : Complete_lattice(A)]]]
Mono :

[[<?a, ?b> : L --> <F ~ ?a, F " ?b> : L []
[[[F : Monotone(L, L) []]
Lubub:

[I ?x : [x]] x:A, ?P(x) 3 --> <?x, Lub(L, [x I] x:A, ?P(x)])> : L I]
[[[L : Complete_lattice(A) I]]
Lub_least:

[l ?x : Ubs(L, [x [[x:A, ?P(x)]) --> <Lub(L, [x i x:A, ?P(x)]), ?x> : LJ]
[[l L : Complete_lattice(h) I]]
Ub

[J ?x : A --> ?B <= A --> (ALL y. y : ?B --> <y, ?x> L) --> ?x : Ubs(L, 7B) 13
[[I L : Complete_lattice(A) l]]

type_fx:

[[?x : A - - > F ~ ? x : A]]
[[1F : Monotone(L, L)]], [I L : Complete_lattice(A []]
~ype_lub:

[I LubCL, [u I] u : A, ?P(A, n)]) : A [3
[[] L : Complete lattice(A) []]
gype_flub:

[I F " L u b (L , [u J l u : A, ? P (A , u)]) : A I]
[[[F : Monotone(L, L) J], [I L : Complete lattice(A) i]]
~ubtype:
[i [x II x:?A, ?P(x)] <= ?A I]
prop_collect:
[I ?x : [x II x:?A, ?P(x)] --> 7P(?x) I]
def_oollect:

[f ?x : ?A --> ?P(?x) --> ?x : [x J l x:?A, ?P(x)] l]

F i g . 13. E x a m p l e o f f o r w a r d p r o o f i T a r s k i ' s t h e o r e m .

• The proofs are processed more efficiently: in backward style, all the subgoals have
to be carried over through the proof, even though only one subgoal is processed at
a time; this is obviously not the case in forward style.

As an example of forward style, a natural deduction proof of the main part
of Tarski's theorem is shown in Figure 14. The assumptions could be adequately
represented by meta-level implications. However, this formalism leads to complex

46

Proof of main theorem:

P. A. J. NOEL

val fixl = Mono ' (Lub_ub ' as_x);

[I <F - x, F " Lub(L, [x II x : A, <x, F - x> : L])> : L I]

[[I x : [x il x : A, <x, F " x> : L] I], [] L : Complete_lattice(A)]],

[I F : Monotone(Lat, L) I]]

val fix2 = Trams ' (prop_collect ' as_x) ' fixI;

[I <x, F " Lub(L, [x II x : A, <x, F " x> : L])> : L I]

[[I x : [x ~I x : A, <x, F " x> : L] I], [~ L : Complete lattice(A) ~],

[I F : Monotone(L, L) I], [I x : [x IL x : A, <x, F " x> : L] I],

[1L : Complete_lattice(A) I]]

val fix5 = imp_i "[I x : [x II

[I X : [x LI X : A, <x, F "

<x, F " Lub(L, [x 11 x :

[[I L : Complete_lattice(A)

[I L : Complete_lattice(A)

val fix4 = all_i "X" fix3;

x : A, <x, F - x> : L] l]" fix2;

x> : L] -->

A, <x, P " x> : L])> : L I]

1], [I F : Monotone(L, L) i],

l]]

[I ALL x. x : [x II x : A, <x, F " x> : L] -->

<x, F " Lub(L, [x II x : A, <x, F ~ x> : L])> : L I]

[[I L : Complete_lattice(A) I], [I F : Monotone(L, L) I],

[I L : Complete_lattice(A) 13]

v a l f i x 5 = Ub ~ t y p e _ f l u b ~ s u b t y p e f ~ i x 4 ;

[I F " L u b (L , [u II u : A, <u, F - u> : L]) :

U b s (L , [u II u : A, <u, F " u> : L])]]
[. . .]

val semi_fix = Lub_least ~ fixS;

[I <Lub(L, [x I~ x : A, <x, F " x> : L]),

F " Lub(L, [u li u : A, <u, F ~ u> : L])> : L I]

val fix6 = Lub_ub ' (def_collect ' (type_fx ' type_lub) ' (Mono ' semi_~ix));

[I <F " Lub(L, [u II u : A, <u, F " u> : L]1,

Lub(L, [x I[x : A, <x, F " x> : L])> : L []

[...]

val Six = Anti_sym ' ~ix6 ' semi_fix;

[I F " Lub(L, [u II u : A, <u, F " u> : L]1 =

Lub(L. [x I I x : A, <x, F " x> : L]) l]

Code to eliminate the duplicate assumptions:

val fix7 = (imp_i "[I L : Complete_lattice(A) I]" fix) ' as_cl;

val ifix = (imp_i "[I F : Monotone(L,L) I]" fix7) ' as_mono;

[l F - Lub(L, [u 11 u : A, <u, F - u> : L]) =

Lub(L, [x II x : A, <x, F " x> : L]) I]

[[I F : Monotone(L, L) ~], [I L : Complete_lattice(A) I]]

Fig . 14. E x a m p l e o f f o r w a r d p r o o f : T a r s k i ' s t h e o r e m .

procedures to eliminate duplicate assumptions and select the appropriate assumptions
to be discharged. Thus, for practical reasons, the assumptions have been represented
by meta-level assumptions. In Figure 14, the assumptions are listed in square brackets
after each displayed theorem. The proof uses the assumptions and previously proved

EXPERIMENTING WITH ISABELLE IN ZF SET THEORY 47

lemmas listed in Figure 13. It consists of a sequence of ML statements specifying the
required introduction and elimination rules, in the form of ML functions, together

with the appropriate theorems. Here are the ML definitions of the rules which are

used in the proof of Tarski's theorem:

-~ I: fun imp_i p th = imp_intr M R E S (implies_intr (rprop p) th)

VI: fun all i s th = all_intr M R E S (forall_intr (rterm s)) th))

--*E: fun thl 'th2 = mp M R E S thl M R E S th2

The ML function MRES, which has been defined using more basic Isabelle functions,
performs a meta-level resolution without lifting, unifying the first hypothesis from
its first argument with the conclusion of its second argument. The resulting unifier is
the first one generated by Isabelle. The axioms imp_intr, all_intr and mp are some of
the elimination rules and introduction rules of the intuitionistic logic displayed in
Figure 1:

imp_intr:

all intr:

mp:

(~P~ ~ ~Q~) ~ .~P ~ Q~

(A y . ~P(y)~) ~ {Vx . P(x)~

[P -~ Q~ ~ ~P~ ~ ~Q~

The ML functions implies_intr and forall_intr are meta-level introduction rules
described in Section 2.1. The expression (rprop p) converts the string p to a valid
proposition: the expression (rterm s) converts the string s to a valid term. If, for
instance, th is the theorem [VQ~ under the meta-level assumptions {P~, ~P2~ ,
and p is the string 'EPIC', then (implies_intr (rprop p) th) is the theorem [P~ ~ [Q~
under the same assumptions with every instance of Pi removed. If th is the theorem
~P(x)~ under some assumptions and s is the string 'x', then (forall_intr (rterm s) th)
is the theorem A x. ~P(x)~ under the same assumptions. Thus, if th identifies a
theorem [[T~ under the meta-level assumptions p u A, then imp_ip th identifies the
theorem {p ~ T~ under the assumptions A. If th identifies a theorem {T(x)~ under
the assumptions A, then all_i 'x' th identifies the theorem A x. ~T(x)~ under the
assumptions A. If thl identifies the theorem [H ~ T~ under the assumptions A and
th2 identifies the theorem [G~ under the assumptions B, and if the first unifier of H
and G is 0, then thl 'th2 is the theorem TO under the assumptions A u B. The format
thl 'th2 is meant to help relate the resulting proofs to corresponding ones in other
forward systems, such as Automath, in which ~ E is expressed by a function application.

The effect of the above functions may be seen in Figure 14, where the proof has been
broken down into shorter proofs, and the result of each subproof has been displayed.
The ellipses stand for multiple assumptions of the form F:Monotone(L, L) or
L'Complete_lattice(A), which are the assumptions on which the final theorem
depends. The style of the proof is similar to the style obtained in other forward proof
systems, such as the calculus of constructions (a proof of Tarski's theorem in the
calculus of constructions may be found in [11]).

48 P.A.J. NOEL

Note that, although the proofs may contain schematic variables during their
development (originating, for instance, from a previous theorem or from a VE rule),
these variables become normally instantiated in some unification before the end of the
proof. The resulting proof is therefore a standard natural deduction proof.

5. S o m e R e l a t e d W o r k

The concern of Boyer et aL in [4] is to show that automatic proofs may be constructed
in set theory using first-order resolution. To this aim, they use a finite axiomatisation
of set theory - the yon Newmann-G6del-Bernays axiomatisation - and write it in
clausal form. Theorems are proved by refuting their negation, also in clausal form.
Although their eventual aim is to provide an automatic theorem prover, they recog-
nise that automation is presently limited by the problems mentioned in Section 4.4
(finding an appropriate level of expansion for the definitions, and dealing with a large
number of lemmas and theorems) and that some form of heuristics will have to be
used. The sample proof they provide (for the theorem stating that the composition of
homomorphisms is a homomorphism) has been mechanically checked, but not
generated automatically.

Corella [5] has developed ZF set theory within higher order logic. He shows that
the resulting theory is a conservative extension of ZF set theory within first order
logic. He argues that the higher order axiomatisation provides a means of defining
schematic axioms which is not available in a first order formulation. However, a
counter-argument has been provided in this paper: the availability of schematic
variables in Isabelle has made possible a standard first-order formulation of set
theory. Corella has developed a proof checker, 'Watson', which includes the higher
order axiomatisation of ZF. As in LCF, the inference rules are defined by functions
(or algorithms), and the theorems may not be interpreted as derived inference rules.

6. C o n c l u s i o n

A number of theorems concerning functions have been provided within ZF set theory
using the theorem prover Isabelle. It has also been shown that set theory is a suitable
theory to reason about types, including complex types such as polymorphic depen-
dent function spaces. Thus, the development of a theory of functions within set theory
provides a uniform and consistent system for reasoning about functions over arbi-
trary types. The development has proved adequate for defining the semantics of other
theories, and deriving their axiomatisation. Isabelle is well suited to the derivation of
theories within theories: since theorems are in the form of inference rules, it is as easy
to use a theory defined by derived theorems, as it is to use one predefined by axioms
and inference rules.

The emphasis of the work has been to obtain theorems formulated in a clear
and simple way, rather than easy to prove. The proofs themselves are currently
cumbersome. More work is now required in order to convert the existing proofs into
shorter and more readable ones, and to increase the level of automation.

EXPERIMENTING WITH ISABELLE IN ZF SET THEORY 49

Acknowledgements

I am indebted to Larry Paulson for his numerous suggestions concerning both
the theoretical aspect of the research and the use of Isabelle. I would also like to
thank Tobias Nipkow, Thomas Foster, Martin Coen, David Carlisle, Brian Monahan
and Frances Townsend for reading various drafts of the paper and providing
useful comments. The funding of the research was provided by the SERC grant
GR/E0355.7.

Appendices

A. TARSKI'S FIXED POINT THEOREM

A number of theorems concerning fixed points have been proved. Tarski's fixed point
theorem concerns complete lattices. Appendix B includes fixed point theorems con-
cerning cpos. Both make use of the concept of least upper bound. The definitions, and
some of the theorems required in the proof of Tarski's fixed point theorem are given
in Figures 15 and 16. Given a partial order, say R, its underlying set is completely
determined, and may be referred to either by Domain(R) or Range(R). If D is the
underlying set of a partial order R, and Y is a subset of D, Lubs(R, Y) is the set of
least upper bounds of Y in D. Theorem (1) shows that, if this set is not empty, it is

Upper bounds and least upper bound:

Ubs(R,Y)

Lubs(R,Y)

Lub(R,Y)

Inv(R)

GIb(R,Y)

= [y I y : Domain(R), EXISTS X. R : Par~ial_order(X) k

Y <= X ~ ALL x. x:Y --> <x,y> : R]

= [y y : Ubs(R,Y), ALL z. z : Ubs(R,Y) --> <x,z> : R]

= Union(Lubs(R,Y))

= [<Tl(x),Hd(x)> II x:R]

= Lub(Inv(R),Y)

Comple te lat t ice:

Complete_lattice(D) = [R

Monotone functions:

Monotone(RA,RB) = [F

Fixed points:

Fix(F)

Lfixs (F,R)

Lfix (F,R)

R;Partial order(D),

ALL Y. Y <= D --> ~ot(Lubs(R,Y) = 0)]

F:Domain(RA)->Domain(RB),

ALL x. ALL y. <x,y> : RA --> <F'x,F'y> : RB]

= [x I[x : Domain(F), F-x = x]

= [x II x : Fix(F), ALL y. y:Fix(F) --> <y,x> : R]

= Union(Lfixs(F,R))

Fig. 15. Definitions concerning fixed points.

50 P. A. J. NOEL

Basic properties of upper bound:

Uniqueness:

(I) [i a : Lubs(R,Y) I] ==> In b : Lubs(R,Y) [] ==> [I a = b I]

Lub is an ub:

(2) [i ~ot(Lubs(~.Y) = 0) L] ==> [[x:Y i] ==> [[<x,Lub(K.Y)> : R L]

Lub is least:

(3) [] Not(Lubs(R,Y)=0) J] ==> [J x : Ubs(R,Y) l] ==> [J <Lub(R,Y),x> : R J]

Lubs of pairs:

(4) [J Not(Lubs(RA,{x,y})=0)]] ==> [I Lub(RA,{x,y})=y]] ==> [] <x,y> : RA]]

(5) [IRA : Partial order(A) I] =:> [l <x,y> : RAI] ==> [I y : Lubs(RA,{x,y}) l]

Basic properties of fixed points:

(6) [] R : Partial_order(A)]] ==> [] x : Lfixs(~,g) [] ==> [I y : Lfixs(~,R)]3

:=> [[x = y 3]

(7) [l R : Partial_order(A) HI ::> [I Mot(Lfixs(f,R)= 0) []
=:> [] ~-Lfix(~,R) = Lfix(f,R) I]

(8) [I R : Partial_order(A) [] ==> [I Not(Lfixs(f,R) = 0) I] ==> [I x : Fix(f)]]
==> [I <Lfix(f,K),x> : K I]

Properties of inverse relations:

(9) [I R : Complete_lattice(A) J] ==> [[Inv(K) : Complete_lattice(A)]]

(I0) [J R : Partial_order(A) HI ==> [J f : Monotone(R,R) J]
==> [J f : MonoZone(Inv(K),Inv(K)) J]

Tarski's fixed point theorem:

(II) [If : Monotone(Lat, Lat) HI ==> [~ Lat : Complete_lattice(A) I]
==> [J Glb(Lat, [u [I u : A, <f-u,u> : Lat]) : Lfixs(f,Lat) J]

(12) [If : Monotone(Lat, Lat) ~] ==> [I Lat : Complete lattice(A) []
==> [I Lfix(f,Lat) = Glb(Lat, [u [i u : A, <f'u,u> : Lat])]]

Fig. 16. Theorems concerning fixed points.

a singleton, thus justifying the definition of the least upper bound Lub(R, Y) as
[J (Lubs(R, Y)). Note, however, that if Lubs(R, Y) is empty, Lub(R, Y) is 0, even
though there is no least upper bound. A similar remark applies to the least fixed point
of a function f i n a relation R. Theorem (6) states that, if R is a partial order and the
set of least fixed points Lfixs(f, R) is not empty, then it is a singleton. Under these

conditions, Lfix(f, R) is the least fixed point o f f .
The greatest lower bound of a partial order, which is used in Tarski's theorem, is

simply the least upper bound of the inverse partial order. The properties of inverse
relations relevant to Tarski's theorem have been proved. In particular, Theorem (9),
which states that a complete upper semi-lattice is also a complete lower semi-lattice,
justifies the definition of a complete lattice as simply a complete upper semi-lattice.

EXPERIMENTING WITH ISABELLE IN ZF SET THEORY 51

Both Theorems (11) and (12) are required to express Tarski's fixed point theorem. The

two are necessary: if the glb in (12) is the empty set, the theorem asserts that tfix(f, tat)
is also the empty set. However, this could mean either that the least fixed point is the
empty set, or that the least fixed point does not exist. It is Theorem (11) which asserts
the existence of the least fixed point. Note that Theorem (12) would be sufficient to
express Tarski's theorem if the definition of the least fixed point was a conditional
definition, restricted to the case where the set of least fixed points is not empty.

B. DOMAIN THEORY IN PP2

This section is concerned with the p r o o f o f further properties o f functions within set

theory. More specifically, it is concerned with cont inuous functions, and in part icular

the axioms of P P 2 relating to domain theory, as specified in [12] or [7].

The relevant definitions are given in Figure 17, while the theorems are listed in

Figure 18. The definition o f bottom as the union of the set o f bo t tom elements is

Definition of a cpo:

Bottoms(K) = [b I t b : Domain(K), ALL y. y : Range(K) --> <b,y> : R]

bottom(K) = Union(Bottoms(K))

directed(R) = [Z II Z : Pow(Domain(K)), Not(Z=O) &

ALL x. ALL y. x:Z a y:Z

--> EXISTS z. z:Z & <x,z> : R a <y,z> : R]

cpo(X) = [Z II Z : Partial_order(X), Not(Bottoms(Z) = O)

ALL Y. Y : directed(Z) --> Not(Lubs(Z,Y)=O)]

cpo of natural numbers:

Nat = [<Omega,n> 11 n:Omega] Un [<n,n> I[n:succ(Omega)]

Function space and induced order:

Continuous(RA,RB) = [K II K : Domain(RA)->Domain(KB),

KA : cpo(A) & KB : cpo(B) &

ALL Y. Y : directed(RA) --> got(Lubs(RA,Y)=O)

Not(Lubs(RB,[K'xIIx:Y])=O)

Lub(KB,[K'xIIx:Y]) = K'Lub(KA,Y)]

Func(KA,KB) = [X II X : Continuous(RA,KB)*Continuous(RA,RB),

ALL f. ALL g. ALL x. X = <f,g> ~ x:Domain(RA)

--> <f'x,g'x> : RB]

Definitions concerning the fixed point induction:

succ_rel = [<n,succfn)>]l n:Omega]

Infinite_chain(R) = [[f'nlln:Omsga] it f : Monotone(succ_rel,R)]

Chain_complets(X,R) = [Z II Z : Pow(X),
ALL Y. Y <= Z ~ Y : Infinite_chain(K)

--> Lub(R,Y) : Z]

Fig. 17. Definitions concerning PP,t.

52 P.A.J. NOEL

Continuous functions:

(I) [[F : Continuous(RA,RB) [] ==> [I F : Monotone(Rl,RB) []
(2) [[F : Continuous(KA,RB) [] ==> [I X : directed(RA) []

==> IT Lub(RB,Image(F,X)) = F'Lub(RA,X) ~]

Uniqueness of bo t tom element:

(3) [l E : Partial_order(X) [] ==> [[a : Bottoms(R)]] ==> [[b : Bottoms(R)]]
==> [I a=b I]

Constructions of some cpos:

cpo of natural numbers:

(4) [[Nat : cpo(succ(Omega)) []
(5) [[bottom(Nat) = Omega []

cpo induced on a function space:
(6) [[KA:cpo(A)[] ==> [[RB:cpo(B)[] ==> [] Func(RA,RB) : cpo(Continuous(RA,RB))l]
(7) [IRA:cpofA) I3 ==> [[RB:cpo(B)[] ==> [[bottom(Func(RA,KB)) = lam(A,~(x)bottom(RB))[]

Domain theory:

Extensionality:
(8) [[f : Continuous(RA,RB) [] ==> [[g : Continuous(RA,RB) I]

==> [I RA : cpo(A)[] ==> [] RB : cpo(B) I]
==> [I ALL x. x : A --> <f'x,g'x> : RB I]
==> [I <f,g> : Func(RA,RB) I]

Monotonicity:
(9) [[<f,g> : Func(RA,RB) [] ==> [[<x,y> : KA [] ==> [[<f^x,g'y> : RB []

Minimality of bottom element:
(10) [['R : cpo(X) [] ==> [[x : X [] ==> [[<bottom(R),x> : R I]

Least fixed point in cpo:

(11) [I f : Continuous(RA,RA) I] ==> [[RA : cpo(A) I]
==> [I Lub(RA,[recs(f,bottom(RA))'n [[n:Omega]) : Lfixs(f,RA) []

(12) [I f : Continuous(RA,KA) [] ==> [I RA : cpo(A) []
==> [] Lfix(f,RA) = Lub(RA,[recs(f,bottom(RA))'n [[n:Omega])]]

Properties of least fixed points in cpos:
(13) [I f : Continuous(RA,RA) I] ==> [[RA : cpo(A) [3

==> [I f'Lfix(f,RA) = Lfix(f,R*)l]
(14) [[f : Continuous(RA,RA) l] ==> [[RA : cpo(l) I] ==> [[x : Fix(f) 1]

==> [[<Lfix(f,RA),x> : RA []

Fixed point induction:
(IS) [I RA : cpo(A) I] ==> [] [x]I x:A, P(x)] : Chain_complete(A,RA) J]

==> [[f : Continuous(RA,RA) [] ==> [[P(bottom(RA)) []
==> [[ALL x. x:A --> P(x) --> P(f'x) []
==> [I P(Lfix(f,KA)) I]

Fig. 18. Domain theory in PPL

justified by Theorem (3), which states that the bot tom element of a partial order is
unique if it exists. The axioms and rules of inference of PP2 relating to domain theory
have a form in which functions are explicitly typed as continuous functions, and
relations as cpos (in PP2, the untyped symbol ~ is used to express the implied
ordering relation, whatever the underlying set). The theorems concerning the least

EXPERIMENTING WITH ISABELLE IN ZF SET THEORY 53

fixed points may be compared to Tarski's fixed point theorem: here, the type of the

relation is more general (a cpo rather than a complete lattice), and the type of the

function is more specific (continuous rather than monotone). The part of P P 2 which
is not displayed in Figure 18 consists of the axiomatisation of first order logic with
equality and the fi and r/conversion rules. Note that P P 2 also includes a formalism
which induces an ordering relation on products and disjoint unions. The construction
of the corresponding cpos has not been developed here, but is expected to be simpler

than in the case of function spaces.

C. SIMPLE TYPE THEORY

The name of simple type theory seems to have been given to many different formal
systems. Some of them are simplified forms of Russell's type theory (see [18] or [9]).
In these theories there is a unique basic type i of individuals. All the other types are
types of relations or functions of various orders built on this basic type. In some other
type theories (such as the ones referred to in [2]), there are two basic types: the type
i of individuals and the type o of propositions. In this form of the theory, functions
and predicates may be defined over propositions. In particular, the connectives may
be defined as predicates. In the first kind of type theory, it is possible to translate
directly the terms and formulae of the type theory into ZF set theory. To every term
of type theory corresponds a relation or a function of some order constructed on co
(or any other infinite countable set) in set theory. The translation of formulae (see [9]
for more details) consists of

• rewriting the atomic formulae P (x l , x 2 , . . . , xn) into monadic

x2 xo))
• replacing the atomic formulae in monadic form Q(x) by x : Q
e making explicit the typing requirements:

form Q ((x l ,

Vx : A • E (x) becomes V x . x : A --* E (x)

and

3x : A • E (x) becomes 3 x . x : A & E(x) .

In the second kind of type theory, another type is used: the type of propositions.
The main problem in converting such a theory to set theory is that some expressions
of type theory are both terms and formulae. The syntactic rules of set theory forbid
this. However, it is possible to model type theory within set theory by representing
both terms and formulae of type theory by terms of set theory. The set co may be used
to model the individuals. As may be verified in Figure 19, where Andrews' formula-
tion (theory Q0 in [2], pp. 163-164) of type theory has been translated into set theory,
the translation requires only a two-value set to represent the type of propositions. This
set, T, may be understood as a set of truth-values. In the axioms of Q 0, listed below,

54

Definitions:

P. A. J. NOEL

t r = {0}
fls = 0
T = {tr,fls}
Eq(l) = [X II X:(A*A)*T, EXISTS x. EXISTS y .

X = < < x , x > , t r > l (N o t (x = y) ~ X = < < x , y > , f l s >)]
And = lam(T,~(x)lam(T,~(y)Eq((T->T->T)->T)

" <lam(T->T->T,~(g)g'tr'tr),lam(T->T->T,~(g)g'x'y)>))

Imply = lam(T,~(x)lam(T,Z(y)Eq(T)" <x,(And'x'y)>))

Neg = Eq(T)'fls
Or = lam(T,Z(x)lam(T,~(y)geg'(And'(Neg'x)'(Neg~y))))

All(A) = lam(A->T,Z(P)Eq(A->T)" <l~m(A,~(x)tr),P>)
Exist(A) = l~m(A->T,~(P)Neg'(All(A)'lam(A,~(x)Neg'(P'x))))

Desc(A) = lam(A->T,~(f)Union([xllx:A,f'x=tr]))

Typing rules (already derived):

(1) [I F : A - > B I] = = > [I x : A I] = = > [I F ~ x : B I]
(2) (e (x) ([l x : A I] ==> El P (x) : B 13)) ==> [1 l am(A , P) : A->B 1'1

Theorems concerning the typed equality:

(3) [I Eq(S) : (S*S)->T I]
(4) El a:S I] ==> [[b:S I] ==> [I a=b <-> Eq(S)- <a,b> = trl]
(5) [I a:S I] ==> [I b:S I] ==> [I Not(a=b) <-> Eq(S)" <a,b> = flsl]

Theorems recovering Andrews' definition of tr and fls:

(e) [I t r = Eq((T*T)->T) ^ <Eq(T),Eq(T)> l]
(7) [I lls = Eq(T->T)" <lam(T,Y.(x)tr),lam(T,Y.(x)x)> I]

Theorems expressing the axioms of simple type theory:

* Axiom I *
(8) [I g : T->T I] ==> [I Eq(T)" <And'(g'tr)'(g'fls),All(T)'g)> = tr I]
(9) [I g : T->T I] ==> [I And'(g'tr)'(g'fls) = AII(T)'g i]

* Axiom 2 •
(l O) rl h : AI>T 13 ==> [I x :A 13 ==> [I y : a I]

==> [l Imply'(Eq(A)" <x,y>)'(Eq(T)" <h'x,h'y>) = tr I]
* Axiom 3 *
(11) [I :~ : A->B I] ==> [I g : A I>B I]

==> [l Eq(T)" <Eq(A->B)" <f,g>,All(A)'lam(A,Y,(x) Eq(B)" <f'x,g'x>)> = ~r I]

(12) [I ~ : A->B I] ==> [I 8 : A->B I1
==> [I Eq(A->B)" <f,g> = AII(A)'Iam(A,Y,(x) EqCB)" <f'x,g'x>) I]

* Axiom 4 (beta conversion)
(13) [I a : A 13 ==> El Eq(T)" <LCA, P) " a,P(a)> -- tr I]

(14) [l a : Al] ==> £I L(A, P) " a = P(a) l]
* Axiom 5 *
(15) [I x : Al] ==> [I Eq(T)" <Desc(A)-lam(A,Y.(y)Eq(A)- <x,y>),x> = tr I]
(1 6) [l x : A 13 ==> El DescCA)'lam(l,Y.(y)Eq(l)" <x,y>) = x 13

F i g . 19. S i m p l e t y p e t h e o r y .

the types are specified by the subscripts:

1. go.ot &go .o f = Vxo'go~oXo

2. x~ = y~ ---> h ~ o X ~ = h ~ o y ~

3. (f~/~ = g~t~) = (Vx~ "f~/~x~ = g ~ x ~)

EXPERIMENTING WITH 1SABELLE IN ZF SET THEORY 55

4. (2x~" f~(x~))y~ = f p (y ~)

5. l i ~o)~ i (2X i " y i = X i) =- .Fi

Andrews' approach is interesting because of its minimalist aspect: the connectives
and the truth values are defined simply using the 2 symbol and a set of symbols for
typed equality. The approach makes clear how type theory may be seen as an
extension of a typed 2 calculus with equality. The fourth axiom is the fl rule of 2
calculus. Although Andrews uses a set of five primitive axioms in place of this axiom,
he points out that the two formulations are equivalent. Apart from the typed
equality, the only other logical symbol of the theory is the typed description symbol
l, the properties of which may be derived from the fifth axiom. The single rnle of
inference is simply the rule of substitution of equals by equals (through typed
equality).

The same definitions as the ones given in [2] are used in the translation into set
theory, except for the truth values: in Q0, they are defined in terms of the basic
symbols; in the translation, t and f are the predefined sets tr andf/s (ideally different
from the other sets used, but for simplicity taken here as {0} and 0), and the set of
truth values, T, is defined as {tr, fls}. Andrews' definitions for t and f are, however,
recovered as theorems of set theory (Theorems (6) and (7) in Figure 19).

The relation between the typed equality and the equality of set theory is given by
the Theorems (3), (4) and (5). Note that the left implication in the sentence

a ~ S & a = b ~ E q (S) A (a , b) = tr

is provable if N o t (± = tr) may be proved, in which ± is the value resulting from the
application of a function to a term of incorrect type. This is the case here, since
bot = 0 and tr = {0}. However, the weaker Theorem (4) is adequate for the subse-
quent proofs.

The first version of the Axioms 1-5 in Figure 19 differs from the corresponding
axioms in [2] only in the fact that the typing of variables is expressed explicitly
as hypotheses and that every axiom of the form A in [2] becomes A = tr in set
theory. A simplified version of some of the axioms, which uses the set theoretic
equality instead of type equality, is given. It is through the transformation from typed
equality to set-theoretic equality that the inferences of Q0 can be carried over to set
theory.

Axiom 5 and the definition of the description operator require some explanation.
In the definition of Figure 19, the description operator is the function which, when
applied to a truth-valued function, f , returns the inverse image of {tr} under f , and
its type may be proved to be (A ~ T) ~ P o w (U (A)) . An operator of type
(A --, T) -~ A satisfying Axiom 5 could be obtained if there was a function which,
when applied to a truth-valued function f , returns an element a of A such that
f A a = tr when such an element exists. But such a function may not be defined
without the axiom of choice. The chosen definition is however adequate since it allows
the derivation of Axiom 5.

56 P. A . J . N O E L

Definitions:

(A Or B) = (A*{O}) Un (B*{{O}})
(A Alld B) = A*B

AII(A,P) = [F [l F : A->Union([P(y) lly:A]), ALL x. x:A --> F'x : P(x)]
Exis~(A,P) = Union ([{x} * P(x) [I x : A])

FIs = 0

Derived rules:

And_intr [I a : A I] ==> [1 b : B 1] ==> [I <a,b> : A And B I]
And_eliml [I x : A And B l] ==> [I Hd(x) : A I]

And_elim2 [I x : A And B I] ==> [I Tl(x) : B I]

Or_intrl [l x : A l] ==> [l <x,O> : A Or B l]

Or_intr2 [I x : B l] --=> [i <x,{O}> : A Or B I]

Qr_elim [I x : A Or B I]

==> (! (y) l ' l y : A 13 ==> I1 ~ (y) : Z 13)
==> (! (y) [I y : B l] ==> [I g (y) : Z 13)
==> [I W h e n (T l (x) , { 0 } , l a m (A , f) , l a m (B , g)) " H d (x) : Z I]

Imply_intr (!(x)[l x : l l] ==> [I f(x) : S l]) ==> [I l~(A,f) : A->B 13
Imply_elim [[f : A->B [] ==> [[x : A I] ==> [I f'x : B I]
All_intr (!(x)[l x:A I] ==> [I f(x):P(x) []) ==> [I lam(A,f) : AII(A,F) I]

All_elim [I f : AII(A,P) I] ==> [I x : A I] ==> [I f'x : P(x) I]

Exist_intr [I x : A l]==> [l y : P(x) I] ==> [I <x,y> : Exist(A,P) I]
Exist_elim [I p : Exist(A,P) I]

==> (. D f x) ! f y) [I x : A 13 ==> [I y : P f x) I] ==> [I Z f y) : Z 1])
==> [l f (T l (p)) : Z I]

Fls_elim [I x : Fls [] ==> [[y : A I]

Sequent style rules:

And_el [[x 2 A And B I]

==> (! (x) ! (y) [I x : A I] ==> [I y : B I] ==> [I f (x , y) : Z I])
==> [I f(Hd(x),Tl(x)) : Z I]

Imp_el [I x : A-> B I] ==> [I y : A I]

==> (!(x)[l x : B 13 ==> [I ~(x) : z I])
= = > [I ~(x'y) : z I]

A l l e l [I x : A l l (A , P) l] ==> [I y : A I]
==> (!(u)!(v)[l u:A I] =--> [I v:P(u) I] ==> [I ~(v):Z 13)

::> [I ~ (x - y) : z I]

F i g . 20. Intuitionistic logic with proof objects.

D. INTUITIONISTIC LOGIC WITH PROOF OBJECTS

A semantics for a first order intuitionistic logic with quantification over types, in
which formulae are interpreted as sets of proofs, is defined in Figure 20. The defini-
tions of the connectives follow the general idea behind the concept of 'propositions
as types'. Their meaning may be interpreted as follows:

• The set of proofs of A Or B is the disjoint union of the set of proofs of A and the
set of proofs of B. To a proof a of A corresponds a proof <a, 0) of A Or B; to a
proof b of B corresponds a proof <b, {0}> of A Or B.

• The set of proofs of A And B is the cartesian product of the set of proofs of A and
the set of proofs of B.

• The set of proofs of All(A, P) is a dependent function space: the set of total
functions f over A such that, if x e A, then f ^ x is a proof of P(x).

EXPERIMENTING WITH ISABELLE IN ZF SET THEORY 57

• The set of proofs of Exist(A, P) is a dependent product: the set of pairs (x, y) such

that x ~ A and y is a proof of P(x).

The set of proofs of the implication A --, B is the set of total functions from A to
B, i.e. the term A ~ B, as already defined. It is a particular case of the definition of
All: A --, B = All(A, %(x)B). Note that, similarly, the definition of And is a par-
ticular instance of the definition of Exist: A And B = Exist(A, %(x)B).

The introduction and elimination rules of the logic have been derived within set
theory. The rules concerning the implication are simply the typing rules of 2~, 7.

Two examples of theorems, which have been proved using these rules in a backward

style, are given below. The variables with a name starting with the symbol '?' are
schematic variables which become instantiated through unification during the proofs.

An attempt to prove

?x: ((P and Q) Or R) --* ((P Or R) And (Q Or R))

produces

lam((P And Q) Or R,
%(ka)(When(Hd(ka), P And Q, larn(P And Q, %(kb)(Hd(kb), 0)),

lam (R, % (kb) (kb, 0))) A Hd(ka),
When(Hd(ka), P And Q, lam(P And Q, %(kb)(Tl(kb), 0)),

lain(R, % (kb)(kb, {O})))AHd(ka)))

:((P And Q) Or R) ~ ((P Or R) And Q Or R)

An attempt to prove

a:A

?x : All(A, Q) --* Exist(A, Q)

produces

lam(All(A, Q), %(ka)(a, kaAa)):All(A, Q) --* Exist(A, Q)

In the second example, the hypothesis ensures that the type A is not empty. IfA was
empty, it would be possibIe to prove All(A, Q), but not Exist(A, Q); thus there would
be no proof of All(A, Q) ---, Exist(A, Q). Of course, this is a consequence of the use
of quantification over types. The untyped quantification of first order intuitionistic
logic can easily be modelled by using a countably infinite set such as co in place of the
set A. The theorem

?x :Al l (o , Q) ~ Exist(o, Q)

may be proved without hypothesis.

Notes

*The work has been carried out at the Computer Laboratory of the University of Cambridge.
' The version of Isabelle discussed in this paper is the one described in [13]; the latest version, described
in [15], differs from it by a small change concerning only the syntax of the meta-language.

58 p .A.J . NOEL

References

1. Aczel, Peter, Non-WelLFounded Sets, CSLI Lecture Notes 14 (1988).
2. Andrews, Peter B., An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof,

Academic Press (1986).
3. Borzyszkowski, A., Kubiak, R., Leszczylowski, J., and Sokolowsk~, S., 'Towards a set-theoretic type

theory', Technical report, Institute of Computer Science, Polish Academy of Sciences (September
1988).

4. Boyer, Robert, Lusk, Ewing, McCune, William, Overbeek, Ross, Stickel, Mark, and Wos, Lawrence,
'Set theory in first-order logic: clauses for G6del's axioms', J. Automated Reasoning 2, 287-327 (1986).

5. Corella, Francisco, 'Mechanising set theory', Technical Report RC 14706 ('65927), IBM Research
Division (1989).

6. Gabbay, D. and Guenthner, F. (Eds.), Handbook of Philosophical Logic, D. Reidel Publishing
Company (1983).

7. Gordon, Michael J. C., Milner, Robin, and Wadsworth, Christopher P., Edinburgh LCF: A Mechan-
ised Logic of Computation, Springer-Verlag (1979). LNCS 78.

8. Hamilton, A. G., Numbers, Sets and Axioms, Pergamon Press (1982).
9. Hatcher, William S., The Logical Foundations of Mathematics, Pergamon Press (1982).

10. Hindley, J. Roger and Seldin, Jonathon P., Introduction to Combinators and 2-Calculus, Cambridge,
University Press (1986).

11. Huet, G. P., 'Induction principles formalised in the calculus of constructions', in: TAPSOFT 87,
pp. 276-286, Springer-Verlag (1987). LNCS 249.

12. Paulson, Lawrence C., Logic and Computation: Interactive Proof with Cambridge LCF, Cambridge
University Press (1987).

13. Paulson, Lawrence C., 'A preliminary user's manual for Isabelle', Technical Report 133, University of
Cambridge Computer Laboratory (1988).

14. Paulson, Lawrence C., 'The foundation of a generic theorem prover', J. Automated Reasoning 5,
363-397 (1989).

15. Paulson, Lawrence C. and Nipkow, Tobias, 'Isabelle tutorial and user's manual', Technical Report
189, University of Cambridge Computer Laboratory (1990).

16. Sundholm, Goran, 'Systems of deduction', in [6], Vol. 1, pp. 133-188 (1983).
17. Suppes, Patrick, Axiomatic Set Theory, Dover (1972).
18. Takeuti, G., Proof Theory, North-Holland, 2nd edn. (1987).

