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Abstract. The theorem prover Isabelle has been used to axiomatise ZF set theory with natural deduction 
and to prove a number of theorems concerning functions. In particular, the well-founded recursion theorem 
has been derived, allowing the definition of functions over recursive types (such as the length and the 
append functions for lists). The theory of functions has been developed sufficiently within ZF to include 
PP2, the theory of continuous functions forming the basis of LCF. Most of the theorems have been derived 
using backward proofs, with a small amount of automation. 
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1. Introduction 

Although various forms of set theory have been used in attempting to formalise the 
foundation of mathematics, set theory is often considered too clumsy to use for 
reasoning about functions. Some higher order formal systems are generally con- 
sidered more suitable. However, because of the intuitive aspect of set theory and the 
acquired knowledge about its properties, attempts are often made to express the 
semantics of the higher-order formal systems in terms of set theory (see [3] for the case 
of type theory). For  the same reasons, new and more expressive set theories are also 
considered: for instance, the theory of non-well-founded-sets [1] allows a set to belong 
to itself (taking 'belong' to be a transitive relation), and consequently, allows self- 
application of set-theoretic functions, as well as the definition of  a type of  types. 

The aim of my research was twofold: firstly to experiment with the theorem prover 
Isabelle [13, 14], using different kinds of  proof  mechanisms: secondly to prove, within 
ZF set theory, a collection of useful theorems concerning functions. In particular, the 
well-founded recursion theorem has been derived, allowing the definition of functions 
over recursive types (such as the length and the append functions for lists). The theory 
of functions has been developed sufficiently within ZF to include PP2, the theory of  
continuous functions forming the basis of  LCF [7]. The developed theory may be used 
to define set theoretic semantics for other theories, and to derive the axiomatisation 
of the theories within ZF. This is illustrated in Appendix C, where an axiomatisation 
of simple type theory is derived, and in Appendix D, where an axiomatisation of  
intuitionistic first-order logic is derived from a semantics in which the formulae are 
interpreted as the set of their proofs. The set theoretic concept of function is adequate 
for each of these theories. It is worth noting here that, when defining a function in set 
theory, one has the choice to use either a function of predicate logic, or a set theoretic 
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function. The application of  a function of the first kind, say f l ,  to the term a is 
expressed by f l ( a ) .  The application of a function of the second kind, say f2 ,  to a will 
be expressed by f 2  ^ a. When the type of a is known, it is preferable to use the second 
form in order to be able to reason about the function. The function f l  is too big to 
be an object of set theory, since its domain is not a set. However, it is possible to define 
the restriction o f f l  to a set A. In the following, such a restriction will be named 
lain(A, f l ) .  

Isabelle is a theorem prover that is well suited for the task of deriving axioms and 

inference rules, since, in their general form, Isabelle's theorems are inference rules. In 
particular higher order unification, which is provided in Isabelle, is required when 
using the schematic axioms and rules of set theory, or any schematic theorem which 
may be derived in it. ZF set theory has been defined as an extension of  a first order 
theory already set up in Isabelle. 

The main part of  the paper is divided into four sections: Section 2 contains an 
overview of  Isabelle; Section 3 presents some of  the theorems which have been proved, 
and the definitions used in the process; Section 4 is concerned with some of the issues 
relating to the proofs themselves; Section 5 mentions some related work. 

2. An Overview of Isabelle 

Isabelle is a generic theorem prover both designed and written in ML by Larry 
Paulson [13-15]. Isabelle's pure theory (or meta-theory) is a fragment of higher order 
logic defined within a simply typed lambda calculus. The basic inference rules of the 
meta-theory are 'built' into Isabelle, together with some derived ones, and in par- 
ticular a resolution rule. Other theories may be defined as extensions of  the meta- 

theory, by specifying their signature (i.e. their types and typed constants) and their set 
of  inference rules (including axioms, which are simply inference rules without antece- 
dents). The following sections give a brief overview of Isabelle. Detailed descriptions 

may be found in the papers referenced above] 

2.1. ISABELLE'S META-THEORY 

The signature of the meta-theory has one basic type: the type of propositions, prop. 

The main constants in the signature are the implication ~ ,  of type prop ~ prop 

prop, and, for every type o-, a universal quantifier A~ of  type (o- ~ prop) ~ prop. 

Another notation for A , P  is A x~. P(x~). The inference rules of meta-theory, 
expressed in natural deduction style, are given below. 

Implication introduction and elimination rules: 

[~] 

i m p l i e s _ i n  0 . i m p l i e s _ e l i m  : 
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Quantifier introduction and elimination rules: 
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¢(x) A~O 
forall intr: forall_elim: 

A~ • O(a) 

where x is a variable of type a not free in the assumptions, and a is an expression of 
type a. The rule implies_intr allows one to use meta-level assumptions when specifying 
theorems. The quantifier introduction and elimination rules allow theorems to be 
expressed with or without outermost quantification. From the rule implies_elim and 
the quantifier rules, derived rules may be obtained which describe the principles 
underlying the various object-level inferences. One of the most useful of these rules 
is the resolution rule: 

in which the iterated implications associate to the right. 0 is some unifier resulting 
from a higher order unification of the propositions qbi and O, and F0 represents the 
result of applying the substitution 0 to the proposition F. Not  all of  the free variables 
need to be instantiated during the unification. Variables of a new kind, schematic 
variables, are used to identify the free variables which are to be instantiated. Schematic 
variables are represented by symbols, the first character of which is a question mark. 
Free variables behave as constants in the resolution. Both kinds of variable are 
normally involved when the resolution rule is used in backward proofs. In this case, 
the right premise represents the state of  the proof  of the formula q?: it asserts that qJ 
is provable if the propositions Oj(0 ~< j ~< n) are provable. The free variables of ~? 
are interpreted as constants during the proof. The left premise is a derived inference 
rule which is used to replace @~ (a 'goal') by new propositions ('subgoals'). In order 
to perform the appropriate unification of  @ and O~, all the free variables are replaced 
by schematic variables before the rule is used as a left premise in the resolution rule. 

The resolution rule used in the basic tactic for backward proofs is one in which • 
has the simple form [P~. However, Oi may be a complex proposition involving 
implication and quantification. Isabelle may apply two extra derived rules to the left 
premise in order to obtain a proposition with the same structure as O~. If Oi is the 
implication ® ~ qb~, a left premise of the appropriate form is obtained by using 
implication lifting: 

( o  ~ ~ )  ~ . . .  ~ ( o  ~ / L )  ~ ( o  ~ o)  

If  • i is in the form A u~. q)i(G), a left premise of  the appropriate form is obtained by 
using quantification lifting: 

( A G ' f l ,  O ) ~ . . .  ~ ( A u o ' f l . O ) ~ ( A G . O 0  ) 



18 P .A . J .  NOEL 

where 0 represents a substitution in which schematic variables are 'lifted' to become 
functions of u~: any expression of the form ? x ( v l ,  v2 . . . . .  % )  is substituted by 
?x ' ( v l ,  v2 . . . . .  % ,  u~). The point of  the lifting is that ?x'(v~,  v2, • • • , % ,  u~) may 
unify with expressions involving the bound variable uo, while ?X(Vl, v2 . . . .  , %) may 
not. When qb i is in the form A u~ • (®(u~) ~ ~(u~)),  both kinds of lifting are used. 

2.2. PROOFS IN ISABELLE 

Resolution is the basic step of both forward proofs and backward proofs. Backward 
proofs are actually processed in a forward manner: given a proposition qJ, a proof  of 
it will be a forward proof  starting with the theorem q~ ~ q~, and producing q~ after 
a repeated use of the resolution rule. At every stage of  the proof  an intermediary 
theorem (the current proof  state) is derived. As mentioned in Section 2.1, the left 
premise of the resolution rule may be any previously proved theorem in which the 
outer quantification has been removed and schematic variables have been used in 
place of free variables. The right premise is the previous proof  state. When the proof  
of only one instance of qS(x~) is required, the right premise may contain schematic 
variables. In this case, the initial theorem to be used is q~(?x~) ~ q~(?x~) in which ?x~ 
is a schematic variable which may be instantiated during the proof. 

The resolution rule exhibits clearly how a goal ~i produces a set of subgoals,/71 0, 
/72 0, etc. Isabelle provides a basic tactic, 'resolve tac', to perform resolution: the tactic 
'resolve_tac ths i' attempts to resolve the ith goal of the current proof  state with one 
theorem from the specified sequence 'ths'. If  more than one unifier exists, Isabelle 
chooses one resolvent and stores the others in a lazy list, to be retrieved if backtrack- 
ing occurs. Tacticals are provided which may be used to define sequences of tactics, 
alternative tactics, backtracking, etc. The user may also use these predefined tactics 
and tacticals to specify his/her own ones in ML. 

2.3. DEFINITION OF THEORIES 

A new theory is created by completing the signature of another theory and adding new 
axioms to it, or by merging existing theories. Isabelle comes equipped with a few 
theories defined within the meta-theory. The set theory described in this paper has 
been built on top of an intuitionistic logic with natural deduction already present in 
Isabelle and described in Figure 1. The logic includes two basic types: the type of  
terms, exp ,  and the type of formulae, f o r m .  A constant of type f o r m  ~ prop ,  rep- 
resented by the brackets ~ and ~, associates to any formula the corresponding meta- 
level proposition: if f is a formula, ~f~ is the corresponding proposition. The Isabelle 
notation for the metal level constants and the brackets is as follows: 

e x p r e s s i o n  I sabe l le  n o t a t i o n  

ram) 

A xo. @ ( x ~ )  !(x~)~,(x~) 

~... ] ]  [ I . . . I ]  
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*** Constants *** 

Internal notation: 

symbol meta-type precedence description 
= (exp, exp) ---* form left 6 equality 

(form, form) --~ form right 5 conjunction 
] (form, form) --+ form right 4 disjunction 

-~> (form, form) --+ form right 3 implication 
<-> (form, form) ---* form right 3 hi-implication 

False f o r m  false formula 
ForM1 (exp ---* form) ---+ form universal quantifier 
Exist (exp ~ form) --* form existential quantifier 

Alternative notation for input/output: 

ALL x. P(x) stands for Forall P 
EXISTS x. P(x) stands Dr Exists P 
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*** Axioms *** 

*Equality* 

refl: 
sym: 
trans : 

*Propositional 

conj_intr: 
conjunctl: 
conjunct2 
disj intr1: 
disj_intr2: 
disjelim: 

imp_intr: 
mp: 
False_slim 

iff_def: 

*Quantifiers* 

all_intr: 
spec: 
exists_intr: 
exists elim: 

[ I  a=a I ]  
[ I  a : b  i ]  : : >  [ I  b=a i ]  
[ I  a=b l ]  ==> [ I  b=c i ]  ==> [ I  a=c aS 

logic* 

[I P i] ==> [I q I] ==> [J F~Q i] 
[I P~q [] ==> [i P I] 
[I P~Q [] ==> [I Q [] 
[[ P [] ==> [1 PIQ I] 
[I q I] ==> [[ PIQ I] 
[I  PIQ I]  ==> ( [ I  P I] :=> [I ~t I ] )  ==> ( [ I  Q I] ==> [d ~ I ] )  
==> [ I  ~, I ]  
( [ I  P I] ==> [I q I]) ==> [ I  P- ->Q [] 
[I  P-->Q I]  ==> [I P I] ==> [I q I] 
[I  False I ]  :=> [I  P I]  
F<->q == ( P - - > ~ )  ~ ( ~ - - > P )  

(!(y) [] P(y) ]]) ==> [J ALL x.P(x) ]] 
[[ ALL x.P(x) [] ==> [] P(a) [] 
[[ P(a) ]3 =:> [[ EXISTS x.P(x)  [] 
[I EXISTS x.P(x)  [] ==> ( ! (y ) [ [  P(y) J] ==> [i R ]]) ==> [I R I] 

Fig. 1. First-order intuitionistic logic. 

where x~ is a variable of type a. The axioms of Figure 1 are meta-level formulae 
defining the inference rules of  first-order intuitionistic logic with natural deduction. 
For instance, the axiom 

(~P~ ~ ~Q~) ~ ~P --+ Q]] 
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specifies the implication introduction rule: 

[/'1 
Q 

P ~ Q  

The meta-level implication may be used to represent a premise with assumption, as 
well as an inference. The quantifier introduction rule of the metal-level logic allows 
the above axiom to be expressed without an outermost meta-level quantification of 
P and Q. Some axioms, however, require the use of quantification. This is the case, 
for instance, for the axiom specifying the universal quantifier introduction rule: 

( A y . ~ ' ( y )~ )  ~ EVx . P(x)~ 

Here the scope of the quantification of  y is the antecedent of the rule. Such an 
expression may resolve with theorems of the form EQ~ ~ (A y .  ~P(y)~) but not of 
the form ~Q(y)~ ~ ~P(y)~, thus embodying the condition under which the corre- 
sponding rule can be applied, namely that the free variable which is to be quantified 
must not be free in the assumptions. The bi-implication symbol is defined using 
meta-level equality - - : 

P*-+Q = =  (P--+ Q) /x (Q--+ P)  

Meta-level equality is simply a means of defining new symbols standing for more 
complex expressions. In the rest of  the paper, object-level equality will be used for this 

purpose. 
Note that there is no built-in facility to reason about theories. Should there be any 

such requirement, the meta-theory itself should be defined as a new logic in Isabelle. 

3. Developing ZF Set Theory 

The main aim of the work described in this paper was to develop enough of ZF set 
theory to be able to reason about functions, and in particular recursive functions. Set 
theory has been first defined on top of the first order intuitionistic logic mentioned 
earlier. Its axiomatisation consists of some variant of the standard axioms, together 
with a set of definitions for commonly used concepts such as subset, product etc. The 
other theories defined in this paper are simply extensions of ZF with non-recursive 
definitions, and are thus conservative extensions of  ZF. Most of these definitions 
concern terms, rather than predicates: i.e. a deliberate choice has been made to define 
properties by terms, say ~ ,  with the corresponding predication to a term x represented 
by x ~ P~, rather than define predicates P/  with the corresponding properties rep- 
resented by {x I P/(x)}.  This approach seems to be more in the spirit of  set theory, and 
is well suited to reason about types. 

The axioms and rules of inference which have been chosen for set theory are 
presented first. Then a set of definitions concerning functions is introduced and some 
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relevant theorems, including recursion theorems, are discussed. An axiomatisation of 

typed lambda calculus is included in these theorems. 

3.1. ZF SET THEORY 

Set theory has been constructed on top of the first-order intuitionistic logic mentioned 

earlier. The logic is first extended by two inference rules: 

• The substitution of  equals by equals, 'eq_elim', which is required for a logic with 
equality: 

a = b P(b)  

P(a)  

The axioms concerning the reflexivity, symmetry and transitivity of equality are 
already in the basic theory. In fact, the symmetry and transitivity axioms may be 
derived from the above axiom and the reflexivity axiom (which may be seen as an 
'equality elimination' rule) 

• an axiom used to extend intuitionistic logic to classical logic, the refutation 
axiom: 

[Not(A)] 

A 

A 

with the following definition of Not: 

No t (A )  +--, (A ~ False) 

The theory is then extended to include the new constants displayed in Figure 2 and 
the ZF axioms, displayed in Figure 3. Three new constants are required in ZF set 

theory: the membership predicate ~, the empty set 0, and a constant to define pairs 
(the constant ': :', defining the insertion of  a set into another, and used simply to insert 
two sets into the empty set). All other constants may be defined in terms of these basic 
ones. For convenience, however, the axiomatisation given in Figure 3 introduces 
other basic constants, such as 'Union',  'Pow', . . . (the justification for this approach 
will be given later in this section). When a defined constant is required by an axiom, 
its definition appears before the axiom in Figure 3. Other useful definitions are listed 
in Figure 4. The symbols other than the constants are taken to be universally 
quantified meta-level variables. In ZF6, for instance, x and A are universally quan- 
tified over the type exp,  and P over exp ~ fo rm .  From a syntactic point of view, the 
variables quantified over exp may be seen as standing for free variables, and the other 
quantified variables for schematic variables (i.e. uninstantiated constants) of various 
orders. 
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*** internal notation *** 

Basic 
symbol meta-type 

: (exp, exp) ~ f o r m  
0 exp  
:: (exp, exp) -.-* exp  

Pow exp  ---* exp  
Union exp  ~ exp  

Collect (exp, exp  ---* f o r m )  ----* e z p  
Repl (exp ---* exp  ~ f o r m ,  exp) ~ exp  
INF exp  

precedence 

right 6 

right 7 

description 

membership: 6 
empty set: 

inclusion: a :: b :: 0 = {a, b} 
power set 

union of a family of sets 
C o l l e c t ( A , P )  = {x  6 A ] P ( x ) }  

gepl (a ,B)  = {~ I ~ .  U e B ^ R(y, ~)} 
infinite set 

Defined 
symbol meta- type precedence 

<= (exp, exp) ---* f o r m  right 6 
<< (exp, exp) -4 f o r m  right 6 

Inter exp  --* exp  

Un (exp, exp) ~ exp  right 7 
suc¢ e z p  ~ exp  
I n t  (exp, exp)  ~ exp  right 8 

Keplace (exp ~ exp, ezp) --* exp  
Pair (exp, exp) ~ exp  
Hd exp  --.* exp  
T1 exp  --~ exp  
* (exp, exp) --* exp  right 8 
- (exp, exp) ---* exp  right 7 

Functional (exp ---* exp  ---* f o r m )  ---* f o r m  
Total (exp ---* exp  ---* f o r m )  ---* f o r m  

description 

subset:C 
strict subset: C 

intersection of a family of sets 
union of two sets 
successor function 

intersection of two sets 
Rep lace( f ,B)  ----- {f (x)  [ x 6 B} 

ordered pair 
H d ( P a i r ( a , b ) )  = a 

T l ( P a f r ( a , b ) )  = b 
product of two sets 

difference of two sets 
predication of a functional relation 

total functional relation 

*** Alternative notation for input /ou tput  *** 

{a ,b}  stands for a :: b :: 0 
{a} stands for {a , a}  
<a,b> stands for P a i r ( a , b )  
[ x [I x:A, P (x ) ]  stands for Co l l ec t (A ,P )  
[ ~(x)  1{ x:B] stands for Rep lace ( f ,B )  

Fig. 2. ZF  constants.  

In [17] and [8], ZF1 is axiomatised as A ___ B /x B ~_ A ---, A = B. However, the 
bi-implication is easily obtained by using the substitution rule of equality (eq_elim). 
Note that ZFI  may also be introduced as an extension of classical logic without 
equality. In [9] for instance, equality is defined by the extension axiom of Figure 3, 
and the extension axiom becomes the axiom schema: 

V x .  Vy  " x = y ~ ( P ( x )  *-~ P ( y ) )  

From these, the properties of equality are derivable. 
Usually, the axioms ZF2 and ZF8 are given in the form of existentially quantified 

statements: e.g. 'there is a set with only elements a and b' (pairing). In each case, the 
uniqueness of the set may be proved, thus allowing the definition of a new term to 
represent it. For  ZF3 to ZF7, the defining formulae are used as axioms, in place of 
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s u b s e t :  [I A <= B <-> ALL x. x:A - ->  x:B I] 

ZF I - extension [I A = B <-> A <= B & B <= A t] 

ZF 2 - null: [i Not(a:O) I] 

ZF S - pairing: [i x : {a,b} <-> x=a I x=b I] 

ZF 4 - Union: [i A : Union(C) <-> EXISTS B. A:B & B:C J] 

ZF S - Power: [L A : Pow(B) <-> A <= B ~] 

ZF 6 - Collect: [l x : Collect(A,P) <-> x : A ~ P(x) I] 

Functional: [I Functional(R) <-> 

ALL x. ALL y. ALL z. R(x,y) & R(x,z) --> y=z I] 

ZF 7 - Replacement: [[ Functional(R) i] ==> 

[I y : RepI(R,B) <-> EXISTS a. a : B & R(a,y) i] 

Un: [I A Un B = Union(£A,B}) i] 

suet: [I eucc(n) = n Un {n} I] 

ZF S - INF_O: [i O:INF i] 

INF_succ: [I n:INF I] ==> It succ(n):INF l] 

Inter: [I Inter(C) = [ x I I x:Union(C), ALL y. y:C --> x:y] i] 

Int: [I k Int B = Inter(£A,B}) I] 

ZF 9 .- foundation: [i Not(A=O) i] ==> [i EXISTS u. u:A & u Int A = 0 I] 

Fig. 3. Z F  ax iomat i sa t ion .  
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Total: [i Total(R) <-> Functional(R) & ALL x. EXISTS y. R(x,y) i] 

strict_subset: [j A << B <-> A <= B ~ Not(A=B) i] 

Replace: [i Replace(f ,A) = Repl(Y.(x)%(y)(y=f(x)),A) i] 

Pair: [I <a,b> = {{a}.fa,b}} I] 

Hd: [{ Hd(A) = Union(Inter(A)) I] 

Tl: [I Tl(A)= Union([ X Jl X:Union(A), 
Not(X:Inter(A)) i Union(A) = Inter(A)])J] 

Product: [i A*B = [ x i l x:Pow(Pow(A Un B)), 
EXISTS a. EXISTS b. a:A ~ b:B ~ x= <a,b>]l] 

Dif: [I A- B = [ y If y: A, Not(y:B)] i] 

Fig. 4. Simple definit ions.  

the usual  existent ial  ones. This is the same form of  ax ioma t i sa t ion  as the one for  the 

sequent  form of  Z F  in [13]. 

There  are m a n y  ways o f  formal is ing  the "null' axiom: 

® as an existential  s ta tement  a b o u t  the null set; 
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• as an expression of the defining property of the null set, if the null set is taken as 
a primitive symbol; 

• as a definition of  the null set. 

The axiom may even be omitted completely, since the existence and uniqueness of a 
null set may be derived from the other axioms. The formalisation which has been 
chosen here is the second one above: 0 is taken as a primitive symbol. 

ZF8 ensures the existence of  an infinite set. In the chosen axiomatisation, the 
primitive symbol INF represents one such set, and its defining properties are given by 
INF_0 and INF_succ. Note that INF has been introduced for convenience only. It 
is possible to define the set of natural numbers, co, directly from the existential version 
of ZF8: it is the intersection of the sets which satisfy the properties specified by the 
axiom. It can then be shown that co itself satisfies these properties. 

The foundation axiom is given in its usual form. From it has been derived the 
theorems: 

~ ( a  ~ a) and -n (a  e b /x b ~ a) 

One point to note in the definitions of  Figure 4 is the use of the % symbol in place 
of the abstraction symbol )[. In the definition of Replace, % ( x ) % (y )  ( y = f ( x ) ) is an 
expression of  type exp ~ exp ~ fo rm ,  as required by the typing of  Repl. The follow- 
ing theorem has been derived using the definition of Replace: 

x E Rep lace( f ,  B )  ~ ~ a .  a ~ B /x x = f ( x )  

Although less general than Repl, the constant Replace has been used whenever 
possible because of its simpler expansion. 

A number of  other basic theorems have been proved, which are required in order 
to proceed with the development of a theory of  relations and functions. Some of them, 
and their proof  in sequent style, may be found in [15]. 

3.2. RELATIONS AND FUNCTIONS 

Set theory has been developed with the particular aim of reasoning about functions. 
A new theory, consisting of a set of new constants together with a set of axioms 
defining them, has been built on top of ZF set theory. However, since the axioms are 
simply definitions of well formed expressions of  ZF, the new theory is a conservative 
extension of ZF. The first part of this section consists of a general discussion about 
definitions and specific comments concerning some of the definitions which have been 
introduced to reason about relations and functions. Next, some of  the theorems which 
have been proved are discussed, and in particular several recursion theorems. Finally, 
the two last subsections mention some possible applications of  the work presented in 
this paper: reasoning about the set theoretic semantics of other theories and reasoning 
about types. For  the sake of  clarity, only the definitions and main theorems involved 
in the proof  of the recursion theorems have been displayed in the main part of the 
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paper  (further developments are described in appendices, while simple definitions 

which have not been required for these developments, such as the ones concerning 

currying, have been omitted). 

3.2.1. Definitions 

New concepts are introduced in a theory through definitions. I f  the form of the 

definitions satisfies adequate criteria, adding definitions does not alter the basic 
theory, but merely provides syntactic variants for some of the expressions of  the 
theory. For  this to be the case, the definition of new constants must satisfy the 

following requirements (see [17], Ch. 2): 

• a theory T t o  which a new definition D is added must form a conservative extension 

of  T: i.e. the only sentences not containing the new symbol which are provable in 

T /~ D are the ones which are provable in T. 
• any new definition must satisfy the eliminability criterion: i.e. every sentence which 

contains the defined symbol must be equivalent to one without it. 

Sometimes, conditional definitions seem appropriate.  For  instance, the application 
of  a term to another term is defined only if the first term is a function, and the second 

term is from an appropriate set. An unconditional definition may still be used if a 

meaning is given to fAa  when f i s  not a function or a is not in the domain o f f .  
We then have to ensure that any theorem concerning function application includes 
the appropriate  typing hypotheses. Although a conditional definition, in which the 

definition itself is subject to the typing constraints, would result in simpler theorems, 

it would not satisfy the criterion of eliminability: any sentence involvingfAa could not 
be eliminated in favour of  a sentence not involving A when a does not belong to the 

domain o f f  or f is not a function. 
The choice which has been made in this paper  was to use unconditional definitions 

whenever appropriate,  most of  them of the simple form new_symbol(x) = exp(x), 
where x is a set of  variables, possibly empty, and exp(x) is a term not involving the 

new symbol (recursive definitions are thus disallowed) and having the variables in x 
as the only free variables. The free variables may be higher-order variables, as long 
as the terms being defined are well-formed terms of set theory. This is the case, for 
instance, in the definition of  lambda abstraction: 

lam(A, E) = {~x, E (x ) ) l x~A}  

where E is a variable of  type exp --, exp. Unconditional definitions have sometimes 
a domain of application which is more general than is required. For instance, Domain, 
Range and Image apply to any set, not just relations; the application FAa is also 
defined for any sets F and a. Care must be taken when using such general definitions: 
for instance, most  theorems concerning an application should be subject to the 
conditions that F is a function, and a is in the domain of F. When using an uncon- 
ditional definition, the existence and uniqueness of the defining term are obviously 
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Some properties of reIations: 

Reflexive(D) = [ R i 

Anti_symmetric(D) = [ R 1 

Tr~sitive(D) 

Partial_order(D) 

Total_order(D) 

Well_founded(D) 

R:Pow(D*D), ALL x. x : D --> <x,x> : R] 

R:Pow(D*D), 

ALL x. ALL y. <x,y> : R ~ <y,x> : R --> x=y] 

= [ R [ R:Pow(D*D), ALL x. ALL y. ALL z. 

<x,y> : R ~ <y,z> : R --> <x,z> : R] 

= [ R I R:Pow(D*D), R : Reflexive(D) 

R : Anti_symmetric(D) & R : Transitive(D)] 

= [ R I R:Partial_order(D), 

ALL x. ALL y. x:D ~ y:D --> <x,y> : R I <y,x> : R] 

= [ R [I R:Pow(D*D), ALL Y. Y <= D & Not(Y=0) 

--> EXISTS x. x:Y & Not(EXISTS y. y:y ~ <y,x> : R)] 

Some attributes of relations: 

Domain(R) = [ a 

Range(R) = [ b 

Image(R,X) = [ y 

Composition: 

Ra @ Rb = [ X 

Transitive closure: 

T_clos(R) 

Initial segment: 

Init(R,x) 

a:Union(Union(R)), EXISTS b. <a,b> : R] 

b:Union(Union(R)), EXISTS a. <a,b> : R] 

y : R~mge(R), EXISTS x. x:X & <x,y> : R] 

X: Domain(Ra)*R~nge(Rb), EXISTS x. EXIST y. 

X = <x,y> ~ EXISTS z. <x,z> : Rb ~ <z,y> : Ra] 

= Inter([ S II S:Pow(Domain(R)*Range(R)), R<=S 

ALL x. ALL y. ALL z. <x,y> : S & <y,z> : R --> <x,z> : S]) 

= [ y I[ y:Domain(R), <y,x> :T_clos(R) ] 

Fig. 5. Definitions concerning relations. 

ensured. However, to ensure that the meaning of the new symbol is the desired one, 
some conditions of existence and uniqueness must normally be satisfied. For  instance, 
the set of  least fixed points is defined in Figure 15, Appendix A. Defining the least fixed 
point as the union of this set makes sense only if the set is a singleton. Checking 
conditions of  this kind constitutes a significant part of  the work involved in proving 
theorems within set theory. 

Despite the general use of unconditional definitions in this paper, there are cases 
where conditional definitions have been preferred. The function grecs_s which is used 
to define generalised simple recursion in Figure 6, for instance, is defined only when 
the predicate P in its arguments defines a total function. The reason for choosing a 
conditional definition is that the existence and the uniqueness of the defining 
expression may be guaranteed under the stated conditions. 
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Some properties of functions: 

Partial functions: 
Function(A,B) = [ F II F:Pow(A*B), 

ALL x. ALL y. ALL z. <x,y> : F ~ <x,z> : F --> y=z] 

Total functions: 
A->B = [ F l] F:Function(A,B), 

ALL x. x : A --> EXISTS y. <x,y> : F] 

F u n c t i o n  a p p l i c a t i o n  a n d  l a m b d a  a b s t r a c t i o n :  

F'a = Union(Image(F,{a})) 

lam(A,E) = [ <x,E(x)> [I x:A] 

Restriction of a function to an initial segment: 

Restrict(f,g,x) = [ <y,f'y> [l y:Domain(f), y : Ini~(R,x) ] 

Definitions of the natural numbers: 

successor_set(A) = [ X II X:Pow(A), O:X ~ ALL x. x:X --> succ(x):X ] 

Omega = Inter(successor_set(INF)) 

Function defined by simple recursion: 

recs(f,a) = Inter([ R II R:Pow(Omega*Domain(f)), <O,a> : R 
ALL n. ALL y. <n,y> : R --> <succ(n), f-y> : R ]) 

Function defined by generalised simple recursion: 

Function over n < Omega (conditional definition): 

[I Total(P) I] ==> [l grecs s(P,a,n) = f <-> EXISTS A. f : (n Un {n})->A ~ f-O = a 
ALL i. i:n --> P(f-i,f'succ(i)) 

Total function over Dmega: 

grecs(P,a) = lam(0mega,~(n)grecs_s(P,a,n)'n) 

Special case where R(x,y) is y=F(x): 

gfrecs(F,a) = grecs(X(x)Z(y)(y=F(x)), a) 

Function defined by well-founded recursion: 

Set of functions over restrictions of f in R: 
wrec_s(X,Y,R,f) = [ F I[ F : Function(X,Y), 

ALL x. x : Domain(F) --> F'x = f'x'Restriot(F,R,x) 

ALL y. y:Init(R,x) --> y : Domain(F) ] 

Recursive function: 
wrec(X,Y,R,f) = Union(wrec_s (X,Y,R, f)) 

Fig. 6. Definitions concerning functions. 

The definitions of  Figures 5 and 6 are generally straightforward. The type of the 
new constants may easily be inferred from their definition. Amongst  the constants, 
there are three infix operators: the composition symbol °@', the total function symbol 

' - - > '  and the function application symbol `^ '. Both '@'  and ' - - > '  are right associative 
while `^ '  is left associative. All three symbols have precedence 8. The remainder of  this 

section consists of  specific comments concerning the definitions. 
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General properties of functions: 
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Extensionality: 

(i) [J f : A->B ] ==> [I g : A->B [] :=> [J f:g <-> ALL x. x:A --> f'x : g'x J] 

Total functions with empty domain: 

( 2 )  El O->B : {0 }  I ]  

Total functions with empty range: 

(3) [I Not(A=O) 13 ==> El A->O = 0 I]  

Image of singleton: 

(4) [I f : Function(A,B) J] 

==> [J a : Image(f,{x}) I] ==> [I b : Image(f,{x}) i] ==> [[ a=b ]] 

composit ion 
(5) [I ~ : S -> C I] ==> [I g : a -> s L] ==> [i ~ © g : A -> C 

( 6 )  El ~ : B - >  c 13 ==> El g : A - >  B 13 ==> El a : A I ]  

==> [ I  (~  © g )  " a = ~ " ( g ' a )  I ]  

Typed Lambda Calculus: 

application t y p e :  

( 7 )  [ I  ~ : A->B 13 ==> [ I  x:  A 13 ==> [ I  f - x  : ~ 13 
abstraction type: 

(8) (!(x)[t x:A %]=:>[I E(x):B I]) :=> [I lam(A,e) : A->B I] 

beta conversion: 

(9) [I a : A I] :=> [I lam(A,E) " a : E(a) 13 
eta conversion: 

( l o )  [ I  f : A->B 13 ==> [ I  l a m ( A , % ( x ) f ' x )  = f I ]  

x i  rule: 

(xl) (!(x)[I x:A l]==>[I E(x) = F(x) I]) ==> El lam(A,E) = lam(A,F)]] 

Properties of the natural numbers: 

( 1 2 )  [ I  0 : Omega I] 
( 1 3 )  [ I  n : Omega I ]  ==> [ I  s u c c ( n >  : Omega ]3 
(14) [I n : Omega [] ==> [[ m : n [] ==> [1 m <= n [] 
( l S )  El m : omega I ]  = = > [ I  n : Omega 13 = = >  [I m:n I n:m I m=n 13 
(16) [~ n : Omega <-> n=O I EXISTS m. n=succ(m) ~ m:Omega I] 

Fig. 7. General theorems concerning relations and functions. 

Properties have been defined by sets. Thus  Partial_order(D) is a set o f  partial orders 

which may be constructed on the set D; Function(A, B) is the set o f  partial functions 

f rom the set A to the set B. 

The definition o f  funct ion application by F ^ a = Union(Image(F, {a}) is justified 

by Theorem (4) in Figure 7 which states that, when F is a function and the image of  

a under  F exists, then that  image is unique. 
The definition o f  natural  numbers  given in Figure 6 has proved cumbersome to use. 

Suppes [17] defines natural  numbers,  i.e. the members  o f  co, as the ordinals which are 
well-ordered by the inverse o f  the membership  relation. An  ordinal is a complete set 
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(or transitive set, i.e. such that every member  is also a subset of  the set), connected 

by the membership relation. Because it expresses more explicitly the properties of  the 

membership relation over the natural numbers and the ordinals, such a definition 

could result in simpler proofs than the ones resulting from the definition of  Figure 6. 

For example the theorem stating that, for any two ordinals m and n, either m ~ n or 
n ~ m or n = m is a direct consequence of  the property of  connectedness in Suppes'  
definition. 

The simple recursion theorem states that, i f f i s  a function of type A ~ A and a is 

an element of  A, then there exists a unique function g of  type co ~ A with the 
following properties: 

gA0 = a 

Vn" n e co --+ g A succ(n) = f A(g A n) 

The definiens in the definition of the term recs(f ,  a) represents one possible expression 
of  this function. The p roof  that recs(f ,  a) is actually a function follows the informal 

proof  of  [8]. An alternative definition is 

recs( f ,  a) = U ({recs_s(f ,  a, n) ln E co}) 

with 

recs_s(f ,  a, n) = {g ~ n • {n} ~ Domain( . f ) tgAO = a 

/x Vi" i e  n ~ g~succ( i )  = fA(gA/)} 

A proof  that recs(f ,  a) as defined here, is a function is given in [17]. 

Finally, notice that the term lain(A, % ( x ) f A x )  may not be used to describe the 

restriction of a partial function,f,  to the set A. This is because f  ~x is defined for every 
value of x, and thus lain(A, % ( x ) f ~ s )  is a total function over A, whereas the 

restriction of f to A need not be total on A. Restrict  has been defined to remedy this 

problem: every element of  Restr ic t ( f ,  R, x) is an element o f f  

3.2.2. Some Theorems Concerning Functions 

Some theorems concerning functions, proved within set theory, are listed in Figures 

7 and 8. The Theorems (7)-(11) form a set of  axioms for a typed 2 calculus with 
equality. The main difference between this form of 2 calculus and the more standard 
forms (2~, with equality in [10] pp. 162-165, for instance) lies in the representation of 
typing. In set theory, typing must be explicit; it is not part  of  the syntax. Accordingly, 
there are two rules related to typing inferences, one concerning application, the other 
abstraction. The fl, r /and ~ rules correspond to the rules of  the same name in 2~n. The 
other rules of  2~ are simply instances of  the substitution rule. Note that the rules 
which have been proved within set theory are more general than the rules of,i~,, since 

E(x )  and F(x)  are not restricted to be in functional form. 
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Simple recursion: 
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Mathematical induction: 

(I) [[ X <= Omega [] ==> [[ X : successor_set(A) []==> [I X = Omega []  
(2 )  [~ a : Omega IJ ==> [I P(O) l ]  = 

==> [1 ALL n. n: Omega --> P(n) --> P(succ(n)) I] ==> [[ P(a) I] 

Simple recursion: 

( 3 )  [ I  f : A->A 13 ==> [ I  a : A I ]  ==> [ I  r e c s ( f , a )  : Omega->A 1] 
(4) [I f : A->A 13 ==> [I a : A 13 ==> [I recs(f,a)'O = a [] 

(S )  [ I  f : A->A 13 = = >  [ I  a : A 13 ==> [ I  n : Omega 13 
==> [{ recs(f,a)'succ(n) = f'recs(f,a)'n }] 

Generalised simple recursion: 

(6) [I Total(P) 13 ==> [] grecs(P,a)'O = a 13 

(7) [1 Total(P) 13 ==> [I n: Omega 13 

==> [[ P(grecs(P,a)'n,grecs(P,a)'succ(n)) ]]  

(8) 
( 9 )  

[ [  gfrecs(F,a)'0 = a []  
[I  n: Omega l ]  ==> [[  gfrecs(F,a)'succ(n) = F(gfrecs(F,a)'n) I]  

Well-founded recursion: 

Well-founded induction 
(11) [I a : X I] ==> [[ R : Well_founded(X) I] 

==> []  ALL x .  x : X  - - >  (ALL y .  < y , x >  : R - - >  P ( y )  - - >  P ( x )  []  
==> [l P(a) 11 

(12) [[ a : X 1] ==> [[ R : Well_founded(X) [] 
==> [[ ALL x. x:X --> (ALL y. y : Init(R.x) --> P(y)) --> P(x) ]3 

==> U V(a) l] 

Well-founded recursion 
(13) [[ R : Well_founded(X) I] ==> [[ x : X I] 

==> (!(y) [[ y:Init(R,x) 1] ==> [[ f'y'Kestrict(grec(X,Y,R,f),R,y) : Y []) 
==> [ [  Restrict(wrec(X,Y,R,f),R.x) : Init(R,x)->Y 1] 

(14) [l R : Well_founded(X) i] ==> [i x : X l] 
==> (!(y) [l y:Init(R,x) l] ==> [l f'y'Restrict(.rec(X,Y,R,f),R,y) : Y l]) 
==> [l f'x'Restrict(wrec(X,Y,R,f),R,x) : Y l] 
==> [l wrec(X,Y,R.f)'x = f'x'Reetrict(.rec(XoY.K,f),R,x) l] 

(15) [ [  R : W e l l _ f o u n d e d ( X )  []  
==> (!(x) !(g) [1 x : X ]] ==> [] g : (Init(R,x)->Y) [] ==> [[ f-x'g : Y 13) 
==> [1 wrec(X,Y,R,f) : X->Y [ ]  

(16) [[ R : Well_founded(X) [3 = = >  [[ x : X [] 
==> (!(x) !(g) [] x : X i] ==> [[ g : (Init(R,x)->Y) 1] ==> [i f-x'g : Y ]]1 
==> [[ wrec(X,Y,K,f)-x = f*x*Restrict(wrec(X,Y,K,f),R,x) I] 

Fig. 8. Recursion theorems. 

The basic properties of co lead to the two forms of mathematical  induction: (1) and 
(2) in Figure 8. Note that A in theorem (1) is a free variable of  type exp (i.e. a term). 
Since free variables are required in ZF  to represent higher order types (there is no way, 
for instance, of  representing the replacement axiom of Figure 3 within the object 
language, and a free variable R has to be introduced to refer to the relations of  the 
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language), it seems natural to allow their use in the representation of terms as well. 

The alternative form of theorem (1) in which A is existentially quantified within the 

second premise would be slightly more difficult to use in proofs. Theorems (1) and (2) 
are used in the proof  of the simple recursion theorem, formalised in (3), (4) and (5). 
A proof  of the recursion theorem for primitive recursion may be derived from the 
proof  for simple recursion. First notice that the definition of r e c s ( f ,  a) includes the 
case where a and f A b (for b : A) are functions of the same type. In the case of curried 
functions, the conditions satisfied by recs  may then be rewritten: 

r e c s ( f ,  a) A 0 A x l  ~ . . • x,,, = aA x l  A. . . x , ,  

V n .  n e co ~ r e c s ( f ,  a) ^ succ(n)  ^ x ,  A . . .  xm 

= f ~ ( r e c s ( f ,  a) An ~x lA  . . . x m ) A x l ~ .  . .xm 

(for any instance of x~, . . . Xm satisfying the type restriction on a and f ) .  Thus, to 
obtain primitive recursion, it remains only to allow the given function, f ,  to depend 
on the iteration step, n (i.e. f = h A n). This could be achieved by redefining recs  as a 
function of h rather than f ,  and proving the corresponding properties. Alternatively, 
a primitive recursive function based on the function h, of type co ~ A ~ A, and the 
set a, of type A, could be derived from simple recursion in the following way: 

1. define a f u n c t i o n f o f  type co .  A ~ A b y  f ( x )  = ( s u c c ( H d ( x ) ) ,  h A H d ( x )  ~ T l ( x ) )  

2. define a function g by simple recursion: g = r e c s ( f ,  (0 ,  a ) )  

3. define the required primitive recursive function as 

precs (h ,  a) = 2n ~ co.  T l ( g  ~n) 

The function precs (h ,  a) is such that: 

precs (h ,  a)A 0 = a 

precs (h ,  a) ~ succ(n)  = h A H d ( g  ~ n) ~ T l ( g  ~ n) 

in which T l ( g A n )  may be seen, from the definition of precs ,  to be equal to 
precs (h ,  a) ~ n, and H d ( g  ~ n) may be shown by induction to be equal to n. 

The generalised theorem for simple recursion (see [8] p. 143) states that if a formula 
P ( x ,  y )  is such that y has a unique value for every x, then there exists a unique 
function F such that F~0  is any set a and P ( F  A n, F A succ(n))  holds for each n in co. 

The Theorems (6) and (7) in Figure 8 show that the function grecs (P ,  a) possesses 
these properties. There is no typing theorem for the generalised simple recursion. 
However, from the definition it may be deduced that it is a total function with domain 
co. The recursive function g f recs (F ,  a) is a weaker version o f g r e c s ( P ,  a): one in which 
the functional expression P ( x ,  y )  is of the form y = F ( x ) .  Theorems (8) and (9) are 
the specialisation of (6) and (7) for this particular case. 

The theorems concerning well-founded recursion are presented in two pairs. The 
second pair, consisting of the Theorems (15) and (16), has been derived from the first 
pair, (13) and (14), by using the well-founded induction formalised in (12). Although 
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(15) and (16) are easier to use, (13) and (14) have been retained because they are 
stronger: they do not require t h a t f ^ x ^ g  E Ybe true for every g ~ (Init(R, x) ~ Y), 
but only for restrictions of the recursive function. 

It is worth noting that ordinal recursion may be seen as a special case of well-found- 
ed recursion: all that is required is to prove that the membership relation mem(~) 
defined on any ordinal ~ is a well-founded relation, f i s  a function which must accept 
as an argument the restriction of the recursive function at the current ordinal, but 
need not be a function of the ordinal itself in order to obtain the full generality of 
ordinal recursion. The form of  ordinal recursion which may be obtained from the 
well-founded recursion theorem is as follows: 

[ y 6 ~  g~y - -+  Y] 
ordinal(a) f ^ g  ~ y x ~ 

orec(c¢, Y, f )  ^ x = f ^  Restrict(oree(~, Y, f ) ,  mem(~), x) 

where the recursive function is: 

orec(~, Y, f )  =- wree(c¢, ]1, mem(~), lam(~, %(x) f )  

lam(~, %(x ) f )  is the function which returns f for every element of  ~. 
Notice that for each kind of recursion, the set of theorems specifies the basic 

properties of the corresponding function. It should be straightforward to prove by 
induction that the function satisfying these basic properties is unique. 

3.2.3. Example of the Use of Recursion: Lists 

Lists may be represented by sequences. The type of finite sequences may be defined 

in the following way: 

Seq(type) = [.) ({n ~ type In ~ ~0}) 

The abstract data type for lists is then obtained by defining the constructors hd, tl, and 

CONS. 

Alternatively, a list of a given type, type, may be represented by ordered pairs, the 
first element of the pairs being of type type, the second element being either a list of 
type type or a null element. We take the null list to be type, and thus ensure, by the 
foundation axiom, that it is not an element of type. The types of lists of length n and 
the type of lists of  any length are defined in Figure 9, and the main theorems 
concerning them in Figure 10. Binary trees could be defined similarly: 

tree(type, n) = gfrecs(2x" type • x u type * (x * x), {type}) A n 

Tree(type) = U ({tree(type, n) ln E co}) 

In order to process lists by well-founded recursion, a well-founded relation must be 
found. The relation of immediate sublist has been used for this purpose. 
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Type of lists of length n: 
list(type,n) = gfrecs(~(x)type*x,{type})'n 

Type of finite lists: 
List(type) = Union([iist(type,n) 11 n:Omega ]) 

Immediate sublist relation: 
Sublist(type) = Union([ [<x,<y,x> > IS y:type ] ]I x:List(type)]) 

An example of recursive function, the function 'length(type)': 

When(x,S,A,B) = Union(IX ]i X: {A} Un {B}, (x:S & X=A) I (Not(x:S) ~ X=B)]) 

f_length(type) = lam(List(type),~(u)lam(Function(List(type),Dmega),X(v) 
When(v,Init(Suhlist(type),u)->0mega, 

When(u,{type},0,succ(v'Tl(u))),0) )) 

length(type) = wrec(List(type),Omega,Suhlist(type),f_length(type)) 

Fig. 9. Definitions concerning lists. 

(1) 
(2) 
(3) 
(4) 
(s) 

[i list(type,0) = {type} i] 
[] n : omega l] ==> [l list(type,succ(n)) : type * list(type,n) l] 

[i type : List(type) i] 
[I x : type b] :=> [i y : List(type) I] :=> [i <x,y> : List(type) I] 
[[ x : List(type) ]] ==> [I Not(x : <type}) [] 
==> [l x : type*List(type) ]] 

Theorems concerning the function length: 

(6) [I l e n g t h ( t y p e )  : L i s t ( t y p e )  -> Omega I] 
(7) [i l e n g t h ( t y p e ) "  type  = 0 ]] 
(8) [{ y : type [] ==> [i x : List(type) i] 

==> [] length(type)- <y,x> = succ(length(type)~x) I] 

Fig. 10. Theorems concerning lists. 

The function length(type) illustrates the use of  well-founded recursion in the defini- 
tion of recursive functions. The function When, which is used in its definition is simply 
a conditional operator  satisfying the following properties: 

a e S ~(a  E S) 

When(a, S, A, B) = A When(a, S, A, B) = B 

The definition of  the basic function f_length is cumbersome. It is defined as a total 
function over Function(List(type), o0) and therefore must be such that for all functions 
g, not just restrictions of  total functions,f _length(type)Aa A g is of  type co. This is the 

purpose of the first occurrence of  When. All the recursive functions over lists may be 
defined in a similar way. 



34 P.A.J. NOEL 

3.2.4. Further Developments 

Further developments of ZF concerning functions are given in the appendices. 
Appendix A concerns Tarski's fixed point theorem; Appendix B concerns the part of 
domain theory which form the logical basis of LCF. Another line of work consists in 
defining the semantics of  other theories within ZF set theory, and then proving the 

axioms of the theory. Appendix C includes a semantics for simple type theory, 
together with an axiomatisation of it derived within ZF. Appendix D includes a 
semantics for intuitionistic first-order logic in which formulae are interpreted as sets 
of proofs, together with a derived axiomatisation of the logic. The same approach has 
also been used to define a semantics for a first-order temporal logic. In this case, the 
formulae are interpreted as sets of  sequences (or lists) of states, where states are 

themselves defined by sets of variables. This is an example where a means of  reasoning 
about both functions and sets is required. The basic theorems of the temporal logic 
have been derived within ZF. A set of more specific theorems has also been derived, 
which, when sequenced by an appropriate tactic in a backward proof, generates 
automatically models of  propositional temporal formulae. 

3.3. REASONING ABOUT TYPES 

The previously described developments show that set theory is suitable for reasoning 
about functions. Despite the restriction imposed by the foundation axiom, set theory 
seems also to be well suited for reasoning about types. Given some basic types, such 
as ~o or the type of  truth values bool, one may construct the standard types such as 
cartesian product, disjoint union, dependent product and dependent function space. 
The dependent product D_product(A, P) is the set of all pair {x, y )  such that x ~ A 
and Y c P(x): 

D_product(A, P)  = U ({{x) * P(x) Ix ~ A)) 

The dependent function space D_function(A, P) is the set of all total func t ionsfover  
A such that, i f x  ~ A t h e n f ^ x  E P(x): 

D_ function(A, P) = {FE A ~ U ({P(y)  Iy ~ A})]Vx- x ~ a ~ F ^x  ~ P(x)) 

In fact every set denoted by terms of set theory may be considered as representing a 
type. Thus, types need not be disjoint. Subtypes are easily defined: for instance 
the type of continuous functions over the cpo RA, defined over the set A, may be 
seen as a subtype of  A ~ A, itself a subtype of  the set of partial functions over 
A, Function(A, A). 

Recursive types may be constructed in the same way that the type of  lists was 
constructed in Section 3.2.3. Taking as an example the simple case in which there 
is a unique type constructor, the total function symbol, and the chosen form of 
recursion is simple recursion, one may define the function f such that: 

f A O = A  
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f A succ(n) = f A  n u {Hd(x) ---, Tl(x) Ix e f A n *fA n} 

where A is a set of  basic type, e.g. {09, booI}. This function defines a hierarchy of 

types. At any given level of the hierarchy, every new type has the form A ~ B, in 

which A and B are types of  the previous level. The set of  all the types constructed in 

this way is type o = U ({fAn [ n e co}). 

The more complicated case in which the type constructor is the dependent function 
space may be treated similarly. The recursive f u n c t i o n f  should now be specified by: 

f A O = A  

fAsucc(n) = f a n  u {X e Pow(Function(U ( fAn) ,  U ( fAn) )13T"  3F. 

X = D_function(T, %(x )F  A x) 

A T e f ~ n  A F E  T ~ f A n }  

The dependent function space defines a new type at a given level of  the hierarchy for 
all types T of the previous level, and all functions F associating to every element of  

T a type of the previous level. As previously, the set of  types, typeo, is the union of 
all the sets in the hierarchy. 

I f  the types are polymorphic, i.e. if they are allowed to depend on types and not just 

on elements of  types, the set of  types must itself be considered as a type. To this end, 
following [3], one could specify a second hierarchy, in which the first level is typeo and 
the level n + 1 consists of  all the types constructed recursively from the types in the 

level n and the level n itself. The set of  all the polymorphic types constructed in this 

way is Type = U ({type n In e co}). 
The method illustrated above may be applied to define recursive types whenever the 

collection of basic types forms a set and the number  of  type constructors is finite. 

4. Comments Concerning the Proofs 

The main purpose of the research described in this paper was to develop set theory 
sufficiently to be able to reason about  functions. The emphasis has been to obtain a 

large number  of  theorems, formulated in a simple way, without much regard to the 

form of  the proofs themselves and to the level of  automation.  This section gives a brief 
outline of  the approach taken in the development of  the proofs, together with the 

reasons for taking this approach and some comments and criticisms concerning it. 
Most of  the proofs have been carried out in backward style. The last part  of  the 

section describes an at tempt at producing natural deduction proofs in forward style. 

4.1. CHOICE OF SYSTEM OF DEDUCTION 

Before developing set theory with natural deduction, I was using the set theory in 
sequent calculus style already set up in Isabelle (see [16], for instance, for a com- 

parison between systems of  deduction). The rules of  sequent calculus are well suited 



36 P.A.J. NOEL 

to backward proofs because they consist only of introduction rules. They can be used 
to systematically eliminate the constants in the goals. However, when compared with 
natural deduction, the sequent calculus contains an extra formalism to express 
implication which is not necessary and may be confusing: the object-level and meta- 
level implications are sufficient. The antecedents of meta-level implications may be 
interpreted as object-level assumptions, and thus the assumptions of natural deduc- 
tion fit naturally in the meta-level logic. Furthermore, derived rules may be obtained 
in the natural deduction system which simulate the sequent rules, thus ensuring that 
natural deduction is also suitable for backward proofs. The introduction rules of 
natural deduction have the same form as the right rules of  sequent calculus. However, 
the elimination rules have generally a form different from the left rules. In the case of 
intuitionistic first-order logic (Figure 1) three elimination rules are not in sequent 
style: the ones concerning conjunction, implication and universal quantification. Here 
are the three corresponding sequent-style rules: 

conj_elim: ~P A Q~ ~ (~P~ ~ [Q~ ~ [R~) ~ [R~ 

imp_elim: ~P ~ Q] ~ [P] ~ (~Q~ ~ ~R~) ~ ~R~ 

all_elim: ~ALL x .  P(x)]  ~ (liP(a)] ~ ~R]) ~ ~R~ 

For ease of use, the chosen derived rules are such that the connectives to be 
eliminated are in the leftmost position. It should be clear, however, that the rules 
above are equivalent to the corresponding left rules of  sequent calculus. In the case 
of a logic with equality, one more pair of rules is required: the reflexivity rule, 
~a = a], which is an equality introduction rule, and the substitution rule [[a = b] 
~P(b)] ~ [P(a)~, which is an equality elimination rule. The resulting set of rules in 
sequent style may be used to eliminate the constants on the right and on the left of 
any given goal. There are several problems concerning the 'exists_intr' and 'all_elim' 
rules. First, they introduce new schematic variables which are likely to be instantiated 
later on in the proof. Usually, only some of the possible instantiations lead to a proof, 
and backtracking is necessary when a wrong choice is made. Second, more than one 
instantiation may be required during the course of  a proof. Thus the rules are not 
complete. A complete rule should be expressed in such a way that the quantification 
is carried through the proof. A complete 'all elimination' rule, for instance, could be 

expressed in the form: 

EALL x "  P ( x ) ]  => (EP(a)~ ~ ~ALL x "  P(x)~ ~ ER~) ~ F-R~ 

However, such complete rules must be used with care in automatic tactics, as they may 
lead to circularities. Also, as discussed in [13], when several quantifier rules apply, 
they should be applied in such a way that the schematic variables which are intro- 
duced impose the least possible constraints on future unifications: the variables 
must be functionally dependent on the previously introduced universally quantified 
variables. Thus, 'all_intr' should precede 'exists_intr' and 'exits_elim' should precede 
'all elim'. 
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In the sequent-style rules discussed above, it is the rightmost meta-level implication 

which stands for the symbol ~- of the corresponding sequent rules. Thus the natural 
deduction formalism allows only a single formula on the right of ~-. While this is 

adequate for intuitionistic logic, it is not for classical logic. The extra sequent rules for 
classical logic may be expressed as: 

not_right: [H, P ~ R~ ~ [H ~ R, ~ P ~  

not_left: [H ~ R, P~ ~ [H, -qP  ~- R~ 

A possible natural deduction formulation of the extra rules is: 

not_intr: ([P~ ~ [Q~) ~ ([P~ ~ [~Q~) ~ [-~P~ 

not_elim: [ ~ P ~  ~ [P~ 

In backward proof, the elimination of  negation by 'not_intr'  reintroduces a new 
negation, leading to the possibility of circularities in automatic proofs. In Section 4.4 

a natural deduction formulation of classical logic which is closer to the sequent 
formulation will be discussed. 

The new constants of ZF on the right-hand-side of a membership symbol may 
be eliminated in the same way as the other constants of classical logic. The main 
problem concerns equality, for which ZF provides an extra axiom, the extension 
axiom. A method for dealing with equality in automated tactics will also be discussed 
in Section 4.4. 

4.2. TACTICS 

The basic tactics of  Isabelle are described in [13] and [15]. The tactic 'resolve_tac 
ths i' resolves the ith goal of  the current proof  state with one of the theorems in the 
list ths. The tactic 'assume tac i '  attempts to find a unifier between the consequent of 
goal i and one of its antecedents. The goal is eliminated from the proof  state if the 
unification is successful. Both the tactics just mentioned produce a new proof  state, 
together with a lazy list of alternatives. 

A third basic tactic is the resolution 'with elimination': the tactics 'eresolve tac 
ths i' performs the same function as the sequence of tactics 'resolve_tac ths i T H E N  
assume_tac i', except for the fact that the assumption which allows the elimination of 
the first subgoal is eliminated from the other subgoals. The tactic is generally used 
with elimination rules (i.e. left rules of sequent calculus). As an illustration of the way 
'eresolve_tac' works, consider the tactic 'eresolve_tac [eq_elim] i', where 'eq_elim' is 

?a = ?b ?P(?b) 

?P(?a) 

and the ith goal of the current proof  state is 

C 1 = C 2 H 

Q(e3, e l )  
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The resolution step produces initially the new subgoals: 

C l : C 2 O c I : c 2 H 

c3 = ?b Q(?b, ci) 

The subsequent assumption step fails. Backtracking occurs and the next proof state 
generated by the resolution step is retrieved. The subgoals are now: 

cl = c2 H Cl = C2 H 

c, = ?b Q(c3, ?b) 

which are further reduced, after the assumption step and the elimation of the antece- 
dent c, = c2, to: 

H 

Q(e3, c2) 

In effect, the tactic ensures that Q(c3, c1) is interpreted as a function of Cl, during its 
unification with P(a). 

More complex tactics have been constructed in ML from these basic Isabelle 
tactics. 'REPEAT(step_tac i)' attempts to solve a goal automatically using the rules 
of classical logic and the assumption rule. The tactic is applied to the ith goal. If the 
goal is solved, goal i + 1 becomes goal i, and an attempt is made to solve this goal. 
The tactic usually results in the instantiation of schematic variables. These instantia- 
tions depend on the order in which the goals are solved, and thus the tactic is not 
always suitable. 

Some of Isabelle's tactics perform rewriting using the meta-level equality. However, 
the development of ZF described in this paper uses exclusively object-level definitions. 
Specific tactics for rewriting have been written using object-level equalities. Some 
tactics perform conditional rewriting, using rules of the form 

hi h2 . • • 

form, ~ form2 

o r  

h i  h 2  . . . 

term I -: term2 

where the his are hypotheses, which may or may not be present, the termis are terms, 
and the formis are formulae. 

With rules of the first form, the tactic 'unfold_right [rules] i' replaces each formula 
in the conclusion of goal i which unifies with a formula form, by the corresponding 
formula form2, while new goals are created from the corresponding hypotheses h,, 
h 2 . . . . .  Similarly, the tactic 'unfold_left [rules] i '  performs the same function in the 
hypotheses of the selected goal, and 'unfold_all [rules] i '  in both the conclusion and 
the hypotheses. With a rule of the second form, the tactic 'rewrite_right_l [rule] i '  
performs a one-step rewriting of the conclusion of the ith goal. 



E X P E R I M E N T I N G  W I T H  I S A B E L L E  IN  Z F  SET T H E O R Y  39 

• val asm = goal ND_Tunction_set_thy 

"[I F : A->B l] ==> [I x : A 13 ==> [I F'x : B 13"; 

> by (discharge_tac asm 1); 

1. [I F : A -> B I] ==> [I x : A l] ==> [I F " x : B I] 

> by (unfold left [bimp Totalfunc,Col!ect] I); 

1. [t x : A I] ==> 

[I F : Function(A, B) & ALL x. x : A --> EXISTS y. <x, y> : F I] ==> 

[I F " x : B [] 

> by (REPEAT(step_tac 1 ) ) ;  
1. [I x : A t] =:> 

[I F : Function(A, B) I] ==> !(ka)[1 <x, ka> : F I] ==> [i F - x : B [] 

> by (rewrite_right_l [Apply] I); 

1. [l x : A l] ==> [[ F : Function(A, B) l] ==> 

!(ka)[[ <x, ka> : F I] ==> [I F : Function(?Al(ka), ?Bl(ka)) [] 

2. [I x : i% l] ==> [l F : Function(A, B) I] ==> 

!(ka)[l <x, ka> : F I] ==> [I <x, ?bl(ka)> : F I] 

3. [1 x : A I] ==> [I F : Function(A, B) 1] ==> 

!(ka)[] <x, ka> : F I] ==> [] ?bl(ka) : B I] 

> by (REPEAT(assume_tac 1 ) ) ;  
i. [ I  x : A I ]  ==> 

[l F : Function(A, B) l] ==> !(ka)[i <x, ka> : F I] ==> [1 ka : B [] 

> by (unfold_left [bimp Function,Collect] I); 

I. [I x : A I] ==> 

!(ka)[l <x, ka> : F 13 ==> 

[I F : Pow(A * B) & 

ALL x. ALL y. ALL z. <x, y> : F ~ <x, z> : F --> y = z [] ==> 

[ I  ka : B I] 

> by (REPEAT(step_tao I)); 

I. [I x : A I] ==> !(ka)[l <x, ka> : F I] ==> 

[I F : Pow(A * B) I] ==> [I ka = ka I] ==> [l ka : B [] 

> by (unfold_left [Pow,subset] I); 

I. [I x : A I] ==> !(ka)[i <x, ka> : F 13 ==> [i ka = ka I] ==> 
[l ALL x. x : F --> x : A * B i] ==> [i ka : B }] 

> by (REPEAT(step_tat I)); 

I. [I x : A i] ==> !(ka)[l <x, ka> : F I] ==> 
In ka = ka I] ==> [I <x, ka> : A * B I] ==> [I ka : B I] 

> by (unfold_left [prod_iffl] 1); 

I. [1 x : A I] ==> !(ka)[[ <x, ka> : F I] ==> 

[l ka = ka I] ==> [I x : A • ka : B I] ==> [i ka : B [] 

> by (REPEAT(step_tac 1 ) ) ;  
(proof complete) 

Fig. 11. Example  of  p r o o f ( l ) :  app l i ca t ion  type. 

Simple ML functions have been written to perform conversions between various 
forms of the same rule. One such function, which is used in the examples of  Figures 
11 and 12 is the function b i m p .  This is a function which rewrites rules of the second 
form above into the first form: 

hi h2 . . . 

x e t e r m l  ~-~ x E t erm2 
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> val asm = goal ND_set_thy 

"[i x : I * B 1] ==> [I x = <Hd(x),Tl(x)> l]"; 

> by (discharge_tac asm i); 

i. [I x : I * B [] ==> [[ x = <Hd(x), Tl(x)> ]] 

> by (unfold_left [bimp Product,Collect] I);. 

1. [[ x : Pow(Pow(A Un B)) & 
EXISTS a. EXISTS b. a : A ~ b : B & x = <a, b> [] ==> 

[[ x = <Hd(x), Tl(x)> [] 

> by (REPEAT(step_tat I)); 

I. [I x : Pow(Pow(A Un B)) [] ==> 

!(ka,kb)[] ka : A [] ==> 

[i kb : B l] ::> [I x = <ka, kb> i] ==> [I x : <Hd(x), Tl(x)> l] 

> by (eresolve_tac [eq_elim] i); 

I. [l x : Pow(Pow(A Un B)) I] ==> 

!(ka,kb)[[ ka : ~ I] ==> 

[] kb : B ]] ==> [I <ka, kb> = <Hd(<ka, kb>), Tl(<ka, kb>)> I] 

> by (rewrite right_l [Pair_eq3] 1); 

i. [[ X : Pow(Po~(A Un B)) [] ==> 

!(ka,kb)[[ ka : A I] ==> 

[I kb : B ]] ==> [i <ka, kb> = <ka, Tl(<ka, kb>)> I] 

> by (rewrite_right_l [Pair_eq4] I); 

1. [] x : Pow(Pow(A Un B)) ]] ==> 

!(ka,kb)[l ka : A [] ==> [I kb : B l] ==> [~ <ka, kb> = <ka, kb> I] 

> by (resolve_tac [refl] I); 

(proof complete) 

Fig. 12. Example of proof(2):  decomposition of an ordered pair. 

4.3. EXAMPLES OF P R O O F  

An example of backward proof is given in Figure 11. The required theorem and the 
specified tactics appear after the symbol '>'. The command specifying a tactic results 
in a list of new goals. The proof is initiated by specifying the theorem to be proved: 
here the theorem is 

F E A - - *  B x e A  

F ^ x e B  

The object-level assumptions F E A ~ B and x e A in the first goal are interpreted by 
Isabelle as recta-level assumptions (this may be a bit confusing since normally 
object-level assumptions are represented by meta-level implications). The first step 
consists of a tactic which discharges these assumptions. The second step unfolds the 
'total function' and 'Collect' symbols, according to the definitions of Figures 6 and 3. 
The third step performs a classical deduction on the current goal. In the next step, 
'Apply' is the following theorem: 

F e Function(A,  B)  <x, y> e F 

F ^ x  = y 
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Isabelle has to lift the rule over the meta-level quantifier in order to perform the 

required unification. In particular it replaces the variables A, B, and y, respectively, 
by ?Al(ka), ?Bl(ka) and ?bl(ka) (recall that variables preceded by a question mark 
are schematic variables). Rewriting F A x with this conditional equality produces three 
subgoals. Two of them can be solved immediately by assumptions. The process 
consisting of unfolding followed by a classical deduction continues until the remain- 
ing subgoal is solved. The theorem 'prod iffl ' ,  which has not been mentioned 
previously, is 

< a , b > ~ A * B ~ - - ~ a ~ A  & b ~ B  

Although this proof  is simple, one of the problems my proofs suffer may be 
highlighted here. The goal 

x ~ A F 6 Function(A, B) <x, k a > ~ F  

k a E B  

which appears somewhat near the middle of the proof, may itself be a useful theorem. 
It should have been proved first, and then used in the main proof. The reason for not 
doing so was to minimise the number of  theorems. However, this advantage is more 
than offset by the disadvantage of lacking basic theorems. To prove the above basic 
theorem in the middle of  a large proof  may require many more steps than is required 
here: in particular, a selective unfolding on the left may require a shift of the relevant 
formula to the leftmost position, and a non selective one may perform some unwanted 
unfolding; also, the automatic tactic for classical deduction is more likely to produce 
unwanted results when performed within a large proof. It is worth noting that 

breaking down a proof  into some smaller constituents is much more easy in forward 
style than in backward style since the result of every step of a forward proof  is a 
theorem which may be used in the rest of the proof. 

The example in Figure 12 illustrates the use of the standard resolution tactics 
'resolve_tac [rules] i '  and 'eresolve_tac [rules] i ' ,  and in particular the tactic perform- 
ing a substitution from an equality in the hypothesis, 'eresolve_tac [eq_elim] i'. r e  f l  
is the reflexivity axiom for equality, x = x. The theorems appearing in the proof, and 
not mentioned before are: 

P a i r _ e q 3 :  Hd(<x, y>) = x 

P a i r _ e q 4 :  TI(<x, y>) = y 

where x and y are free variables. 

The two previous examples of proof  are very simple. Many of the theorems 
mentioned in Section 2 have much more complex proofs. The well founded recursion 
theorem was the hardest to prove. It involves forty lemmas, some of  them having 
proofs of  more than a hundred steps. The size of the proofs is in part a consequence 
of my style, and there are many ways of  reducing it. Obviously, for any given theorem, 
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some proofs are better than others. Some of the other factors which affect the length 
of a proof  are listed below: 

• Choice of definition: several examples of alternative definitions have been suggested 
in the last section of the paper. For  instance, the definition of natural numbers as 

particular ordinals simplifies some proofs, as well as making them more general. 
• An appropriate partition of the proofs into lemmas and theorems: it seems worth- 

while to produce as many lemmas and theorems as possible. 
• The use of general tactics, in which the relevant rules are stored in some appropriate 

sequence: i.e. an increase in the level of automation. 

4.4. LEVEL OF AUTOMATION 

Most  of the theorems mentioned in this paper have been proved using the simple 

tactics mentioned in the previous section. However, some initial work has been done 
on automation and a tactic has been written with which a number of  simple theorems 
have been proved automatically. This tactic uses a basic enumerative strategy. It 
eliminates the constants and performs all the possible substitutions until a goal may 
be solved by contradiction, or by an application of the 'null' axiom. The current 
implementation of the tactic is restricted in several ways. In particular, it applies only 
to formulae with predicate variables and function variables of arity at most 1, and it 
does not check whether the specified goal may be solved by the infinity axiom or the 
foundation axiom. Two problems had to be solved: how to avoid circularities when 
eliminating negation in natural deduction, and how to eliminate the equality symbols 
in a way which does not introduce incompleteness. 

The tactic deals with the first problem by expressing every goal in the form 

H ~ ~False~ 

This can be achieved by resolving the goal with the following rule: 

( ~ P ~  ~ ~False~) ~ ~P~ 

The resulting goal may be interpreted as a sequent in which all formulae preceded by 
a negation symbol appear to the right of the F- symbol and all other formulae to the 
left. In this way, every sequent may be represented in natural deduction style. The 
introduction rules have to be converted into elimination rules. For instance, the 
conjunction introduction rule 

[~P~ ~ WQ~ =~ ~P A Q~ 

becomes the elimination rule: 

~-n(P /x Q)~ ~ (E~P]] ~ ~R~]) ~ (W-qQ]~ ~ ~R~]) ~ [~R~ 

(note that the constant False could be used in place of the variable R), The negation 
rules of sequent calculus, which simply move the negation symbols to the right or to 



EXPERIMENTING WITH ISABELLE IN ZF SET THEORY 43 

the left of the ~- symbol are not required. However, a rule to eliminate double negation 

is necessary: 

With respect to the equality symbol, its introduction and elimination rules need to 
be more general than in the case of classical logic. They are based on the extension 
axiom: 

However, to perform substitutions one must now take account of  the fact that 
equality may be present without being explicit. 

Automation is achieved by using the following tactic with a depth first strategy: 

fun basic_tac r i = simp_tac i 
ORELSE DETERM(eresolve_tac r i) 
ORELSE (subs_tac i 

APPEND eresolve_tac unsafe_r i) 

where i specifies the goal to which the tactic applies and r specifies a list of elimination 
and introduction rules. The list of rules which has been used concerns the following 
constants: Replace, Collect, the pairing symbol, the symbols defining both kinds of 
intersection and union, the powerset, subset and equality symbols, and the classical 
connectives. It does not contain the 'all elimination' rule nor 'exists introduction' rule: 
these two rules are contained in the list unsafe_r. The 'ORELSE'  and 'APPEND'  
tacticals specify a choice of tactics. They differ in the following way: if one of the 
specified tactics is successful, the other one will be attempted after backtracking in the 
case of  'APPEND',  but will not in the case of 'ORELSE'.  Here are the functions of 
the various part of the tactic: 

• simp_tac i attempts to solve the goal by contradiction, or using the null axiom. 
To improve efficiency, it also attempts to solve the goal using equality reasoning 
(making use of  reflection, symmetry, transitivity and congruence). 

• D E T E R M  (eresolve_tac r i) eliminates a constant using the first applicable rule of 
r. The tactical D E T E R M  makes this choice deterministic: no alternative proof  state 
is generated. This may be done because the order in which the rules of  r are used 
does not affect the provability of a proposition. 

® subs_tac i is the tactic which chooses one of the negated formulae in the goal as a 
target for substitution (it moves the formula to the right) and performs the possible 
substitutions. The general substitution rule may be expressed as: 

~e(x)~ ~ ~y = x~ ~ ~P(Y)I (1) 

Used on its own, this rule may lead to circularities after y = x has been expanded. 
Thus two more rules have been used, specialised to the case where P ( y )  is of the 
form y ~ _" 

I x eF(u )~  ~ Iv = u~ ~ ~y = x~ ~ ~ y ~ F ( v ) ~  (2) 
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~[x~A~ ~ ~y = x~ ~ ~ y ~ A ~  (3) 

Rule (2) is applied only if rule (3) cannot be applied. Similarly, rule (1) is applied 
only if rule (2) cannot be applied. Also, rule (2) must not be applied to the case 
where F is the identity function, as this may lead to circularities. As the identity 
function is the one produced by the first unification, all that is required is to 
consider only the alternative unifications. Rule (1) deals with the case where P is 
a monadic predicate variable. 

• eresolve_tac unsafe_r i is the tactic performing the 'all introduction' and 'exists 
elimination' rules. It uses the uncomplete form of  the rules. 

Here are examples of the theorems proved by the tactic: 

3x" x e X  *--~ ~ X  = 0 

x ~ {a} ~ x = a 

{a, b} : {b, a} 

x c _ A ~ x c ~ y ~ _ A  

A e C - - ,  N C c _ A  

U { B }  = B 

{P(x)[x:  { Q ( y ) l y  ~ A}} = { P ( Q ( y ) ) I y  ~ A} 

The proofs took between a few seconds to 1 minute on a Sun 4. However, other 
simple theorems took much longer: the proof  of x ¢~ y ~ y ¢~ x took 7 minutes. It 
is clear that an increase in the complexity of the formulae, and an increase in the set 
of constants to eliminate would result in very inefficient proofs. The problem could 
be alleviated by providing relevant lemmas and theorems to guide the proofs, and by 
making sure that the unfolding of definitions occur only when necessary. Much more 
work is required to pursue this line of research. 

4.5. FORWARD PROOFS 

Although most of the proofs have been written in backward style, some experiments 
have been carried out in forward style. The main disadvantage of the forward 
approach is the lack of automation: the process involved is proof  checking rather than 
theorem proving. On the other hand, forward proofs present several advantages: 

• As previously mentioned, every step produces a theorem, any one of which is easily 
available as a lemma if required. 

• The proofs which are not trivial must be planned before being carried out. Many 
proofs are derived from an informal description. Such a description is normally 
provided in a forward style. 
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Assumptions: 
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as_mono: [I F : Monotone(L, L) I] 

[ [l F : Monotone(L, L) I] ] 
as el: [] L : Complete_lattice(A) J] 

[ [] L : Complete_lattice(h) I] ] 
as_x: [l x : [ x II x : A, <x, F " x> : L 3 13 

[ [I x : [ x II x : A, <x, F " x> : L ] 13 ] 

Lemmas (previously proved): 

Trans: 

[[ <?x, ?y> : L --> <?y, ?z> : L --> <?x, ?z> : L [] 
[ [I L : Complete_lattice(h) I] ] 
Anti_sym: 

[I <?x, ?y> : L --> <?y, ?x> : L --> ?x = ?y 13 
[ [ ]  L : Complete_lattice(A) ] ]  ] 
Mono : 

[[ <?a, ?b> : L --> <F ~ ?a, F " ?b> : L [] 
[ [[ F : Monotone(L, L) [] ] 
Lubub: 

[I ?x : [ x ]] x:A, ?P(x) 3 --> <?x, Lub(L, [ x I] x:A, ?P(x) ])> : L I] 
[ [[ L : Complete_lattice(A) I] ] 
Lub_least: 

[l ?x : Ubs(L, [ x [[ x:A, ?P(x) ]) --> <Lub(L, [ x i x:A, ?P(x) ]), ?x> : LJ] 
[[l L : Complete_lattice(h) I] ] 
Ub 

[J ?x : A --> ?B <= A --> (ALL y. y : ?B --> <y, ?x> L) --> ?x : Ubs(L, 7B) 13 
[ [I  L : Complete_lattice(A) l] ] 

type_fx: 

[ [  ?x  : A - - >  F ~ ? x  : A ] ]  
[ [1F : Monotone(L, L) ]], [I L : Complete_lattice(A [] ] 
~ype_lub: 

[I LubCL, [ u I] u : A, ?P(A, n) ]) : A [3 
[ [] L : Complete lattice(A) [] ] 
gype_flub: 

[I  F " L u b ( L ,  [ u J l u : A, ? P ( A ,  u )  ] )  : A I] 
[ [[ F : Monotone(L, L) J], [I L : Complete lattice(A) i] ] 
~ubtype: 
[ i  [ x II x:?A,  ?P(x)  ] <= ?A I] 
prop_collect: 
[I ?x : [ x II x:?A, ?P(x) ] --> 7P(?x) I] 
def_oollect: 

[f ?x : ?A --> ?P(?x) --> ?x : [ x J l x:?A, ?P(x) ] l] 

F i g .  13. E x a m p l e  o f  f o r w a r d  p r o o f i  T a r s k i ' s  t h e o r e m .  

• The proofs are processed more efficiently: in backward style, all the subgoals have 
to be carried over through the proof, even though only one subgoal is processed at 
a time; this is obviously not the case in forward style. 

As an example of forward style, a natural deduction proof  of the main part 
of  Tarski's theorem is shown in Figure 14. The assumptions could be adequately 
represented by meta-level implications. However, this formalism leads to complex 
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Proof of main theorem: 
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val fixl = Mono ' (Lub_ub ' as_x); 

[I <F - x, F " Lub(L, [ x II x : A, <x, F - x> : L ])> : L I] 

[ [I x : [ x il x : A, <x, F " x> : L ] I], [] L : Complete_lattice(A) ]], 

[I F : Monotone(Lat, L) I] ] 

val fix2 = Trams ' (prop_collect ' as_x) ' fixI; 

[I <x, F " Lub(L, [ x II x : A, <x, F " x> : L ])> : L I] 

[[I x : [ x ~I x : A, <x, F " x> : L ] I], [~ L : Complete lattice(A) ~], 

[I F : Monotone(L, L) I], [I x : [ x IL x : A, <x, F " x> : L ] I], 

[1L : Complete_lattice(A) I] ] 

val fix5 = imp_i "[I x : [ x II 

[I X : [ x LI X : A, <x, F " 

<x, F " Lub(L, [ x 11 x : 

[ [I L : Complete_lattice(A) 

[I L : Complete_lattice(A) 

val fix4 = all_i "X" fix3; 

x : A, <x, F - x> : L ] l]" fix2; 

x> : L ] --> 

A, <x, P " x> : L ])> : L I] 

1], [I F : Monotone(L, L) i], 

l] ] 

[I ALL x. x : [ x II x : A, <x, F " x> : L ] --> 

<x, F " Lub(L, [ x II x : A, <x, F ~ x> : L ])> : L I] 

[ [I L : Complete_lattice(A) I], [I F : Monotone(L, L) I], 

[I L : Complete_lattice(A) 13 ] 

v a l  f i x 5  = Ub ~ t y p e _ f l u b  ~ s u b t y p e  f ~ i x 4 ;  

[I F " L u b ( L ,  [ u II  u : A, <u,  F - u> : L ] )  : 

U b s ( L ,  [ u II u : A, <u,  F " u> : L ] )  ]] 
[ . . . ]  

val semi_fix = Lub_least ~ fixS; 

[I <Lub(L, [ x I~ x : A, <x, F " x> : L ]), 

F " Lub(L, [ u li u : A, <u, F ~ u> : L ])> : L I] 

val fix6 = Lub_ub ' (def_collect ' (type_fx ' type_lub) ' (Mono ' semi_~ix)); 

[I <F " Lub(L, [ u II u : A, <u, F " u> : L ]1, 

Lub(L, [ x I[ x : A, <x, F " x> : L ])> : L [] 

[...] 

val Six = Anti_sym ' ~ix6 ' semi_fix; 

[I F " Lub(L, [ u II u : A, <u, F " u> : L ]1 = 

Lub(L. [ x I I x : A, <x, F " x> : L ]) l] 

Code to eliminate the duplicate assumptions: 

val fix7 = (imp_i "[I L : Complete_lattice(A) I]" fix) ' as_cl; 

val ifix = (imp_i "[I F : Monotone(L,L) I]" fix7) ' as_mono; 

[l F - Lub(L, [ u 11 u : A, <u, F - u> : L ]) = 

Lub(L, [ x II x : A, <x, F " x> : L ]) I] 

[ [I F : Monotone(L, L) ~], [I L : Complete_lattice(A) I] ] 

Fig .  14. E x a m p l e  o f  f o r w a r d  p r o o f :  T a r s k i ' s  t h e o r e m .  

procedures to eliminate duplicate assumptions and select the appropriate assumptions 
to be discharged. Thus, for practical reasons, the assumptions have been represented 
by meta-level assumptions. In Figure 14, the assumptions are listed in square brackets 
after each displayed theorem. The proof uses the assumptions and previously proved 
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lemmas listed in Figure 13. It consists of a sequence of ML statements specifying the 
required introduction and elimination rules, in the form of  ML functions, together 

with the appropriate theorems. Here are the ML definitions of the rules which are 

used in the proof  of Tarski's theorem: 

-~ I: fun imp_i p th = imp_intr M R E S  (implies_intr (rprop p) th) 

VI: fun all i s th = all_intr M R E S  (forall_intr (rterm s)) th)) 

--*E: fun thl 'th2 = mp M R E S  thl M R E S  th2 

The ML function MRES, which has been defined using more basic Isabelle functions, 
performs a meta-level resolution without lifting, unifying the first hypothesis from 
its first argument with the conclusion of its second argument. The resulting unifier is 
the first one generated by Isabelle. The axioms imp_intr, all_intr and mp are some of 
the elimination rules and introduction rules of the intuitionistic logic displayed in 
Figure 1: 

imp_intr: 

all intr: 

mp: 

(~P~ ~ ~Q~) ~ .~P ~ Q~ 

( A y . ~P(y )~)  ~ {Vx  . P(x)~  

[P -~ Q~ ~ ~P~ ~ ~Q~ 

The ML functions implies_intr and forall_intr are meta-level introduction rules 
described in Section 2.1. The expression (rprop p) converts the string p to a valid 
proposition: the expression (rterm s) converts the string s to a valid term. If, for 
instance, th is the theorem [VQ~ under the meta-level assumptions {P~,  ~P2~ . . . .  , 
and p is the string 'EPIC', then (implies_intr (rprop p) th) is the theorem [P~ ~ [Q~ 
under the same assumptions with every instance of Pi removed. If th is the theorem 
~P(x)~ under some assumptions and s is the string 'x', then (forall_intr (rterm s) th) 
is the theorem A x. ~P(x)~ under the same assumptions. Thus, if th identifies a 
theorem [[T~ under the meta-level assumptions p u A, then imp_ip  th identifies the 
theorem {p ~ T~ under the assumptions A. If th identifies a theorem {T(x)~ under 
the assumptions A, then all_i 'x' th identifies the theorem A x. ~T(x)~ under the 
assumptions A. If  thl identifies the theorem [H ~ T~ under the assumptions A and 
th2 identifies the theorem [G~ under the assumptions B, and if the first unifier of H 
and G is 0, then thl 'th2 is the theorem TO under the assumptions A u B. The format 
thl 'th2 is meant to help relate the resulting proofs to corresponding ones in other 
forward systems, such as Automath, in which ~ E is expressed by a function application. 

The effect of  the above functions may be seen in Figure 14, where the proof  has been 
broken down into shorter proofs, and the result of  each subproof has been displayed. 
The ellipses stand for multiple assumptions of the form F:Monotone(L,  L) or 
L'Complete_lattice(A), which are the assumptions on which the final theorem 
depends. The style of the proof  is similar to the style obtained in other forward proof  
systems, such as the calculus of constructions (a proof  of  Tarski's theorem in the 
calculus of  constructions may be found in [11]). 
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Note that, although the proofs may contain schematic variables during their 
development (originating, for instance, from a previous theorem or from a VE rule), 
these variables become normally instantiated in some unification before the end of the 
proof. The resulting proof is therefore a standard natural deduction proof. 

5. S o m e  R e l a t e d  W o r k  

The concern of Boyer et aL in [4] is to show that automatic proofs may be constructed 
in set theory using first-order resolution. To this aim, they use a finite axiomatisation 
of set theory - the yon Newmann-G6del-Bernays axiomatisation - and write it in 
clausal form. Theorems are proved by refuting their negation, also in clausal form. 
Although their eventual aim is to provide an automatic theorem prover, they recog- 
nise that automation is presently limited by the problems mentioned in Section 4.4 
(finding an appropriate level of expansion for the definitions, and dealing with a large 
number of lemmas and theorems) and that some form of heuristics will have to be 
used. The sample proof they provide (for the theorem stating that the composition of 
homomorphisms is a homomorphism) has been mechanically checked, but not 
generated automatically. 

Corella [5] has developed ZF set theory within higher order logic. He shows that 
the resulting theory is a conservative extension of ZF set theory within first order 
logic. He argues that the higher order axiomatisation provides a means of defining 
schematic axioms which is not available in a first order formulation. However, a 
counter-argument has been provided in this paper: the availability of schematic 
variables in Isabelle has made possible a standard first-order formulation of set 
theory. Corella has developed a proof checker, 'Watson', which includes the higher 
order axiomatisation of ZF. As in LCF, the inference rules are defined by functions 
(or algorithms), and the theorems may not be interpreted as derived inference rules. 

6. C o n c l u s i o n  

A number of theorems concerning functions have been provided within ZF set theory 
using the theorem prover Isabelle. It has also been shown that set theory is a suitable 
theory to reason about types, including complex types such as polymorphic depen- 
dent function spaces. Thus, the development of a theory of functions within set theory 
provides a uniform and consistent system for reasoning about functions over arbi- 
trary types. The development has proved adequate for defining the semantics of other 
theories, and deriving their axiomatisation. Isabelle is well suited to the derivation of 
theories within theories: since theorems are in the form of inference rules, it is as easy 
to use a theory defined by derived theorems, as it is to use one predefined by axioms 
and inference rules. 

The emphasis of the work has been to obtain theorems formulated in a clear 
and simple way, rather than easy to prove. The proofs themselves are currently 
cumbersome. More work is now required in order to convert the existing proofs into 
shorter and more readable ones, and to increase the level of automation. 
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Appendices 

A. TARSKI'S FIXED POINT THEOREM 

A number of theorems concerning fixed points have been proved. Tarski's fixed point 
theorem concerns complete lattices. Appendix B includes fixed point theorems con- 
cerning cpos. Both make use of the concept of least upper bound. The definitions, and 
some of the theorems required in the proof of Tarski's fixed point theorem are given 
in Figures 15 and 16. Given a partial order, say R, its underlying set is completely 
determined, and may be referred to either by Domain(R) or Range(R). If D is the 
underlying set of a partial order R, and Y is a subset of D, Lubs(R, Y) is the set of 
least upper bounds of Y in D. Theorem (1) shows that, if this set is not empty, it is 

Upper  bounds  and  least upper  bound:  

Ubs(R,Y) 

Lubs(R,Y) 

Lub(R,Y) 

Inv(R) 

GIb(R,Y) 

= [ y I y : Domain(R), EXISTS X. R : Par~ial_order(X) k 

Y <= X ~ ALL x. x:Y --> <x,y> : R] 

= [ y y : Ubs(R,Y), ALL z. z : Ubs(R,Y) --> <x,z> : R] 

= Union(Lubs(R,Y)) 

= [ <Tl(x),Hd(x)> II x:R ] 

= Lub(Inv(R),Y) 

Comple te  lat t ice:  

Complete_lattice(D) = [ R 

Monotone  functions:  

Monotone(RA,RB) = [ F 

Fixed points: 

Fix(F) 

Lfixs (F,R) 

Lfix (F,R) 

R;Partial order(D), 

ALL Y. Y <= D --> ~ot(Lubs(R,Y) = 0)] 

F:Domain(RA)->Domain(RB), 

ALL x. ALL y. <x,y> : RA --> <F'x,F'y> : RB ] 

= [ x I[ x : Domain(F), F-x = x ] 

= [ x II x : Fix(F), ALL y. y:Fix(F) --> <y,x> : R ] 

= Union(Lfixs(F,R)) 

Fig. 15. Definitions concerning fixed points. 
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Basic properties of upper bound: 

Uniqueness: 

(I) [i a : Lubs(R,Y) I] ==> In b : Lubs(R,Y) [] ==> [I a = b I] 

Lub is an ub: 

(2) [i ~ot(Lubs(~.Y) = 0) L] ==> [[ x:Y i] ==> [[ <x,Lub(K.Y)> : R L] 

Lub is least: 

(3) [] Not(Lubs(R,Y)=0) J] ==> [J x : Ubs(R,Y) l] ==> [J <Lub(R,Y),x> : R J] 

Lubs of pairs: 

(4) [J Not(Lubs(RA,{x,y})=0) ]] ==> [I Lub(RA,{x,y})=y ]] ==> [] <x,y> : RA ]] 

(5) [IRA : Partial order(A) I] =:> [l <x,y> : RAI] ==> [I y : Lubs(RA,{x,y}) l] 

Basic properties of fixed points: 

(6) [] R : Partial_order(A) ]] ==> [] x : Lfixs(~,g) [] ==> [I y : Lfixs(~,R) ]3 

:=> [[ x = y  3] 

(7) [l R : Partial_order(A) HI ::> [I Mot(Lfixs(f,R)= 0) [] 
=:> [] ~-Lfix(~,R) = Lfix(f,R) I] 

(8) [I R : Partial_order(A) [] ==> [I Not(Lfixs(f,R) = 0) I] ==> [I x : Fix(f) ]] 
==> [I <Lfix(f,K),x> : K I] 

Properties of inverse relations: 

(9) [I R : Complete_lattice(A) J] ==> [[ Inv(K) : Complete_lattice(A) ]] 

(I0) [J R : Partial_order(A) HI ==> [J f : Monotone(R,R) J] 
==> [J f : MonoZone(Inv(K),Inv(K)) J] 

Tarski's fixed point theorem: 

(II) [If : Monotone(Lat, Lat) HI ==> [~ Lat : Complete_lattice(A) I] 
==> [J Glb(Lat, [ u [I u : A, <f-u,u> : Lat ]) : Lfixs(f,Lat) J] 

(12) [If : Monotone(Lat, Lat) ~] ==> [I Lat : Complete lattice(A) [] 
==> [I Lfix(f,Lat) = Glb(Lat, [ u [i u : A, <f'u,u> : Lat ]) ]] 

Fig. 16. Theorems concerning fixed points. 

a singleton, thus justifying the definition of the least upper bound Lub(R, Y) as 
[J (Lubs(R, Y)). Note, however, that if Lubs(R, Y) is empty, Lub(R, Y) is 0, even 
though there is no least upper bound. A similar remark applies to the least fixed point 
of a function f i n  a relation R. Theorem (6) states that, if R is a partial order and the 
set of least fixed points Lfixs(f, R) is not empty, then it is a singleton. Under these 

conditions, Lfix(f, R) is the least fixed point o f f .  
The greatest lower bound of  a partial order, which is used in Tarski's theorem, is 

simply the least upper bound of the inverse partial order. The properties of inverse 
relations relevant to Tarski's theorem have been proved. In particular, Theorem (9), 
which states that a complete upper semi-lattice is also a complete lower semi-lattice, 
justifies the definition of a complete lattice as simply a complete upper semi-lattice. 
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Both Theorems (11) and (12) are required to express Tarski's fixed point theorem. The 

two are necessary: if the glb in (12) is the empty set, the theorem asserts that tfix(f, tat) 
is also the empty set. However, this could mean either that the least fixed point is the 
empty set, or that the least fixed point does not exist. It is Theorem (11) which asserts 
the existence of the least fixed point. Note that Theorem (12) would be sufficient to 
express Tarski's theorem if the definition of  the least fixed point was a conditional 
definition, restricted to the case where the set of least fixed points is not empty. 

B. DOMAIN THEORY IN PP2 

This section is concerned with the p r o o f  o f  further properties o f  functions within set 

theory. More  specifically, it is concerned with cont inuous functions, and in part icular  

the axioms of  P P 2  relating to domain  theory, as specified in [12] or  [7]. 

The relevant definitions are given in Figure 17, while the theorems are listed in 

Figure 18. The definition o f  bottom as the union of  the set o f  bo t tom elements is 

Definition of a cpo: 

Bottoms(K) = [ b I t  b : Domain(K), ALL y. y : Range(K) --> <b,y> : R] 

bottom(K) = Union(Bottoms(K)) 

directed(R) = [ Z II Z : Pow(Domain(K)), Not(Z=O) & 

ALL x. ALL y. x:Z a y:Z 

--> EXISTS z. z:Z & <x,z> : R a <y,z> : R] 

cpo(X) = [ Z II Z : Partial_order(X), Not(Bottoms(Z) = O) 

ALL Y. Y : directed(Z) --> Not(Lubs(Z,Y)=O)] 

cpo of natural numbers: 

Nat = [ <Omega,n> 11 n:Omega ] Un [ <n,n> I[ n:succ(Omega)  ] 

Function space and induced order: 

Continuous(RA,RB) = [ K II K : Domain(RA)->Domain(KB), 

KA : cpo(A) & KB : cpo(B) & 

ALL Y. Y : directed(RA) --> got(Lubs(RA,Y)=O) 

Not(Lubs(RB,[K'xIIx:Y])=O) 

Lub(KB,[K'xIIx:Y]) = K'Lub(KA,Y)] 

Func(KA,KB) = [ X II X : Continuous(RA,KB)*Continuous(RA,RB), 

ALL f. ALL g. ALL x. X = <f,g> ~ x:Domain(RA) 

--> <f'x,g'x> : RB] 

Definitions concerning the fixed point induction: 

succ_rel = [ <n,succfn)> ]l n:Omega ] 

Infinite_chain(R) = [ [f'nlln:Omsga] it f : Monotone(succ_rel,R)] 

Chain_complets(X,R) = [ Z II Z : Pow(X), 
ALL Y. Y <= Z ~ Y : Infinite_chain(K) 

--> Lub(R,Y) : Z] 

Fig. 17. Definitions concerning PP,t. 
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Continuous functions: 

(I) [[ F : Continuous(RA,RB) [] ==> [I F : Monotone(Rl,RB) [] 
(2) [[ F : Continuous(KA,RB) [] ==> [I X : directed(RA) [] 

==> IT Lub(RB,Image(F,X)) = F'Lub(RA,X) ~] 

Uniqueness of bo t tom element: 

(3) [l E : Partial_order(X) [] ==> [[ a : Bottoms(R) ]] ==> [[ b : Bottoms(R) ]] 
==> [I a=b I] 

Constructions of some cpos: 

cpo of natural numbers: 

(4) [[ Nat : cpo(succ(Omega)) [] 
(5) [[ bottom(Nat) = Omega [] 

cpo induced on a function space: 
(6) [[KA:cpo(A)[] ==> [[RB:cpo(B)[] ==> [] Func(RA,RB) : cpo(Continuous(RA,RB))l] 
(7) [IRA:cpofA) I3 ==> [[RB:cpo(B)[] ==> [[ bottom(Func(RA,KB)) = lam(A,~(x)bottom(RB))[] 

Domain theory: 

Extensionality: 
(8) [[ f : Continuous(RA,RB) [] ==> [[ g : Continuous(RA,RB) I] 

==> [I RA : cpo(A)[] ==> [] RB : cpo(B) I] 
==> [I ALL x. x : A --> <f'x,g'x> : RB I] 
==> [I <f,g> : Func(RA,RB) I] 

Monotonicity: 
(9) [[ <f,g> : Func(RA,RB) [] ==> [[ <x,y> : KA [] ==> [[ <f^x,g'y> : RB [] 

Minimality of bottom element: 
(10) [['R : cpo(X) [] ==> [[ x : X [] ==> [[ <bottom(R),x> : R I] 

Least fixed point in cpo: 

(11) [I f : Continuous(RA,RA) I] ==> [[ RA : cpo(A) I] 
==> [I Lub(RA,[recs(f,bottom(RA))'n [[ n:Omega]) : Lfixs(f,RA) [] 

(12) [I f : Continuous(RA,KA) [] ==> [I RA : cpo(A) [] 
==> [] Lfix(f,RA) = Lub(RA,[recs(f,bottom(RA))'n [[ n:Omega])]] 

Properties of least fixed points in cpos: 
(13) [I f : Continuous(RA,RA) I] ==> [[ RA : cpo(A) [3 

==> [I f'Lfix(f,RA) = Lfix(f,R*)l] 
(14) [[ f : Continuous(RA,RA) l] ==> [[ RA : cpo(l) I] ==> [[ x : Fix(f) 1] 

==> [[ <Lfix(f,RA),x> : RA [] 

Fixed point induction: 
(IS) [I RA : cpo(A) I] ==> [] [ x ]I x:A, P(x)] : Chain_complete(A,RA) J] 

==> [[ f : Continuous(RA,RA) [] ==> [[ P(bottom(RA)) [] 
==> [[ ALL x. x:A --> P(x) --> P(f'x) [] 
==> [I P(Lfix(f,KA)) I] 

Fig. 18. Domain theory in PPL 

justified by Theorem (3), which states that the bot tom element of  a partial order is 
unique if it exists. The axioms and rules of  inference of PP2 relating to domain theory 
have a form in which functions are explicitly typed as continuous functions, and 
relations as cpos (in PP2, the untyped symbol ~ is used to express the implied 
ordering relation, whatever the underlying set). The theorems concerning the least 
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fixed points may be compared to Tarski's fixed point theorem: here, the type of the 

relation is more general (a cpo rather than a complete lattice), and the type of the 

function is more specific (continuous rather than monotone). The part of P P 2  which 
is not displayed in Figure 18 consists of  the axiomatisation of first order logic with 
equality and the fi and r/conversion rules. Note that P P 2  also includes a formalism 
which induces an ordering relation on products and disjoint unions. The construction 
of the corresponding cpos has not been developed here, but is expected to be simpler 

than in the case of function spaces. 

C. SIMPLE TYPE THEORY 

The name of simple type theory seems to have been given to many different formal 
systems. Some of  them are simplified forms of Russell's type theory (see [18] or [9]). 
In these theories there is a unique basic type i of individuals. All the other types are 
types of  relations or functions of various orders built on this basic type. In some other 
type theories (such as the ones referred to in [2]), there are two basic types: the type 
i of individuals and the type o of propositions. In this form of  the theory, functions 
and predicates may be defined over propositions. In particular, the connectives may 
be defined as predicates. In the first kind of type theory, it is possible to translate 
directly the terms and formulae of the type theory into ZF set theory. To every term 
of type theory corresponds a relation or a function of some order constructed on co 
(or any other infinite countable set) in set theory. The translation of formulae (see [9] 
for more details) consists of 

• rewriting the atomic formulae P ( x l ,  x 2 , . . . ,  xn) into monadic 

x2 . . . . .  xo )) 
• replacing the atomic formulae in monadic form Q(x)  by x : Q 
e making explicit the typing requirements: 

form Q ( ( x l ,  

Vx : A • E (x )  becomes V x .  x :  A --* E ( x )  

and 

3x : A • E (x )  becomes 3 x .  x : A & E(x) .  

In the second kind of type theory, another type is used: the type of propositions. 
The main problem in converting such a theory to set theory is that some expressions 
of type theory are both terms and formulae. The syntactic rules of set theory forbid 
this. However, it is possible to model type theory within set theory by representing 
both terms and formulae of type theory by terms of set theory. The set co may be used 
to model the individuals. As may be verified in Figure 19, where Andrews' formula- 
tion (theory Q0 in [2], pp. 163-164) of type theory has been translated into set theory, 
the translation requires only a two-value set to represent the type of propositions. This 
set, T, may be understood as a set of truth-values. In the axioms of  Q 0, listed below, 
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Definitions: 
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t r  = {0} 
fls = 0 
T = {tr,fls} 
Eq(l) = [ X II X:(A*A)*T, EXISTS x. EXISTS y .  

X = < < x , x > , t r >  l ( N o t ( x = y )  ~ X = < < x , y > , f l s >  ) ] 
And = lam(T,~(x)lam(T,~(y)Eq((T->T->T)->T) 

" <lam(T->T->T,~(g)g'tr'tr),lam(T->T->T,~(g)g'x'y)>)) 

Imply = lam(T,~(x)lam(T,Z(y)Eq(T)" <x,(And'x'y)>)) 

Neg = Eq(T)'fls 
Or = lam(T,Z(x)lam(T,~(y)geg'(And'(Neg'x)'(Neg~y)))) 

All(A) = lam(A->T,Z(P)Eq(A->T)" <l~m(A,~(x)tr),P>) 
Exist(A) = l~m(A->T,~(P)Neg'(All(A)'lam(A,~(x)Neg'(P'x)))) 

Desc(A) = lam(A->T,~(f)Union([xllx:A,f'x=tr])) 

Typing rules (already derived): 

( 1 )  [ I  F : A - > B  I ]  = = >  [I  x : A I]  = = >  [I  F ~ x  : B I ]  
(2 )  ( e ( x ) ( [ l  x : A I ]  ==> El P (x )  : B 13))  ==> [1 l am(A ,  P) : A->B 1'1 

Theorems concerning the typed equality: 

(3) [I Eq(S) : (S*S)->T I] 
(4) El a:S I] ==> [[ b:S I] ==> [I a=b <-> Eq(S)- <a,b> = trl] 
(5) [I a:S I] ==> [I b:S I] ==> [I Not(a=b) <-> Eq(S)" <a,b> = flsl] 

Theorems recovering Andrews' definition of tr and fls: 

(e) [I t r  = Eq((T*T)->T) ^ <Eq(T),Eq(T)> l] 
(7) [I lls = Eq(T->T)" <lam(T,Y.(x)tr),lam(T,Y.(x)x)> I] 

Theorems expressing the axioms of simple type theory: 

* Axiom I * 
(8) [I g : T->T I] ==> [I Eq(T)" <And'(g'tr)'(g'fls),All(T)'g)> = tr I] 
(9) [I g : T->T I] ==> [I And'(g'tr)'(g'fls) = AII(T)'g i] 

* Axiom 2 • 
( l O )  rl  h : AI>T 13 ==> [ I  x :A  13 ==> [ I  y : a  I ]  

==> [l Imply'(Eq(A)" <x,y>)'(Eq(T)" <h'x,h'y>) = tr I] 
* Axiom 3 * 
(11) [I :~ : A->B I ]  ==> [ I  g : A I>B  I ]  

==> [l Eq(T)" <Eq(A->B)" <f,g>,All(A)'lam(A,Y,(x) Eq(B)" <f'x,g'x>)> = ~r I] 

( 12 )  [ I  ~ : A->B I]  ==> [ I  8 : A->B I1 
==> [ I  Eq(A->B)" <f,g> = AII(A)'Iam(A,Y,(x) EqCB)" <f'x,g'x>) I ]  

* Axiom 4 (beta conversion) 
(13) [I a : A 13 ==> El Eq(T)" <LCA, P) " a,P(a)> -- tr I] 

(14) [l a : Al] ==> £I L(A, P) " a = P(a) l] 
* Axiom 5 * 
(15) [I x : Al] ==> [I Eq(T)" <Desc(A)-lam(A,Y.(y)Eq(A)- <x,y>),x> = tr I] 
( 1 6 )  [l x : A 13 ==> El DescCA)'lam(l,Y.(y)Eq(l)" <x,y>) = x 13 

F i g .  19. S i m p l e  t y p e  t h e o r y .  

the types are specified by the subscripts: 

1. go.ot &go .o f  = Vxo'go~oXo 

2. x~ = y~ ---> h ~ o X ~  = h ~ o y ~  

3. (f~/~ = g~t~) = (Vx~ "f~/~x~ = g ~ x ~ )  



EXPERIMENTING WITH 1SABELLE IN ZF SET THEORY 55 

4. (2x~" f~(x~))y~ = f p ( y ~ )  

5. l i ~o )~ i (2X i "  y i  = X i )  =- .Fi 

Andrews' approach is interesting because of its minimalist aspect: the connectives 
and the truth values are defined simply using the 2 symbol and a set of symbols for 
typed equality. The approach makes clear how type theory may be seen as an 
extension of a typed 2 calculus with equality. The fourth axiom is the fl rule of 2 
calculus. Although Andrews uses a set of five primitive axioms in place of this axiom, 
he points out that the two formulations are equivalent. Apart from the typed 
equality, the only other logical symbol of the theory is the typed description symbol 
l, the properties of which may be derived from the fifth axiom. The single rnle of 
inference is simply the rule of substitution of equals by equals (through typed 
equality). 

The same definitions as the ones given in [2] are used in the translation into set 
theory, except for the truth values: in Q0, they are defined in terms of the basic 
symbols; in the translation, t and f are the predefined sets tr andf/s  (ideally different 
from the other sets used, but for simplicity taken here as {0} and 0), and the set of 
truth values, T, is defined as {tr, fls}. Andrews' definitions for t and f are, however, 
recovered as theorems of set theory (Theorems (6) and (7) in Figure 19). 

The relation between the typed equality and the equality of set theory is given by 
the Theorems (3), (4) and (5). Note that the left implication in the sentence 

a ~ S & a = b ~ E q ( S ) A ( a ,  b )  = tr 

is provable if N o t ( ±  = tr) may be proved, in which ± is the value resulting from the 
application of a function to a term of incorrect type. This is the case here, since 
bot = 0 and tr = {0}. However, the weaker Theorem (4) is adequate for the subse- 
quent proofs. 

The first version of the Axioms 1-5 in Figure 19 differs from the corresponding 
axioms in [2] only in the fact that the typing of variables is expressed explicitly 
as hypotheses and that every axiom of the form A in [2] becomes A = tr in set 
theory. A simplified version of some of the axioms, which uses the set theoretic 
equality instead of type equality, is given. It is through the transformation from typed 
equality to set-theoretic equality that the inferences of Q0 can be carried over to set 
theory. 

Axiom 5 and the definition of the description operator require some explanation. 
In the definition of Figure 19, the description operator is the function which, when 
applied to a truth-valued function, f ,  returns the inverse image of {tr} under f ,  and 
its type may be proved to be (A ~ T )  ~ P o w ( U ( A ) ) .  An operator of type 
(A --, T) -~ A satisfying Axiom 5 could be obtained if there was a function which, 
when applied to a truth-valued function f ,  returns an element a of A such that 
f A a  = tr when such an element exists. But such a function may not be defined 
without the axiom of choice. The chosen definition is however adequate since it allows 
the derivation of Axiom 5. 
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Definitions: 

(A Or B) = (A*{O}) Un (B*{{O}}) 
(A Alld B) = A*B 

AII(A,P) = [ F [l F : A->Union([P(y) lly:A]), ALL x. x:A --> F'x : P(x) ] 
Exis~(A,P) = Union ([ {x} * P(x) [I x : A ]) 

FIs = 0 

Derived rules: 

And_intr [I a : A I] ==> [1 b : B 1] ==> [I <a,b> : A And B I] 
And_eliml [I x : A And B l] ==> [I Hd(x) : A I] 

And_elim2 [I x : A And B I] ==> [I Tl(x) : B I] 

Or_intrl [l x : A l] ==> [l <x,O> : A Or B l] 

Or_intr2 [I x : B l] --=> [i <x,{O}> : A Or B I] 

Qr_elim [I x : A Or B I] 

==> ( ! ( y ) l ' l  y : A 13 ==> I1 ~ ( y )  : Z 13) 
==> ( ! ( y ) [ I  y : B l ]  ==> [I  g ( y )  : Z 13) 
==> [I  W h e n ( T l ( x ) , { 0 } , l a m ( A , f ) , l a m ( B , g ) )  " H d ( x )  : Z I]  

Imply_intr (!(x)[l x : l l] ==> [I f(x) : S l]) ==> [I l~(A,f) : A->B 13 
Imply_elim [[ f : A->B [] ==> [[ x : A I] ==> [I f'x : B I] 
All_intr (!(x)[l x:A I] ==> [I f(x):P(x) []) ==> [I lam(A,f) : AII(A,F) I] 

All_elim [I f : AII(A,P) I] ==> [I x : A I] ==> [I f'x : P(x) I] 

Exist_intr [I x : A l]==> [l y : P(x) I] ==> [I <x,y> : Exist(A,P) I] 
Exist_elim [I p : Exist(A,P) I] 

==> ( . D f x ) ! f y ) [ I  x : A 13 ==> [I  y : P f x )  I] ==> [I  Z f y )  : Z 1 ] )  
==> [l f ( T l ( p ) )  : Z I] 

Fls_elim [I x : Fls [ ]  ==> [[ y : A I]  

Sequent style rules: 

And_el [[ x 2 A And B I] 

==> ( ! ( x ) ! ( y ) [ I  x : A  I]  ==> [I  y : B  I]  ==> [I  f ( x , y ) : Z  I ] )  
==> [I f(Hd(x),Tl(x)) : Z I] 

Imp_el [I x : A-> B I] ==> [I y : A I] 

==> (!(x)[l x : B 13 ==> [I ~(x) : z I]) 
= = >  [I ~(x'y) : z I] 

A l l  e l  [I  x : A l l ( A , P )  l ]  ==> [I  y : A I]  
==> (!(u)!(v)[l u:A I] =--> [I v:P(u) I] ==> [I ~(v):Z 13) 

::> [I ~ ( x - y )  : z I] 

F i g .  20.  Intuitionistic logic with proof objects. 

D. INTUITIONISTIC LOGIC WITH PROOF OBJECTS 

A semantics for a first order intuitionistic logic with quantification over types, in 
which formulae are interpreted as sets of  proofs, is defined in Figure 20. The defini- 
tions of the connectives follow the general idea behind the concept of 'propositions 
as types'. Their meaning may be interpreted as follows: 

• The set of proofs of  A Or B is the disjoint union of  the set of proofs of  A and the 
set of proofs of B. To a proof  a of A corresponds a proof <a, 0)  of A Or B; to a 
proof b of B corresponds a proof  <b, {0}> of A Or B. 

• The set of proofs of A And B is the cartesian product of the set of proofs of A and 
the set of proofs of B. 

• The set of proofs of All(A, P) is a dependent function space: the set of total 
functions f over A such that, if x e A, then f ^ x  is a proof of  P(x). 
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• The set of  proofs of Exist(A, P) is a dependent product: the set of pairs (x,  y )  such 

that x ~ A and y is a proof  of  P(x). 

The set of proofs of the implication A --, B is the set of total functions from A to 
B, i.e. the term A ~ B, as already defined. It is a particular case of  the definition of 
All: A --, B = All(A, %(x)B). Note that, similarly, the definition of And is a par- 
ticular instance of the definition of Exist: A And B = Exist(A, %(x)B). 

The introduction and elimination rules of  the logic have been derived within set 
theory. The rules concerning the implication are simply the typing rules of 2~, 7. 

Two examples of theorems, which have been proved using these rules in a backward 

style, are given below. The variables with a name starting with the symbol '?' are 
schematic variables which become instantiated through unification during the proofs. 

An attempt to prove 

?x: ((P and Q) Or R) --* ((P Or R) And (Q Or R)) 

produces 

lam((P And Q) Or R, 
%(ka)(When(Hd(ka), P And Q, larn(P And Q, %(kb)(Hd(kb), 0)), 

lam (R, % (kb) (kb, 0))) A Hd(ka), 
When(Hd(ka), P And Q, lam(P And Q, %(kb)(Tl(kb), 0)), 

lain(R, % (kb)(kb, {O})))AHd(ka))) 

:((P And Q) Or R) ~ ((P Or R) And Q Or R) 

An attempt to prove 

a:A 

?x : All(A, Q) --* Exist(A, Q) 

produces 

lam(All(A, Q), %(ka)(a, kaAa)):All(A, Q) --* Exist(A, Q) 

In the second example, the hypothesis ensures that the type A is not empty. IfA was 
empty, it would be possibIe to prove All(A, Q), but not Exist(A, Q); thus there would 
be no proof  of  All(A, Q) ---, Exist(A, Q). Of course, this is a consequence of the use 
of quantification over types. The untyped quantification of first order intuitionistic 
logic can easily be modelled by using a countably infinite set such as co in place of the 
set A. The theorem 

?x :Al l (o ,  Q) ~ Exist(o, Q) 

may be proved without hypothesis. 

Notes 

*The work has been carried out at the Computer Laboratory of the University of Cambridge. 
' The version of Isabelle discussed in this paper is the one described in [13]; the latest version, described 
in [15], differs from it by a small change concerning only the syntax of the meta-language. 
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