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Abstract. This paper presents a method of producing readable proofs for theorems in solid geom- 
etry. The method is for a class of constructive geometry statements about straight lines, planes, 
circles, and spheres. The key idea of the method is to eliminate points from the conclusion of a 
geometric statement using several (fixed) high-level basic propositions about the signed volumes 
of tetrahedrons and Pythagorean differences of triangles. We have implemented the algorithm, and 
more than 80 examples from solid geometry have been used to test the program. Our program is 
efficient and the proofs produced by it are generally short and readable. 
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1. Introduction 

Since the pioneering work of Wen-Tstin Wu in 1977 [12], highly successful alge- 
braic methods for automated proving of geometry theorems have been developed. 
Computer programs based on these methods have been used to prove hundreds 
of non-trivial geometry theorems [1, 2, 8]. Algebraic methods, which are very 
different from the traditional proof methods used by geometers since Euclid, gen- 
erally can only tell whether a statement is true or not. If we want to look at the 
proofs, we only have to see tedious computations of polynomials. The traditional 
method usually can give elegant proofs. Researchers have been studying auto- 
mated generation of traditional proofs using computer programs since the work 
by H. Gelernter, J. R. Hanson, and D. W. Loveland [6]. In spite of the enormous 
amount of efforts and great improvements, see, e.g., [9, 11], the successes in 
this direction have been limited in the sense that no computer program has been 
developed which can prove non-trivial geometry theorems efficiently. In spite 
of the great successes of the algebraic methods, the research in the automated 
generation of traditional proofs is still a very attractive and challenging topic. 

* The work reported here was supported in part by the NSF Grant CCR-9117870 and Chinese 
National Science Foundation. 
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Recently, we presented a method which can produce short and readable proofs 
for a class of geometric statements in plane Euclidean geometry [15, 3, 4]. [5] 
is a collection of 400 geometry theorems proved by our program, including the 
complete machine proofs of 100 theorems. This method is based on properties 
of the signed area and the Pythagorean difference which have been studied 
extensively in [14] for the purpose of geometry education. 

This paper is an extension of our area method to solid geometry. We present 
a theorem-proving method for geometry statements whose hypotheses can be 
described constructively and whose conclusions are polynomial equations of sev- 
eral geometry quantities, such as volumes, ratios of line segments, ratios of areas, 
and Pythagorean differences. We call this method the volume method which is an 
extension of the area method. The key idea of the method is to eliminate points 
from the conclusion of a geometry statement using several basic propositions 
about volumes. The automatically produced proofs are "traditional" in the sense 
that they are generally short, readable, and each step of the proof has a clear 
geometric meaning. The proofs are of a shape that a student could write with 
pencil and paper in a few lines. 

The volume method is complete for the class of constructive geometry state- 
ments which covers a large portion of the equational geometry theorems about 
lines, planes, circles, and spheres. The idea of constructive type and the associat- 
ed automated proving may be resorted to Hilbert [7] and was first pointed out by 
Wu in [13]. The volume method works not only for Euclidean solid geometries 
but also for metric solid geometries associated with any number field with char- 
acteristic zero. Certain geometry problems such as those involving inequalities 
are beyond the scope of the volume method. 

We have implemented the method and our program* has proved more than 80 
examples from solid geometry, including Ceva's theorem, Menelaus' theorem, 
Desargues' theorem, Monge's theorem, etc. The proofs produced by the program 
are generally short and readable. The algorithm is also very efficient. (See the 
statistic table in Section 6.) 

In Section 2, we prove the basic propositions which will serve as the basis 
of our method. In Section 3, we define the constructive geometry statements. In 
Section 4, we present the method for the Hilbert intersection statements in affine 
geometry. In Section 5, we present the general volume method. In Section 6, we 
give some experiment results. 

2. The Signed Volumes 

We need some notions and results from plane geometry whose formal definition 
and proofs can be found in [3, 15]. 

We use capital English letters to denote points in the Euclidean space. We 
denote by A/3 the signed length of the oriented segment from A to /3; denote 

* The prover (euc.tar.Z) is available via ftp at emcity.cs.twsu.edu: pub/geometry/. 
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by SABC the signed area of the oriented triangle A B C .  The area of an oriented 
quadrilateral A B C D  is SABCD = SAge  + SACD = SABZ) -- SCBD. When we 
mention a line A B  or a plane PQR,  we always assume A ¢ B or P, Q, and R 
are not collinear. 

PROPOSITION 2.1. The Co-side Theorem. Let M be the intersection of  two 

nonparallel lines A B  and PQ and 0 ¢ M. Then P M_M = SPA____y_B. P__MM = SPA_2__B " 
QM SQAB' - ~  S PAQB' 

QM SQAB 

p--Q SpAQB " 

PROPOSITION 2.2. Let R be a point on line PQ,  Then for any two points A 
and B in the same plane 

P R  RQ 
SnAB - - _ _ S Q A B  + - - S p A B .  

P Q  PQ 

Two lines in the same plane are said to be parallel if they do not have a common 
point. We use the notation A B  [I CD to denote the fact that A, B, C, and D 
satisfy one of the following conditions (1) line A B  and line CD are parallel; or 
(2) A = B or C = D; or (3) A, B, C and D are collinear. 

PROPOSITION 2.3. PQ 11 A B  iff SpA B = SQAB, i.e., iff SpAQB = O. 

2.1. CO-FACE THEOREM 

In this subsection, we will formally define the signed volume and derive some of 
its properties which will serve as the deductive basis of the volume method. 

DEFINITION 2.4. For any points A, B, C, and D in the space, the signed 
volume VABCD of the tetrahedron A B C D  is a real number* which satisfies the 
following properties 

V.1 When two neighbor vertices of the tetrahedron are interchanged, the signed 
volume of the tetrahedron will change signs, e.g., VABCD = --VABDC. 

V.2 Points A, B, C, and D are coplanar iff VABCZ) = O. 

V.3 There exist at least four points A, B, C, and D such that VABCD ~ O. 

V.4 For five points A, B, C, D, and O, we have VABCD = VABCO + VABOD + 
VAOCD -[- VOBCD. 

* Here, we can use any number  field and the results in this paper are still valid. 
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A 2 
A, A y .-" B 

Q 

Fig. 1. 

V.5 If A, B, C, D, E, and F are six coplanar points and SABC = )k~DEF then 
for any point T we have VTABC : )tVTDEF. 

Note that we do not use the concept altitude in the definition of volume. 
We denote by PABCQ the polyhedron with faces PAB, PBC, PAC, QAB, 

QBC, and QAC. The volume of PABCQ is defined to be 

VPABCQ : VpABC -- VQABC 

By V.4 of Definition 2.4, we have VPABQ : VpABQ -1- VpCAQ -}- VPBCQ. 

PROPOSITION 2.5 (The Co-face Theorem). A line PQ and a plane ABC meet 
in M. If Q • tVI, we have 

P M  VpABC 

QM VQABC ' 

P m VP ABC Q M VQ ASC 

PQ VPABCQ P-Q VPABCQ 

Proof. Figure 1 shows several possible configurations of this proposition. By 
V.5 of Definition 2.4 and Proposition 2.1 

VPABC VpABC VPABM VQABM S A B C  SBPM SABM 

VQABC VPABM VQABM VQABC ~ABM SBQM SABC 

SBPM P M  

SBQM QM 
[] 

PROPOSITION 2.6. Let R be a point on a line PQ and ABC be a triangle 
(Figure 2). Then we have 

PR RQ 
VRABC =- _ _  VQABC-~- ...... :: VPABC- 

PQ PQ 
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Fig. 2. 

Fig. 3. 

Proof. By Proposition 2.5, we have 

VpRBC P R  VPARC PR VpABR PR 

VpQBc PQ VpAQc PQ VpABQ PQ 

PRrY~ "4- By V.4 VRABC = VpABC-- VpRBC-- VpARC-- VpABR =- V P A B C - - ~ ,  PQBC 

VpAQC -I- VPABQ) = VpABC -- PR VpABCQ = P-R Y~ RQ 

PROPOSITION 2.7. Let R be a point in the plane PQS. Then for three points 
A, t3, and C, we have 

SPQR SRQS SpR S 
-- VSABC -1- ~PQS VpABC ~- SPQS VQABC" VRABC SpQS 

Proof For any point X, let Vx = VXABC. Without loss of generality, let M 
be the intersection of P R  and QS (Figure 3). By proposition 2.6, 

P R  R M  p---~ / QM M----S \ R-----M 
VR - VM + v p  - ~ - -  v s  + v Q )  + vp.(1) 

P M  P M  P M  QS QS P M  
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By the co-side theorem (2.1), 

RM SRQ S QM SpQR 

PM SpQS ' QS  SPQRS ' 

MS SPRS PR SpQRs 

QS - SPQRs' PM SpQs 

Substituting these into (1), we obtain the result. [3 

2.2. PARALLELS 

Two planes, or a straight line and a plane are said to be parallel if they have 
no point in common. The notation PQ II ABC means that A, B, C, P, and 
Q satisfy one of the following conditions: (1) P = Q, (2) A, B, and C are 
collinear, or (3) A, B, C, P, and Q are on the same plane, or (4) line P Q  and 
plane ABC are parallel. According to the above definition, if PQ J ABC then 
line PQ and plane ABC have a normal intersection. For six points A, B, C, P, 
Q, and R, ABC II PQR iff AB II PQR, BC II PQR, and AC II PQR. 

PROPOSITION 2.8. PQ II ABC iff VpABC : VQABC or equivalently 

VpABC Q =- O. 

PO Proof. If VpABC ~ VQABC, let O be a point on line PQ such that ~ - 
PQ 

VpABC . Thus O____QQ __ VQABC . By Proposition 2.6, 
VpABCQ p Q  VPABCQ 

PO OQ 
V O A S C  = _ _  V Q A B C  + _ _  V p A ~ C  = O. 

PQ PQ 

By V.2, point O is also in plane ABC, i.e., line PQ is not parallel to ABC. 
Conversely, if PQ J ABC let O be the intersection of PQ and ABC. By 
Proposition 2.5, 

O P Vp ABC 
- -  - - - - 1  7 
OQ VQABC 

i.e., P = Q which is a contradiction. [] 

PROPOSITION 2.9. PQR II ABC iff VpABC = VQABC = VRABC. 
Proof. This is a consequence of Proposition 2.8. [] 
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E 
", C 

B 

Fig. 4. 

PROPOSITION 2.10. Let P Q T S  be a parallelogram. Then for points A, B,  and 
C, we have 

VpABC -'}- VTABC = VQABC "[- VSABC or  VpABCQ = VSABCT. 

Proof This is a consequence of Proposition 2.6, because both sides of the 
equation are equal to 2VOABC where O is the intersection of P T  and SQ. [] 

PROPOSITION 2.11. Let triangle A B C  be a parallel translation of  triangle 
DEF.  Then for any point P we have VpABC = VpDEF A. 

Proof By Proposition 2.10, VpABC = VpAEC-- VPADC = VpAEF--  VpAED -- 

VPADC = VpAEF -- VpAED -- VPADF : VpDEFA.  [] 

PROPOSITION 2.12. Let triangle A B C  be a parallel translation of  triangle 
DEF.  Then for two points P and Q we have 

VpABC -~- VQDEF -'~ VQABC -~ VpDEF or VpABCQ = VpDEFQ. 

Proof. By Proposition 2.11, VpABC = VPDEF--VADEF; VQABC = VQDEF-- 
VADEF from which we obtain the result immediately. [] 

2.3. WORKING EXAMPLES 

Before presenting the method, we use several examples to show how to use the 
above properties about volumes to prove theorems. The proofs given below are 
actually modifications of the proofs produced by our program. 

EXAMPLE 2.13 (Menelaus' theorem). If the sides AB,  BC,  CD,  and D A  of 
any skew quadrilateral are cut by a plane X Y Z  in the points E, F, G, and H, 
respectively, then 

AIr, B F  CG D H  
= 1 .  

E B  F C  GD H A  
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Proof. By the co-face theorem 

D H  VDXYZ CG VcxYz  

A H  VAXYZ ' DG VDXYZ ' 

B F  VBXYZ A E  VAXYZ 

CF VcxYz  ' B E  VBXYZ 

T h e n i t i s c l e a r ~ m  

A E  B F  CG DH 
- -  l .  

E B  FC GD H A  

For~enon-degene ramcond i t ionso f th i sexample ,  seeSection3.3.  [] 

EXAMPLE 2.14. Let A1B1C1 be the parallel projection of any triangle A B C  in 
any plane. Show that the tetrahedral ABCA1 and A1BIC1A are equal in volume 
(Figure 5). 

A A! 

C C1 

Fig. 5. 

Proof. Since CCI is parallel to plane AA1B1, by Proposition 2.8, VAAll~IC1 ~-- 

VAA1BIC. Similarly, VAAIB1C = VAA1BC. [] 

3. Constructive Geometry Statements 

Our volume method is for constructive geometry statements defined as fol- 
lows. 

3.1. CONSTRUCTIVE GEOMETRY STATEMENTS 

By a geometry quantity, we mean one of the following three quantities: (i) the 
ratio of the lengths of two oriented segments on one line or on two parallel lines; 
(ii) the ratio of the areas of two oriented triangles in the same plane or in two 
parallel planes; or (iii) the signed volume of a tetrahedron. 
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DEFINITION 3.1. A construction is one of the following ways of introducing 
new points in the space. 

C1 (POINTS A 1 , . . . ,  Al). Take arbitrary points A 1 , . . . ,  Al in the space. Each 
Ai has three degrees of freedom. 

C2 (PRATIO AWUVr). Take a point A on the line passing through W and 
parallel to line UV such that WA = rUI/, where r could be a rational 
number, a rational expression in some geometric quantities, or a variable. 

If r is a fixed quantity, A is a fixed point; if r is a variable, A has one 
degree of freedom. The non-degenerate (ndg) condition is U 5¢ V. 

C3 (ARATIO ALMNrl  r2r3), where 

~AMN ~LAN SLMA 
r l  - -  r2 -- and r3 -- - -  

SLMN ' SLMN ' SLMN 

are the area coordinates of point A with respect to LMN. The rl ,  r2 and 
r3 could be rational numbers, rational expressions in geometric quantities, 
or indeterminates satisfying rl + r2 + r3 = 1. The ndg condition is that L, 
M, N are not collinear. The degree of freedom of A is equal to the number 
of indeterminates in {rl, r2, r3}. 

C4 (INTER A(LINE UV)(LINE PQ)). Point A is the intersection of line PQ 
and line UV which are in the same plane. The ndg condition is PQ W UV. 
Point A is a fixed point. 

C5 (INTER A(LINE UV)(PLANE LMN)). Take the intersection of a line UV 
and a plane LMN. The ndg condition is that UV W LMN. Point A is a 
fixed point. 

C6 (FOOT2LINE APUV). Point A is the foot from point P to line UV. The 
ndg condition is U ¢ V. Point A is a fixed point. 

DEFINITION 3.2. A constructive statement is a list S = (C1, C2 , . . . ,  Ck, G) 
where 

1. Each C~, introduces a new point from the points introduced by the previous 
constructions. 

2. G = (El,  E2) where/~1 and/~2 a r e  polynomials in some geometric quantities 
about the points introduced by the Ci and El = E2 is the conclusion of S. 

The non-degenerate (ndg) condition of S is the set of ndg conditions of the Ci 
plus the condition that the geometry quantifies in EI and E2 have geometry 
meanings, i.e., their denominators could not be zero. 
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The set of all constructive statement is denoted by Sc. If the constructions are 
limited to C 1-C5, the corresponding statements are called the Hilbert intersection 
point statements in the space and are denoted by SH. 

3.2. T H E  PREDICATE FORM 

The constructive description of geometry statements can be transformed into the 
commonly used predicate form. We first introduce several basic predicates. 

1. Point (POINT P): P is a point in the space. 
2. Collinear (COLL P1, P2, P3): points P1, P2, and P3 are on the same line. It 

is equivalent to Sp1p2p 3 = 0. 
3. Co-plane (COPLP1,P2, P3,P4): P1,P2, P3, and P4 are in the same plane. It 

is equivalent to Vp~p2p3p 4 = 0. 
4. Parallel between two lines (PRLLP1, P2, P3, P4): P1P2 II P3P4. It is equiv- 

alent t o  VP1P2P3P4 --~ 0 and SP1P3P2P4 ~- O. 

5. Parallel between a line and a plane (PRLP P1, P2, P3, P4, Ps): PIP2 [I P3 P4Ps. 
It is equivalent to VP1P3P4psp 2 = O. 

We first need to transform the construction into predicate forms. 

C2 (PRATIO AWUVr) is equivalent to (PRLL AWUV), r = __ WA, and U ¢ V. 
UV 

C3 (ARATIO ALMNrlr2r3) is equivalent to (COPL ALMN), 

S A M N  S L A N  
T1 ~ -- r3 -- 

S L M N  ' r2 S L M N  ' 

S L M A  

~ L M N  ' 

and -7 (COLL LMN). 

C4(INTERA(LINEUV)(LINEPQ)) is equivalent to (COLLAUV), 
(COLL APQ), and -~(PRLL UVPQ). 

C5 (INTERA(LINEUV)(PLANELMN))is equivalent to (COLLAUV), 
(COPL ALMN), and -~(PRLP UVLMN). 

C6 (FOOT2LINE APUV) is equivalent to (COLL AUV), (PERP APUV), and 
u c v .  

Now a constructive statement S = (C1, . . . ,  Cr, (E, F)) can be transformed 
into the following predicate form 

VPI ' - '  V-Pr((P(C1) A " "  A P(Cr)) ~ E = F) 

where Pi is the point introduced by Ci and P(C~) is the predicate form of Ci. 
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3.3. M O R E  CONSTRUCTIONS 

Constructions C1-C6, though simple, can be used to describe almost all the 
configurations about lines, planes, circles, and spheres. To see that, we first 
introduce more geometry objects. 

• We consider three kinds of lines: (LINE PQ); (PLINE RPQ): the line pass- 
ing through R and parallel to PQ; (OLINE SPQR): the line passing through 
point S and perpendicular to the plane PQR. 

• We consider six kinds of planes: (PLANELMN); (PPLANEWOUV): 
the plane passing through a point W and parallel to the plane OUV; 
(TPLANEWUV): the plane passing through a point W and perpendic- 
ular to the line UV; (BPLANEUV): the perpendicular-bisector of line 
UV;(CPLANE ABPQR): the plane passing through line AB and perpen- 
dicular to plane PQR; and (DPLANEABPQ): the plane passing through 
line AB and parallel to line PQ. 

Now we can introduce more constructions: taking an arbitrary point on a line or 
in a plane; taking the intersections of two lines, the intersections of lines with 
planes, and the intersections of three planes. From all possible combinations, we 
have 41 new constructions. For convenience, we introduce the following often 
used constructions. 

(MIDPOINT AUV). A is the midpoint of UV, i.e., (PRATIO AUUV 1/2). 
(LRATIO AUVr), i.e., (PRATIO AUUVr). 
(ON A In). Take an arbitrary point A on line ln. For instance, 
(ON A(LINE UV)) is equivalent to (PRATIO AUUVr) 
for an indeterminate r. 

EXAMPLE 3.3. Example 2.13 can be described in the following constructive 
way. 

((POINTS ABCDXYZ) 
(INTER E (LINE AB) (PLANE XYZ)) 
(INTER F (LINE PC)  (PLANE XYZ)) 
(INTER G(LINE CD)(PLANE XYZ)) 
(INTER H (LINE AD ) (PLANE XY Z) ) 

c u  D o  a d  = 1 

The ndg conditions: AB J XYZ, BC J XYZ, CD ~/XYZ, AD J XYZ, 
BCE,  CCF, DCG, ACH. 

The predicate form of this example is: 

VA, B, . . . ,H(HYP ~ CONC) 

where 
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HYP = ((COLL EB)A (COPL E X Y Z ) A  (COLL FCB)A (COPL F X Y Z )  
A(COLL GCD) A (COPL GXYZ)  A (COLL HAD) A (COPL H X Y Z )  
A-~(PRLP A B X Y Z )  A ~ (PRLP C B X Y Z )  A -7 (PRLP CDXYZ)  
A-~(PRLPDAXYZ) A B ¢ E A C ¢ F A D ¢ GA and A ¢ H); 
CONC : ( A---E-E BF CG DLr _ 1. 

" , B E  C F  D G  A H  I 

We may also consider circles and spheres. We define (CIR OPQ) to be the 
circle in the plane OPQ which has O as its center and passes through point P. 
We define (SPHERE OP) to be the sphere with center O and passing through 
point P. Then we can use the following new constructions. 

(ON a(CIR OUV)). Take an arbitrary point on the circle. 
(ON A(SPHERE OU)). Take an arbitrary point on the sphere. 
(INTER A/n(CIR OWP)). Take the intersection of line In and circle 
(CIROWP) which is different from W. We assume that line In and the 
circle are in the same plane. Line Ir~ could be (LINE WV), (PLINE WUV), 
and(OLINE WLMN).  
(INTER A/n(SPHERE OW)). Take the intersection of line In and sphere 
(SPHERE OW) which is different from W. Line In could be (LINE WV), 
(PLINE WUV), and (OLINE WRPQ). 
(INTER A(CIR O1WU) (CIR 02WV)). Take the intersection of circle 
(CIR 01WU) and circle (CIR 02WV) which is different from V. We assume 
that the two circles are in the same plane. 
(INTER A(CIR O1UV) (SPHERE O2U)). Take the intersection of circle 
(CIR O1UV) and sphere (SPHERE 02U) which is different from U. 

Here, we introduce another 10 new constructions. Thus, totally we have 51 
constructions. The following fact can be proved without much difficulty. 

PROPOSITION 3.4. All the 51 constructions introduced in this subsection can 
be reduced to constructions C1-C6. 

4. Automated Theorem Proving for Class SH 

The volume method i s t o  eliminate points from the conclusion of a geometry 
statement. More precisely, we need to eliminate points from geometry quanti- 
ties. 

4.1. ELIMINATING POINTS FROM VOLUMES 

The method of eliminating points from volumes is the basis of the volume 
method. In this subsection, we will discuss four constructions C2-C5. C1 will 
be treated in Section 4.4. 
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LEMMA 4.1. Let Y be introduced by (PRATIO YWUVr) .  Then we have 

VABCY = { (UW +r)VABCV + (~-V~ i f W  is on line UV. 

VABCW "+- T(VABCV -- VABCU ) otherwise. 

Proof. Let G = VABCY. If W, U, V are collinear, by Proposition 2.6 we 
have 

UY 
G - _ _  VABCV 

UV 

: ( U W ~ +  r )  

Otherwise, take a point 

W Y  
G -  _ _  VABCS 

w s  

Y V  
~ - -  VABCU 

UV 

VABCV + ( W V  ) - -  -- r VABCU. 
UV 

S such that W S  = UV. Then we have 

Y S  
+ - -  V A S C W  = r V A s C S  + ( 1  - r ) V A s c W .  

W S  

By Proposition 2.10, we have VABCS = VABCW + VABCV- VABCU. Substituting 
this into the above equation, we obtain the result. Note that the ndg condition 
U 5£ V is needed. [] 

LEMMA 4.2. Let Y be introduced by (ARATIO YLMNrlr2r3). Then we have 

VABCY : rl VABCN + rzVABCM + r3VABCL. 

Proof This lemma is a direct consequence of Proposition 2.7. [] 

LEMMA 4.3. Let Y be introduced by (INTER Y(LINE UV)(LINE I J)). Then 
we have 

SUIJ SVIJ  
V A B C V - - - -  VABCV VABCU. 

SUIVJ S u I v J  

Proof By Propositions 2.6 and 2.1, 

UY Y V  
V A B C Y  = _ _  VABCV + -  VABCU = 

UV UV 

Since UV W IJ, we have SuIv j  5£ O. 

SUIJVABCV -- SvIJVABcU 

S u I v J  

[] 

LEMMA 4.4. Let Y be introduced by (INTER Y(LINE UV)(PLANE LMN)) .  
Then 

1 
V A H C Y -  VULMNV ( V U L M N V A B c V -  VVLMNVABCU ) 
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Proof. Let G ---- VABCY. By Proposition 2.6 and the co-face theorem, 

VABCY -- 
U Y  Y V  
_ _  VABCV + -  VABCU 
UV UV 
VU L M N VABCV -- VV L M N VABCU 

VULMUV 

Since UV W L M N ,  we have VULMNV ~ O. [] 

4.2. ELIMINATING POINTS FROM AREA RATIOS 

LEMMA 4.5. Let Y be introduced by (PRATIO Y W U V r ) .  Then we have 

A B Y  _ I CDE 

TVuABWV 

VWCDEA 

VU ABW ~-VVu ABV 

VUCDEA 

SABW-~-'I'(SABV --SABU) 

SCDE 

if W is not in plane A B Y .  

if W is in plane A B Y  

but line UV is not. 

if  W~ U, V, A, B,  Y are coplanar. 

Proof If W ~ A B Y ,  let R P Q  be a parallel translation of triangle C D E  to 
plane A B Y ,  and W S  be a parallel translation of UV to line W Y  (Figure 6). By 
V.5, 

G _ 
S A B Y  VWABY 

SRPQ VWRPQ 

By Proposition 2.12, V~aPO, W = VWCDEA. By Propositions 2.6 and 2.10, 

W Y  
VWABY - - _ _  

W S  
-- - -  VWSAB = r V u A B W V .  

We prove the first case. The second case can be proved similarly as the first case: 
just replacing W by U. For the third case, see [3]. [] 

LEMMA 4.6. Let Y be introduced by (ARATIO YLMNr l r2r3 ) .  Then we have 

A B Y  _ { 
CDE 

r2VLABM-}-r3VLABN 

VL C D IE A 

TISABL-}-r2SABMq-r3SABN 

SCDE 

if one of  L, M , N ,  say L, 

is not in A B Y .  

if L, M, N are in plane A B Y .  
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Proof. If L is not in A B Y ,  

ABY VLABY 

C D E  VLCDEA 
Now the result comes from Lemma 4.2. The second case can be proved similarly 
as Proposition 2.7. [] 

S V 

W, U 

D "J E 

Fig. 6. 

LEMMA 4.7. Let Y be introduced by (INTER Y(LINE UV) (LINE I J) ) . Then 
we have 

SuIjVuAB v 
A B Y  SuIvsVvcDEA if one of U, If, I, J, say U~ 

C D E  SIuvSABj--SjuvSABI 
ScDESIuJV 

is not in A B Y .  

if U, If, I,  J, A, t3, Y are coplanar. 

Proof. If U is not in A B Y ,  

A B Y  VUABY UY VUABV SUIa VUABV 

CDE VUCDEA UV VUCDEA SUIVJ VUCDEA 
The second case can be proved similarly as Lemma 4.3. [] 

LEMMA 4.8. Let Y be introduced by 

C = (INTER Y (LINE UV) (PLANE L M N ) ) .  

Then we have 
- -  ( VULMN VUABV 
A B Y  - I VULMNV VUCDEA 
C D E  VULMNSABv --VvLMNSABu 

ScDEVULMNV 

if U (or V) is not in A B Y .  

if U, V are in A B Y .  
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Proof. If U is not in ABY, 

A B Y  VUABY UY VUABY VULMN VUABV 

C D E  VUCDEA UV VUCDEA VULMNV VUCDEA 

The second case is a consequence of Proposition 2.2 and the co-face theo- 
rem. [] 

4.3. ELIMINATING POINTS FROM LENGTH RATIOS 

In the following lemmas, point Y is introduced by construction C. 

LEMMA 4 . 9 .  Let G = DY, C = (PRATIO YWUVr).  Then 
EF 

DW +r 
UV 

EF 
UV 

G = ~owuv 
V E W U V F  

V U E D W V  

V U E F W V  

SDUWV 
SEUFV 

if D E  WY. 

if D ¢ WY, U ¢ DWY. 

if D ¢ WY, R ¢ DWY. 

if all points are coplanar. 

Proof If all points are collinear (the first and the last cases), see [3, 15]. If 
U ~ DWY, take a point S such that DS = EF (Figure 7). By the co-face 
theorem 

G _ 
DY V D W U V  VDWUV 

DS VDWUVS VEWUVF 

If E ~ DWY, take a point T such that WT = UV. By the co-side and co-face 
theorems 

D Y  SDWT VDWTE 
a __ - -  __ 

D S  SDWST VDWTES 

By Propositions 2.10 and 2.12 

V U W T E  = V D W V E  -- VDWUE = - - V v E D W V ,  

VDWTES = VEWTEF = --VFwTE = - -VFwvE -]- VFWUE = VUEFWV 

which prove the lemma. [] 
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v I 
Fig. 7. 

LEMMA 4.10. Let G = --,DY C = (ARATIO Y L M N r l r 2 r 3 ) .  Then we have 
EF 

I VDLM N 
VELMNF 

VDMNE 
G = VFMN E 

SDMN 
SEMEN 

i f  D f~ L M N .  

if D E L M N ,  E ~ L M N ,  and D Y  W N M .  

if all points are coplanar and D Y  W N M .  

Proof. If D ff L M N ,  the result is a direct consequence of Propositions 2.5 
and 2.12. For the second case, take a point S such that D S  = E F .  Then 

D Y  SDMN VDMNE VDMNE VDMNE 
G __ _ _  . . . .  

DS SDMSN VDMNES 

The third case can be proved similarly. 

VEMNEF VFMNE 
[] 

LEMMA 4.11. Let G = D y_Y, C = ( I N T E R Y ( L I N E U V ) ( L I N E I J ) ) .  Then we 
EF 

have 

VDUV I 
VEUVIF 

G = VEDUV 
VEFVU 
SDUV 
SEUFV 

D ¢ U V I J  and =(COLL UVI) .  

D E U V I J ,  E F  ({ U V I J ,  and D ~ UV. 

D, E,  F are in U V I J ,  and D f[ UV. 

Proof. The first case is a consequence of the co-face theorem. For the second 
case, we assume D E U V I J .  Take a point S such that D S  = E F .  Then we 
have 

D Y  SDUV VDUVE V D U V E  VDUVE 
G . . . . .  

D S  SDUV - S s u v  VDUV~S 

Thethird case canbe  proved similarly. 

VEUVEF VFUVE 
[] 
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LEMMA 4.12. Let G - DY Nff' 
Then we have 

I VDLMN 
VELMN --VFLMN 

G ~" VDUVL 
VEUVL--VFUVL 

SHANG-CHING CHOU ET AL. 

C = ( INTER Y (L IN E U V )(PL A N E L MN )) .  

if  D is not in plane L M N .  

if D E L M N  and one of  L, M,  N,  

say L ¢ DUV.  

Proof  If D is not in plane L M N ,  the result is a direct consequence of the 
co-face theorem. For the second case, take a point S such that D S  = E F .  Then 
we have 

D Y  VDUVL VDUVL 
G - -  -- -- [] 

D S  VDvvrs  VEUVrF 

4.4. FREE POINTS AND VOLUME COORDINATES 

After applying the above lemmas to any rational expression E in geometric 
quantities, we can eliminate the non-free points introduced by all constructions 
from E. Now the new E is a rational expression of indeterminates and volumes 
of free points in space. For more than five free points in the space, the volumes of 
the tetrahedra formed by them are not independent, e.g., see V.4 of Definition 2.4. 
To deal with this problem, we introduce the concept of volume coordinates. 

DEFINITION 4.13. Let X be a point in the space. For four noncoplanar points 
O, W, U, and 17, the volume coordinates of X w.r.t. O W U V  are 

Vowu x Vow x v  Vo x v v  V x w u v  

7"1- VOWU V ?"2 VOWUV T3 V o w u v  7"4 V o w u v  

It  is c lear  that  r l  + r2 + r3 + r4 = 1. 

The points in the space are in a one to one correspondence with the four-tuples 
( x , y , z , w )  such that x + y +  z + w =  l. 

LEMMA 4.14. Let G = VABCY, and O, W, U, V be four noncoplanar points. 
Then we have 

VO ABCV VOwuY -q- VO ABCU VOVWY -1- VO ABCW VOUVY 
G = VABCO + Vowuv  

Proof. We have 

VABCY = VABCO + VABOY + VAOCY + VOBCY. (1) 
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Without loss of generality, we assume that YO meets plane WUV in X. (Oth- 
erwise, let Y W  meet plane OUV in X, and so on.) By Proposition 2.5, we 
have 

VO Wuvy Vo AB x 
- -  - -  VOABX = (2) 

VOWUV 

OY 
VOABY -- _ _  

OX 

By Proposition 2.7, 

Swux 
VOAB X -- 

Swyy 

By Lemma 4.8, we have 

S w u x  Vowuz  

Swuv  Vowuvz  

SWXV SXUV 
VOABV @ - -  VOABU @ - -  VOABW. ( 3 )  

Swuv Swuv 

S w x v  Vovwz  Sxuv  Vouvz 

' S w v v  Vowuvz  Swuv  Vowuvz  

Substituting them into (3) and (2), we have 

VOwuY VOABV -~- V O v w y  VoABU -~- VOuvy  VoABW 
VOABY = ( 4 )  

VOWUV 

Similarly, we have 

Vowuz  VoBcv + Vovwy VoBcu + Vovvy VoBcw 
VOBCY = 

VOWUV 

VOwuY  V o c A v  -~- VOVWY VOCAU ~- VOuvY V o c A w  
VocAY = 

VOWUV 

Substituting them into (1) and noticing that VOABV @ VOBCV 4= VOCAV = 

VOABCV, VOABU ~- VOBCU @ VOCAU = VOABCU, and VOABW @ VOBCW @ 
VOCAW = VOABCW, w e  o b t a i n  t h e  r e s u l t .  [] 

Now we can describe the volume method as follows: for a geometry statement 
in SH: S = ( e l ,  • • • , Cr, ( E l ,  f ~ 2 ) ) ,  let the point introduced by Ci be Pi. Then we 
can use the above lemmas to eliminate points P~, P r - l ,  • - -, Pl respectively from 
E1 and E2. At last, we obtain two rational expressions R1 and R2 respectively. S 
is a correct geometry statement if R1 is identical to R2. For the formal description 
of the algorithm, see the next section• 

5. Automated Theorem Proving for Class Sc 

5 . 1 .  T H E  P Y T H A G O R E A N  DIFFERENCE 

The Pythagorean difference PABC is defined as 

PABC = ~ 2  _+_ ~ 2  __ -A--~2. 

It is easy to check that 
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1. P A A B  = 0; P A B C  = P C B A ;  P A B C  q- P A C B  = 2 ~--~2 = P B C B .  

2. If A, 13, and C are collinear, PABC = 2 B A .  13C, 

For four points A, 13, C, and D, we define 

P A B C D = P A B D --  P C  B D = -A--B2 -}- -'~-~2 __ --B-'~2 _ --D--~ 2 . 

Then P A B C D  = - - P A D C B  = P B A D C  = - - P B C D A  = P C D A B  = - - P C B A D  = 

P D C B A  = - - P D A B C .  
The following properties of Pythagorean differences are taken for granted in 

our volume method. 

PROPOSITION 5.1. (1) (Pythagorean theorem) A13 L 13C iff PABc = O. 

(2) I f O W  _L OU, O W  _1_ OV, and OU L OV, then V ~ w u v  = 3 ~ O W 2 ~ 2 ~  2. 

In (2), we use the square of the volume, because the sign of the volume cannot 
be determined by the signs of the edges of the tetrahedron. 

PROPOSITION 5.2. A B  L C D  iff PACD = PBCD or PACBD = O. 
Proof  Let M and N be the orthogonal projections of A and /3 upon C D  

respectively. Then ~---~2 = ~ - ~ 2  _[_ ~--~2, ~ 2  _- ~--~2 ~_ ~ - ~ 2  ~ 2  _- ~ -~2  _}_ 

~-~2,  B--~2 = ~-~2  -{- ~---~2. Therefore 

P A C B D  : C M 2  - -D-M2 q- -D---~2 - ~ 2  : 2 C D ( D M  - D N ) .  

Hence PACBD = 0 iff D M  = D N ,  i.e., iff M = N. It is clear that N = M iff 
A13 _L CD.  [] 

PROPOSITION 5.3. Let D be the foot of  the perpendicular from point P to a 
line A13. Then we have 

A D  P P A B  D13 P P B A  

A B  2 A B  2 ' A13 2 A B  2 

Proof. By Proposition 5.2, P P A B  = P D A B  = 2A13. A D.  The result is clear 
now. [] 

PROPOSITION 5.4. Let R be a point on line P Q  with position ratio 

PR RQ 
~ ' 1  - -  - - ~  7 " 2  = - -  

P Q  P Q  

w.r.t. PQ.  Then for  any points A and t3, we have 

PRAB = rlPQAB + r2PPAB 

PARB = rlPAQB + r2PAPB -- r lr2PpQp. 
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Proof. We first assume 

~ 2  = r l ~ 2  + r2~-~2 __ ~ , l r2pQ2 (1) 

~ 2  = /.1~-~2 -l-/'2P--B 2 - rlr2PQ 2. (2) 

Then PRAB = ~--~2 -~- ~-~2 _ ~ 2  = r l  ( 8 2  _4_ ~ 2  _ ~ -~2)  -~- r l  (~-~2 _~. ~ 2  _ 

p-~a) = r lPoAB + r2PpAe. The second one can be proved similarly. To prove 
(1), let us first notice that by Proposition 5.2, 

PAPR PR  
- -  - -  ~'1, 

PAPQ PQ 

Then r l ~  a + r2P--A 2 - r - l r2PQ 2 = ~--~2 + ~--~2 _ rIPApQ = ~ 2  +-p--~2 _ 

PAPR = A 1~2. [] 

PROPOSITION 5.5. Let A B U D  be a parallelogram. Then for points P and Q 
in the same plane, we have 

PAPQ + PCPQ = PBPQ + PDPQ or PAPBQ = PDPCQ 

PPAQ @ PPCQ = PPBQ @ PPDQ + 2PBAD. 

Proof Let O be the intersection of A C  and BD.  By the first equation of 
Proposition 5.4, 2PopQ = PAPQ + PcPQ = PBPQ + PDPQ. By the second 
equation of Proposition 5.4, 

1 1 
2PpoQ = PPAQ + PPCQ - ~ PACA = PPBQ + PPDQ - ~ PBDB. 

1 We only need to show 2PBA D = ~(PACA -- PBDB)  which comes from Propo- 

sition 5.4. [] 

5.2. METHODS OF ELIMINATING POINTS 

Since we have a new geometry quantity, the constructive statements can be 
enlarged in the following way: the conclusion of a statement can be equation 
of two polynomials of length ratios, area ratios, volumes and Pythagorean dif- 
ferences. The class of the enlarged constructive statements is still denoted by 
Sc .  

Now we have five constructions C2-C6 and four geometry quantities. We need 
to give a method to eliminate a point introduced by each of the five constructions 
from each of the four quantities. This section deals with the classes which are 
not discussed in Section 4. 
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Let Y be introduced by one of the constructions C2-C6. By Proposition 5.4, 
to eliminate point Y from PABY or PAYB we only need to find the position ratios 

uY and Y~_K, and this has been done in Section 4.1. (For C6, see Proposition 5.3.) 
UV UV 
Now there are only three cases left. 

LEMMA 5.6. I f  Y is introduced by (FOOT2LINE P U V )  then 

P P u v  P P v u  
VABCY -- - -  VABCQ q- - -  VABCP. 

PUVU P u v u  

Proof This is a consequence of Propositions 2.6 and 5.3. [] 

LEMMA 5.7. Let Y be introduced by (FOOT2LINE P U V ) .  Then 

D Y  

E F  

-DU PPDU 
- ~  PDUD 

VDPUV 

VEPUVF 

VDUVE 

VEUVF 

SDUV 
SEUFV 

i f  D C U V  and D ¢ U. 

if  D ¢ PUV.  

if  D ¢ P U V  and E ¢ PUV.  

if all points are coplanar. 

In all cases, we assume P is not on line UV; otherwise P Y and DY DP 
EF E F  

Proof. For the first and last cases, see [3]. The second case is consequence 
of the co-face theorem. For the third case, let T be a point such that D T  = E F .  
Then 

D Y  D Y  S D U V  VDUVE VDUVE VDUVE 
- -  [ ]  

E F  D T  S D U T V  V D U V E T  V E U V E F  V F U V E  

LEMMA 5.8. Let Y be introduced by (FOOT2LINE P U V ) .  Then 

PPuv  Vp AB y 4.- PPvu Vp ABU 
- - 2  

2UV VPCDEA 

PPUVVUABV 

S A B Y  - - 2  __ 2UV VUCDEA 

S C  D F_, PP vu  Vv ABU 
- - 2  

2UV VVCDF, A 

PPUV S AB V-}-PP vu  S ABu 
- - 2  2UV SCDE 

i f  P is not in A B Y .  

if U is not in A B Y .  

if V is not in A B Y .  

if P, U, V are in A B Y .  
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Proof If P is not in A B Y ,  by V.5 SABr __ VpAur Now the result comes SCDE VPCDNA " 
from Lemma 5.6. The second and third cases can be proved similarly. For the 
last case, see [3]. [] 

5.3. THE ALGORITHM 

In the preceding subsection, we gave elimination methods for points introduced 
by constructions C2-C6. Now we give the elimination method for free points. 
By Lemma 4.14, volumes of tetrahedrons can be reduced to volume coordinates 
w.r.t to four given points. The following lemma will also reduce the Pythagorean 
difference to volume coordinates. 

LEMMA 5.9. Let O, W, U, and V be four points not on the same plane such 
that O W  ± OUV, OU ± OWV,  and O V  _L OWU. Then 

(1) PABC = ~ 2  _}_ -~---~2 _ - ~ 2 .  

(2) ~--~2 : - - 2  VAOUVB -~- V~WUV J "~-~2  O W  ( Vo~uv ) 2 -O---U2(VAOWVB'~ 2 (VAowuB'~ 2 
\ Vowuv / " 

(3) V~)WU V 2  = oolo-W20-g20--V2 " _  

Proof (1) is the definition. (3) is from Proposition 5.1. For (2), let R, P, and 
Q be the orthogonal projections from the point B to the planes OUV, OWV,  
and O W U  respectively, and D, E,  and F be the orthogonal projections from 
the point A to the lines BR,  BP,  and BQ respectively. By the Pythagorean 
theorem 

Now the result comes from Lemma 4.9. [] 

Algorithm 5.10 (Volume) 

INPUT: S = ( C1, C2 , . . . ,  Ck, ( S,  F) ) is a constructive geometric statement. 

OUTPUT: The algorithm tells whether S is true or not, and if it is true, produces 
a proof for S. 

S1. For i = k , . . . ,  1, do $2, $3, $4 and finally do $5. 
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$2. Check whether the ndg conditions of Ci are satisfied. The ndg condition of a 
construction has three forms: A :/= B, PQ WUV, PQ WWUV. For the first 

case, we check whether PABA = 2 )  --~2 = 0. For the second case, we check 
whether VoQuv = 0 and Spur = SQuv. For  the third case, we check 
whether Vpwuv = VQwuv. If a ndg condition for a geometry statement is 
not satisfied, the statement is trivially true. The algorithm terminates. 

$3. Let G 1 ,  • • • ,  G s  be the geometric quantities occurring in /!J and F. For j = 
1 , . . . , s  do $4. 

$4. Let Hj be the result obtained by eliminating the point introduced by con- 
struction Ci from Gj using the lemmas in Sections 4 and 5. Replace Gj by 
Hj  in E and F to obtain the new E and F. 

$5. At least, E and F are rational expressions in independent variables. Hence 
if E = F, S is true under the ndg conditions. Otherwise S is false in the 
Euclidean plane geometry. 

Proof The last E and F are rational expressions in free parameters. If /~ = F, 
the statement is obviously true. Otherwise, we can find specific values for the 
free parameters in E and F such that when substituting them into E and F, we 
obtain two different values of E and F, i.e., we have found a counterexample. 
The ndg conditions of the statement ensures the validity of each step, because 
all the geometric quantities occurring in the proof have geometric meaning, i.e., 
their denominators will not vanish. [] 

For the complexity of the algorithm, let m and r~ be the number of free 
and non-free points in a statement, respectively. Then we will use the lemmas 
(except 4.14 and 5.9) for at most n times. Also note that each lemma will replace 
a geometric quantity by a rational expression with degree less than or equal to 
three. Then if the conclusion of the geometry statement is of degree d, the result 
after eliminating the nonfree points is at most degree 3nd. To eliminate the free 
points using Lemmas 4.14 and 5.9, the final result is at most degree 4 .3nd .  

Remark 5.10. In the development of the volume method, no special property 
of the real number field has been used. As a result, the volume method works 
not only for Euclidean geometry but also for metric solid geometries associated 
with any field with characteristic zero. 

6. Experiment Results and Comparisons 

We have implemented the algorithm in Common Lisp on a NeXT workstation. 
The following is the machine produced proof for Example 2.13. 
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EXAMPLE 6.1. For the input like Example 3.3, our program produces the fol- 
lowing machine proof (in Latex form) automatically. 

The machine proof The eliminants 

D H  CG B F  A E  

A H  DG C F  B E  

D H  H VDXYZ 

A---H V a x v  z 

C-G G V c x z z  
DG VDXYZ 

B F  F Vsxyz 

C~ VC X Y Z 

A--E E VAXYZ 

BE VBXZZ 

H VDXYZ CG B F  A E  

VAXYZ DG C F  B E  

G V D x v z V e x v z  
VAXYZ "VDXYZ 

BF A E  

C F  B E  

B F  A E  s i m p l i f y  VCXYZ  

V A X Y Z  C F  B E  

F V C X Y z ' V B x Y Z  A E  

V A x Y z ' V c x Y z  B E  

s i m p l i f y  V B X Y Z  A--'E 

VAXYZ B E  

E VBXvZ'VAxYZ 
VAXYZ'VBxyz 

~i~pjifv 1 

In the above proof, the symbol H = means to eliminate point H. The e l iminant s  

are the separate elimination results by using the lemmas in Sections 4 and 5. 
The following table contains the timing and proof-length statistics for the 80 

examples proved by our program. Maxterm means the number of terms of the 
maximal polynomial occurring in a proof. 

The Proof-Length The Proving Time 

Maxterm No. of Theorems Time (secs) No. of Theorems 

m =  1 18 t ~0 .05  28 

m = 2  25 0.05 < t  ~<0.1 19 

2 < m ~ < 5  24 0.1 < t ~ 0 . 5  27 

5 < m ~ < 1 0  9 0 . 5 < t ~ < l  3 

1 0 < m ~ <  140 4 1 < t  ~ t00 3 

The key to the v o l u m e  method presented here is a collection of powerful, high 
level theorems, such as the Co-face theorems about the signed volumes. This 
method can be contrasted with the earlier algebraic methods, which also proved 
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astonishingly difficult theorems in geometry, but with low-level, mind-numbing 
polynomial manipulations. For more than eighty percent of the 80 theorems 
proved by the volume method, the maximal polynomials in their proofs have less 
than six terms. The maxterms of the proofs produced using algebraic methods are 
rarely less than six. On the other hand, the algebraic methods are more general, 
e.g., they can be used to prove theorems involving inequalities and theorems in 
differential geometry. Also see [10] for an interesting method based on the vector 
version of the GrObner basis. 

The previous methods based on the AI approach can also produce readable 
proofs for simple geometry theorems [6, 9]. The key tool in these methods are 
the congruent of triangles which prevents these method from going very far 
for two reasons. First, the congruent triangle techniques are used to prove some 
basic geometry facts and the proofs for most of the high level geometry theorems 
using other concepts besides the congruent triangles. Second, even in those proofs 
based on congruent triangles, auxiliary points or lines are often needed to form 
the required congruent triangles and these auxiliary points or lines are often 
added by the user instead of the computer program. 

Appendix. Machine Produced Proofs for Several Examples 

The proofs (in I~TEX form) of the following examples are produced entirely 
automatically by a program based on the Algorithm 5.10. 

EXAMPLE 1 (Ceva's Theorem for Skew Quadrilaterals). The planes passing 
throiagh a point O and the sides AB, BC, CD, and DA of any skew quadrilateral 
meet the opposite sides of the quadrilateral in G, H, E, and F respectively 
(Figure 8). Show that 

AE B F  CG DH 

EB FC GD HA 
= 1 .  

°O 

B 

A 

D 

Fig. 8. 
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D 

T 

A B 

Fig. 9. 

The input 

((POINTS ABC DO ) 
(INTER E (LINE AB)(PLANE OCD)) 
(INTER F (LINE BC)(PLANEOAD)) 
(INTER G (LINE CD) (PLANE OAB)) 
(INTER H(LINE DA)(PLANE OBC) ) 

A-H D C C F B~ 

The machine proof 
D H  CG BF A E  

A H  DG C F  B E  

H VBCDO C--G B E  A ~  

VABCO DC C F  B E  

C VBCDO'VABcO BF AE 

VABCO "VABDO C---F BE  

s impl i fy  VBCDO B F  A E  

VABDO C F  B E  

F VBCDO'(--VABDO) AE 

VABDO (--VAcDO) BE 

simplify VBCDO AE 

VACDO BE 

E_ VBCDO'VAcDO s impl i fy  
-- VACDO.VBcD 0 : I 

The eliminants 

D H  H VSCDO 

A H  VABCO 

CG C VABCO 
m 

DG VABDO 

B F  F VAt, DO 

C---P V~CDO 
A---E E VACDO 
BE VBCDO 

The ndg conditions are AB W OCD; BC WOAD; CD W OAB; AD ~ OBC; 
B #  E; C C F; D CG, A C H. 

EXAMPLE 2 (Centroid of a Tetrahedron). The four medians of a tetrahedron 
meet in a point which divides each median in the ratio 3 • 1. The longer segment 
being on the side of the vertex of the tetrahedron (Figure 9). 
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The input 

((POINTS ABCD) 
(MIDPOINT SBC) 
(LRATIO ZAS2/3) 
(LRATIO YDS2/3)  
(INTER G(LINE DZ) (LINE AY)) 

The machine proof 
1 (AG'~ 
~t~J 

SADZ 
G SDZy 

3 
SADZ 

Y SDSZ 

2 
Z 3 

(2).( 1 ) 

simplify 1 

The eliminants 
A---G G ~,ADZ 
y--~ SDZ Y 

SADZ Y 3 (SADZ 
S D Z~ --  2 \ S~Z Z ] 

s ~  z 2(1) 
~DSZ 

The ndg conditions are B ¢ C, A 7i S, D 7~ S, DZ  ~ AY, G :/: ]i. 

EXAMPLE 3. If P, Q, R, and S are the feet of four cevains having the point O 
in common, we have 

OP OQ OR OS 
- - + _ _ + _ _ +  =1  
AP CR CR DS 

(see Figure 10). 

A c 

Fig. 10. 
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The input 
((POINTS A B C D O  ) ) 

(INTER P (LINE AO) (PLANE B C D ) )  

(INTER Q (LINE BO) (PLANE A C D ) )  

(INTER R(LINE C O ) ( P L A N E  A B  D ) ) 

(INTER S (LINE D O ) ( P L A N E  A B C ) )  

)) o s  + ~ +  + - - = 1  
CR BQ AP 

The eliminants 
Of S VABCO 

D S  VABCD 

O R  R - -VABDO 

C R  VABCD 

OQ q VACDO 

BQ VABCD 

OP P --VAscDO 
A P  VABCD 

VBCDO = VACDO -- VABDO -[- VABCO -- VABCD 

The machine proof 
__° s + O_R_R + o0, + __° P 
DS CR BQ AP 

• , OR , OQ , OP 
-- VABCO-- WABCD.------- VABCD. ~ -  VABCD'~- 

S CR BQ AP 

R 

-- VABCD 

2 OQ 2 
__ VAB DO . V A B c  D_}_ V A B c O  . VABC D ~_V~Bc D . ~ . ~  V ~ B c  D O R  

62 AP 

(VABCD)  2 

oQ UP 
- ( V A ~ . o - V A ~ o - V A ~ . ~ - V ~ c ~ . - - - - )  

simplify BQ AP 

VABCD 

E 

V A B C D ' ( - - V A B c D )  

V V . . . .  OP ACDO--  ABDO~-VABCO~-gABCD " - - -  
s i m p l i f y  AP 

VABCD 
P - - V B c D O  " V A B c D @ V A c D O  "VABcD - - V A B D O - V A B c o - ~ V A B c D  "VABcD 

(VABCD)  2 

simplify -- ( V B c  DO -- VAC DO ~-VAB DO -- VABCO ) 

--(--VABcD) 
VABCD 

~i~pj~fy 1 

VABCD 
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t y  

.~X 

B 

D T C 

Fig. 1t. 

The ndg conditions are AO ~( BCD, BO ~( ACD, CO W ABD, DO ~( ABC, 
A C P ,  B C Q ,  C C R ,  D ¢ S .  

A line joining the midpoints of two opposite edges of a tetrahedron will be 
called a bimedian of the tetrahedron relative to the pair of edges considered. The 
common perpendicular to the two opposite edges of a tetrahedron is called the 
bialtitude of the tetrahedron relative to these edges. 

EXAMPLE 4. The bialtitude relative to one pair of opposite edges of a tetra- 
hedron is perpendicular to the two bimedians relative to the two other pairs of 
opposite edges (Figure 11). 

The input to the program is 

The input 

((POINTS XYAC) 
(FOOT2LINE SAXY)  
(ON B(LINE SA)) 

(FOOT2LINE TC XY)  
(ON D (LINE TO)) 
(MIDPOINT M AB ) 
(MIDPOINT NBC) 
(MIDPOINT PDC) 

(MIDPOINT QAD) 
(PERPENDICULAR N Q X Y  ) ) 

The ndg conditions: X ¢ Y, A ¢ S, C ¢ T, C • B, D ¢ A. 
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The machine proof 

PYXN 
PyxQ 

Q PYXN 
1 1 
[PYxD-}-'~PYxA 

P (2)'PYxN 

PYXD-}-PYXA 

PYxD+PYxA 
M PYXB+PYxc 

PYxD+PYxA 

D PYxB+PYxc 
TD --PYXT" -~-'}-PYxT4-PYxc" __TD -}-PYXA 
TC TC 

-(PYXB+PYXC) 

--PYXC--PYXA 

p S B  - p SB 
-- YXS.~-]-I-'YXS~- YXc~-PYxA. - -  

B SA SA 
m 

PYxc+PYxA 

--(--PYxc--PYxA) 
PYxc+PYxA 

simplify 1 

The eliminants 

PYXQ Q a = [ (PYXD 4- PYXA) 

PYXN N l =  (PYxB + PYxc)  

PYXD D (By  TD 
- -  X T  " T---C 

PYXT = PYXC 

PYXB B ( p y  SB 
- -  XS" SA 

PYXS = PYXA 

- - - - P Y x T - - P Y X C "  ~C ) 

EXAMPLE 5. * Let A B C D  be a tetrahedron and G the centroid of triangle 
A B C .  The lines passing through points A,/3,  and C and parallel to line D G  meet 
their opposite face in P, Q, and R, respectively. Show that VcPC2R = 3VABCD 
(Figure 12). 

* This is a problem from the 1964 International Mathematical Olympiad, 
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p ,' 

k 

t C 

Fig. 12. 

The input 
((POINTS ABCD) 
(CENTROID GABC) 
(INTER P (PLINE ADG)(PLANE BCD)) 
(INTER Q (PLINE BDC)(PLANE AGO)) 
(INTER R(PLINE C DG) (PLANE AB D ) ) 
(3VABCD = VGpQR) ) 

The eliminants 
VCDGP -~" -- VACDG 

VBDGP "~ --VABDG 

VBCGP -~ VABCD 

VDGPQ = --VBDCP 
VCGP Q = VCDGp'VABcD--VBcGp'VAcDG 

VACDG 
VDGPQ " VABc D - VcGpQ " VAB DG 

VGpQR ---- VABDG 

The machine proof 
(3)-VABcD 
VGpQR 

R (3)'VABcD "VABDG 

VDGPQ "VABCD --VcGPQ "VABDG 

Q (3)'VABCD "VABDG'(VAcDG) 2 

--VcDGP "VAcDG'VABDG--VBDGP "V2cDG'VABcDq-VBcGP "V2cDG'VABDG 

simplify (-3) ,VABcO .VABDG.VAcDG 
VCDGP "VABDG'VABcDq-VBDGp'VAcDG'VABcD --VBcGP "VACDG'VABDG 

P (--3)'VABcD'VABDG'VACDG'(VBCDG) 2 

-- 3V~cDc'V~cDc'VABDc'VABcD 

~i.~pjqy 1 
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In the above proof the fact that G is the centroid of triangle ABC is not used. 
We thus have the following extension of Example 5. 

EXAMPLE 6. Continue from Example 5. The result of Example 5 is still true if 
point G is any point in plane ABC. 

We further ask whether the result of Example 5 is true or not if point G is an 
arbitrary point. 

The input 
((POINTS ABCDG) 
(INTER P (PLINE ADG) (PLANE BCD)) 
(INTER Q (PLINE BDG) (PLANE ACD)) 
(INTER R (PLINE CD G) (PLANE AB D)) 

VGPQR 
3VABc------~D ) ) 

The eliminants 
I~ VDGPQ'VABcD--VcGPQ'VABDG 

VGPQR : 
VABDG 

VCGP Q Q VCDGp'VABcD--VBcGp'VAcDG 
VAODG 

VDcpQ Q 

V B c a P  "= 
P 

VBDGP 

P 
VCDGP 

The machine 
VCpQR 

(3)'VABcD 

-- VBDGP 

- ( V A . C a  -- VABCD) 

-- VAB DG 

--VACDG 

proof 

R VDGPQ'VABcD--VcGPQ'VABDG 
(3)'VABCD "VABDG 

Q --VcDGP'VABDG'VABDG--VBDGp'V~CDG'VABcD+VBCGp'V2CDG'VABDG 
m 

(3)'VABcD "VABDC'(VAcDG) 2 
simplify --(VcDGP'VABDG'VABcD~-VBDGp.VAcDG.VABCD--VBCGp.VAcDG-VABDC) 

P 

(5)'VABcD "VABDG'(VAcDG) 
--(V3cDG'VAcDG~VABDG'VABCG --3V3cDG'VAcDG'VABDG'VABCD ) 

(3)'VABcD "VABDG'VACDG'(VBcDG) Z 
--(VABcG--3VABcD) 

(3)'VABcD 
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P4 ++.4 B 

D Q1 Q2 Q3 Q4 C 

Fig. 13. 

We thus obtain the following extension of Example 6: 

EXAMPLE 7. VCpQR = 3VABC iff G is in plane ABC. 

EXAMPLE 8. The sides AB and DC of a skew quadrilateral are cut into 2n + 1 
equal segments by points P 1 , . . . ,  P2n and Q1 , . . . ,  QZn respectively (Figure 13). 

1 V A B C D .  Show that  VPnPn+lQn+lQn - (2n+ l )  2 

The following figure shows the case n = 2. Note that in the following machine 
proof for (1), we use some different names for points Pn, Pn+l, Qn+l, Qn. 

Constructive description 

( (POINTS AB C D) 

(LRATIO XAB 2-~ ) 

(LRATIO Y AB ~ ) 

(LRATIO UDC 2 ~  ) 
V D  n+l  (LRATIO C 2--L--~) 

The eliminants 
Y - ( V D x Y u ' n q - Y c x Y u ' n + V c x Y u )  

Y x  y u v 2n-+-l 
u (nq-1).VcDxY 

V C X Y U  --  2 n + l  
y D Z y  v U - -VcDxy 'n  

2nq-1 
y -- (VBcDX'nq-VBcDX @VAcDX'n) 

V C D X Y  2n+  1 

V A C D  X X VABCD'n 
2n+  1 

X --(n+t)'VABCD 
V B C D X  : 2n+  1 

The machine proof 
- V x Y u v  

VABCD 
V - ( - V D x Y u ' n - V c x Y u ' n - V c x Y u )  

VABCD . (2n+l )  
4Vc D x Y  "r~2 +4VcD x Y  .n+ VcD x Y  U 

VABCD'(2n+I)3 
s impl i f y  VCDXY 

VABCD'(2n+I) 
Y - -VBcDX "n- -VBcDx--VAcDX'n  

VABCD" (2n-}- 1) 2 
X -- (--4VABcD "n 2-4VABCD "n-- VABCD ) 

VABCD "(2n+l)  4 
simp2ifY 1 

(2nq-1) 2 
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