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Abstract. This paper presents a method of producing readable proofs for theorems in solid geom-
etry. The method is for a class of constructive geometry statements about straight lines, planes,
circles, and spheres. The key idea of the method is to eliminate points from the conclusion of a
geometric statement using several (fixed) high-level basic propositions about the signed volumes
of tetrahedrons and Pythagorean differences of triangles. We have implemented the algorithm, and
more than 80 examples from solid geometry have been used to test the program. Our program is
efficient and the proofs produced by it are generally short and readable.
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1. Introduction

Since the pioneering work of Wen-Tsiin Wu in 1977 [12], highly successful alge-
braic methods for automated proving of geometry theorems have been developed.
Computer programs based on these methods have been used to prove hundreds
of non-trivial geometry theorems {1, 2, 8]. Algebraic methods, which are very
different from the traditional proof methods used by geometers since Euclid, gen-
erally can only tell whether a statement is true or not. If we want to look at the
proofs, we only have to see tedious computations of polynomials. The traditional
method usually can give elegant proofs. Researchers have been studying auto-
mated generation of traditional proofs using computer programs since the work
by H. Gelemter, J. R. Hanson, and D. W. Loveland [6]. In spite of the enormous
amount of efforts and great improvements, see, e.g., [9, 11], the successes in
this direction have been limited in the sense that no computer program has been
developed which can prove non-trivial geometry theorems efficiently. In spite
of the great successes of the algebraic methods, the research in the automated
generation of traditional proofs is still a very attractive and challenging topic.

* The work reported here was supported in part by the NSF Grant CCR-9117870 and Chinese
National Science Foundation.
** On leave from Institute of Systems Sciences, Academia Sinica, Beijing 100080, P.R. China.
¥ The permanent adress: Chengdu Institute of Computer Application, Academia Sinica, 610015
Chengdu, P.R. China.
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Recently, we presented a method which can produce short and readable proofs
for a class of geometric statements in plane Euclidean geometry [15, 3, 4]. [3]
is a collection of 400 geometry theorems proved by our program, including the
complete machine proofs of 100 theorems. This method is based on properties
of the signed area and the Pythagorean difference which have been studied
extensively in [14] for the purpose of geometry education.

This paper is an extension of our area method to solid geometry. We present
a theorem-proving method for geometry statements whose hypotheses can be
described constructively and whose conclusions are polynomial equations of sev-
eral geometry quantities, such as volumes, ratios of line segments, ratios of areas,
and Pythagorean differences. We call this method the volume method which is an
extension of the area method. The key idea of the method is to eliminate points
from the conclusion of a geometry statement using several basic propositions
about volumes. The automatically produced proofs are “traditional” in the sense
that they are generally short, readable, and each step of the proof has a clear
geometric meaning. The proofs are of a shape that a student could write with
pencil and paper in a few lines.

The volume method is complete for the class of constructive geometry state-
ments which covers a large portion of the equational geometry theorems about
lines, planes, circles, and spheres. The idea of constructive type and the associat-
ed automated proving may be resorted to Hilbert [7] and was first pointed out by
Wu in [13]. The volume method works not only for Euclidean solid geometries
but also for metric solid geometries associated with any number field with char-
acteristic zero. Certain geometry problems such as those involving inequalities
are beyond the scope of the volume method.

We have implemented the method and our program™ has proved more than 80
examples from solid geometry, including Ceva’s theorem, Menelaus’ theorem,
Desargues’ theorem, Monge’s theorem, etc. The proofs produced by the program
are generally short and readable. The algorithm is also very efficient. (See the
statistic table in Section 6.)

In Section 2, we prove the basic propositions which will serve as the basis
of our method. In Section 3, we define the constructive geometry statements. In
Section 4, we present the method for the Hilbert intersection statements in affine
geometry. In Section 5, we present the general volume method. In Section 6, we
give some experiment results.

2. The Signed Volumes

We need some notions and results from plane geometry whose formal definition

and proofs can be found in [3, 13].
We use capital English letters to denote points in the Euclidean space. We
denote by AB the signed length of the oriented segment from A to B; denote

* The prover (euc.tar.Z) is available via ftp at emcity.cs.twsu.edu: pub/geometry/.
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by Sapc the signed area of the oriented triangle ABC. The area of an oriented
quadrilateral ABCD is Sapcp = Sapc + Sacp = Sasp — Sosp. When we
mention a line AB or a plane PQR, we always assume A # B or P,(, and R
are not collinear.

PROPOSITION 2.1. The Co-side Theorem. Ler M be the intersection of two

- PH _ Seas. PHL _ Seas .
nonparallel lines AB and PQ and Q) # M. Then oM Soas’ PO Sraos’

QM  Sqas

PO Spaqs’

PROPOSITION 2.2. Let R be a point on line PQ. Then for any two points A
and B in the same plane

PR RQ
Srap = — SgaB + — SpasB.
PQ PQ

Two lines in the same plane are said to be parallel if they do not have a common
point. We use the notation AB || CD to denote the fact that A, B,C, and D
satisfy one of the following conditions (1) line AB and line C'D are parallel; or
QA=BorC=D;or(3) A, B,C and D are collinear.

PROPOSITION 2.3. PQ || AB iff Spap = Sqas, Le., iff Spags = 0.

2.1. CO-FACE THEOREM

In this subsection, we will formally define the signed volume and derive some of
its properties which will serve as the deductive basis of the volume method.

DEFINITION 2.4. For any points A, B, C, and D in the space, the signed
volume Vapop of the tetrahedron ABCD is a real number* which satisfies the
following properties

V.1 When two neighbor vertices of the tetrahedron are interchanged, the signed
volume of the tetrahedron will change signs, e.g., Vapcp = ~Vaspe.

V.2 Points A, B, C, and D are coplanar iff Vapop = 0.
V.3 There exist at least four points A, B, C, and D such that Vigeop # 0.

V.4 For five points A, B, C, D, and O, we have Vagep = Vasco + Vagop +
Vaocp + Vosep-

* Here, we can use any pumber field and the results in this paper are still valid.
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Fig. 1.

VS If A,B,C,D,E, and F are six coplanar points and S4pc = ASpgr then
for any pOiIlt'T we have Vpapo = AVrpgr.

Note that we do not use the concept altitude in the definition of volume.
We denote by PABCQ the polyhedron with faces PAB, PBC, PAC, QAB,
QBC, and QAC. The volume of PABC(Q is defined to be

Vreasco = Vrasc — Voase
By V.4 of Definition 2.4, we have Vpapg = Vpapg + Vrcag + Veaog.

PROPOSITION 2.5 (The Co-face Theorem). A line P(Q) and a plane ABC meet
in M. If Q # M, we have

PM  Vpasc PM _ Veapc QM  Voasc
OM Voasc' PG VpaBcg' PQ Vpascq

Proof. Figure 1 shows several possible configurations of this proposition. By
V.5 of Definition 2.4 and Proposition 2.1

VraBc Veapc Vpasm VQaBM  Sape Sppm Saem

Voasc VpaBM VoaBm ' Voapc  SaBum - Spom " Sasc
Sppum _ PM
Spom QM

0
PROPOSITION 2.6. Let R be a point on a line PQ and ABC be a triangle
(Figure 2). Then we have

PR
Vrapc = =—— Voac + —= Vpagc-
PO PO
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Fig. 3.

Proof. By Proposition 2.5, we have
Versc _ PR Vparc PR Veapr _ PR
Vegec PQ Vepagc PQ Veabg PQ

By V4 Vrapc = Vpac—VPrBC—VPARC—VPABR = VPABC— % (VeoBCc+

PR PR RQ
1% -V _ PRy =Ry =y O
PaQc + VpPaBQ) PABC — 3 5 PABCQ 75 QABGC + = PABC

PROPOSITION 2.7. Let R be a point in the plane PQS. Then for three points
A, B, and C, we have
SpPor Sros Sprs

Vsapc + Vease + Voasc.
SpQs Sps Spos  °

Vrapc =

Proof. For any point X, let Vx = Vx apc. Without loss of generality, let M
be the intersection of PR and QS (Figure 3). By proposition 2.6,
PR RM PR QM MS RM
VR::VM‘f‘:VP::(:“ S+:VQ>+:VP-(1)
PM PM PM\ QS QS PM
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By the co-side theorem (2.1),

RM  Srgs QM  Spgr
PM  Spos’ 0S5 Srors’
MS _ Sprs PR _ SPQrs
0S Spors’ PM  Spgs
Substituting these into (1), we obtain the result. O

2.2. PARALLELS

Two planes, or a straight line and a plane are said to be parallel if they have
no point in common. The notation PQ || ABC means that A, B, C, P, and
Q satisfy one of the following conditions: (1) P = Q, (2) A, B, and C are
collinear, or (3) A, B, C, P, and @ are on the same plane, or (4) line PQ) and
plane ABC are parallel. According to the above definition, if PQ || ABC then
line P() and plane ABC have a normal intersection. For six points A, B, C, P,
Q,and R, ABC || PQR iff AB || PQR, BC || PQR, and AC || PQR.

PROPOSITION 2.8. PQ || ABC iff Vpapc = VgaBc or equivalently

Vpapcg = 0.
Proof. If Vpapc # Vganc, let O be a point on line PQ such that —IIZ—_g— =
VpaBc oQ _ Voasc N
VeaBoo” Thus —= = Veanoa By Proposition 2.6,

PO 0Q
Voapc = — Vgasc + — Vpanc = 0.
P0 PO

By V.2, point O is also in plane ABC, i.., line PQ is not parallel to ABC.
Conversely, if PQ || ABC let O be the intersection of PQ) and ABC. By

Proposition 2.5,

OP Vepapc _ )
0Q Voasc
i.e., P = @ which is a contradiction. O

PROPOSITION 2.9. PQR || ABC iff VpaBc = Vgasc = VraBC.-
Proof. This is a consequence of Proposition 2.8. a
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B

Fig. 4.

PROPOSITION 2.10. Let PQT'S be a parallelogram. Then for points A, B, and
C, we have

Veasc + Vrape = Voasc + Vsapc or Vpacg = Vsaor-

Proof. This is a consequence of Proposition 2.6, because both sides of the
equation are equal to 2Vp 45 where O is the intersection of PT and SQ. O

PROPOSITION 2.11. Let triangle ABC' be a parallel translation of triangle
DEF. Then for any point P we have Vpapc = Vepera-

Proof. By Proposition 2.10, Vpapc = Veparc—Vrapc = Veaer—Vpaep—
Veapc = Vparr — Vpagp — Vrapr = VPDEFA- 0

PROPOSITION 2.12. Let triangle ABC be a parallel translation of triangle
DEF. Then for two points P and () we have

Veasc + Voper = Voasc + Veper or Vpacg = VepEFQ-

Proof. By Proposition 2.11, Vpapc = Vpper—Vaper; Voac = Voper—
Vaper from which we obtain the result immediately. a

2.3. WORKING EXAMPLES

Before presenting the method, we use several examples to show how to use the
above properties about volumes to prove theorems. The proofs given below are
actually modifications of the proofs produced by our program.

EXAMPLE 2.13 (Menelaus’ theorem). If the sides AB, BC, CD, and DA of
any skew quadrilateral are cut by a plane XY Z in the points F, F, (G, and H,
respectively, then

EB FC GD HA
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Proof. By the co-face theorem

DH Vpxvz @ _ Vexyz
AH Vaxvz' DG Voxvz'
@ _ VBxvz @ _ Vaxyz
CF Vexvz' BE Vexvz

Then it is clear that

For the non-degenerate conditions of this example, see Section 3.3. a

EXAMPLE 2.14. Let A; B;C be the parallel projection of any triangle ABC in
any plane. Show that the tetrahedral ABC A; and Ay BC} A are equal in volume

(Figure 5).

A

N
jC/B

N

C

Fig. 5.

Proof. Since C'C1 is parallel to plane AA; By, by Proposition 2.8, Va4, B,c, =
Vaa, B,c. Similarly, Vaa,B,c = Vaa,BC- 0

3. Constructive Geometry Statements

Our volume method is for constructive geometry statements defined as fol-

lows.

3.1. CONSTRUCTIVE GEOMETRY STATEMENTS

By a geometry quantity, we mean one of the following three quantities: (i) the
ratio of the lengths of two oriented segments on one line or on two parallel lines;
(ii) the ratio of the areas of two oriented triangles in the same plane or in two
parallel planes; or (iii) the signed volume of a tetrahedron.
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DEFINITION 3.1. A construction is one of the following ways of introducing
new points in the space.

C1 (POINTS Ay, ..., A;). Take arbitrary points Aj,..., A; in the space. Each
A; has three degrees of freedom.

C2 (PRATIO AWUV'r). Take a point A on_the line passing through W and
parallel to line UV such that WA = rUV, where r could be a rational
number, a rational expression in some geometric quantities, or a variable.

If r is a fixed quantity, A is a fixed point; if r is a variable, A has one
degree of freedom. The non-degenerate (ndg) condition is U # V.

C3 (ARATIO ALM Nryryrs), where

Samn Sran Scma
&) , and 73 =

r = N =1
SLMN SLMN SLMN

are the area coordinates of point A with respect to LM N. The ry, r, and

r3 could be rational numbers, rational expressions in geometric quantities,

or indeterminates satisfying r; + 9 + r3 = 1. The ndg condition is that L,

M, N are not collinear. The degree of freedom of A is equal to the number

of indeterminates in {ry, r2,73}.

C4 (INTER A(LINE UV )(LINE PQ)). Point A is the intersection of line PQ
and line UV which are in the same plane. The ndg condition is PQ [fUV.
Point A is a fixed point.

C5 (INTER A(LINEUV )(PLANE LM N)). Take the intersection of a line UV
and a plane LM N. The ndg condition is that UV |} LM N. Point A is a
fixed point.

C6 (FOOT2LINE APUV). Point A is the foot from point P to line UV. The
ndg condition is U # V. Point A is a fixed point.

DEFINITION 3.2. A constructive statement is a list S = (C,Ch,...,Ck, Q)
where
1. Each C;, introduces a new point from the points introduced by the previous
constructions.
2. G = (F), E,) where E) and E; are polynomials in some geometric quantities
about the points introduced by the C; and E; = E, is the conclusion of S.

The non-degenerate (ndg) condition of S is the set of ndg conditions of the C;
plus the condition that the geometry quantities in F; and F, have geometry
meanings, 1.e., their denominators could not be zero.
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The set of all constructive statement is denoted by S¢. If the constructions are
limited to C1-CS5, the corresponding statements are called the Hilbert intersection
point statements in the space and are denoted by Sg.

3.2. THE PREDICATE FORM

The constructive description of geometry statements can be transformed into the
commonly used predicate form. We first introduce several basic predicates.
1. Point (POINT P): P is a point in the space.
2. Collinear (COLL Py, P, P5): points P;, P, and P; are on the same line. It
is equivalent to Spp,p, = 0.
3. Co-plane (COPL Py, P,, P5, P4): Py, P,, P3, and P, are in the same plane. It
is equivalent to Vp p,p,p, = 0.
4. Parallel between two lines (PRLL P, P,, P35, Py): PP, || P3Py. 1t is equiv-
alent to Vp p,p,p, = 0 and Sp,p,p,p, = 0.
5. Parallel between a line and a plane (PRLP Py, P5, P3, Py, Ps): PP, || P3Py Ps.
It is equivalent to Vp p,p,p,p, = 0.

We first need to transform the construction into predicate forms.

C2 (PRATIO AWUV'r) is equivalent to (PRLL AWUV), r = % and U # V.

C3 (ARATIO ALM Nryryr3) is equivalent to (COPL ALMN),

Samn Sran Sima
T r3

™

= b == 7 = b
SLmN SLun SLuN

and =(COLL LM N).
C4 (INTER A(LINEUV)(LINE PQ)) is equivalent to (COLLAUYV),

(COLL APQ), and ~(PRLLUV PQ).

C5 (INTER A(LINEUV)(PLANE LMN)) is equivalent to (COLLAUV),
(COPL ALMN), and —~(PRLPUV LMN).

C6 (FOOT2LINE APUV) is equivalent to (COLL AUV'), (PERP APUV'), and
U#V.

Now a constructive statement S = (C},...,C,,(E, F)) can be transformed
into the following predicate form

VP, - VP, ((P(C)) A--- A P(C,)) = E = F)

where P; is the point introduced by C; and P(C;) is the predicate form of C;.
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3.3. MORE CONSTRUCTIONS

Constructions C1-C6, though simple, can be used to describe almost all the
configurations about lines, planes, circles, and spheres. To see that, we first
introduce more geometry objects.
e We consider three kinds of lines: (LINE PQ); (PLINE RPQ): the line pass-
ing through R and parallel to PQ; (OLINE SPQR): the line passing through
point S and perpendicular to the plane PQR.
e We consider six kinds of planes: (PLANE LM N); (PPLANEWOUV):
the plane passing through a point W and parallel to the plane OUV,
(TPLANEWUV): the plane passing through a point W and perpendic-
ular to the line UV; (BPLANEUYV): the perpendicular-bisector of line
UV ;(CPLANE ABPQR): the plane passing through line AB and perpen-
dicular to plane PQR; and (DPLANE ABPQ): the plane passing through
line AB and parallel to line PQ).
Now we can introduce more constructions: taking an arbitrary point on a line or
in a plane; taking the intersections of two lines, the intersections of lines with
planes, and the intersections of three planes. From all possible combinations, we
have 41 new constructions. For convenience, we introduce the following often
used constructions.

(MIDPOINT AUYV). A is the midpoint of UV, i.e., (PRATIO AUUV 1/2).

(LRATIO AUV'r), i.e., (PRATIO AUUVr).

(ON Aln). Take an arbitrary point A on line in. For instance,

(ON A(LINEUYV)) is equivalent to (PRATIO AUUVr)

for an indeterminate 7.

EXAMPLE 3.3. Example 2.13 can be described in the following constructive
way.

((POINTS ABCDXYZ

)
(INTER E(LINE AB)(PLANE XY Z))
(INTER F(LINE BC)(PLANE XY 7))
(INTER G(LINE CD)(PLANE XY 7))
(INTER H(LINE AD)(PLANE XY Z))
(EETETE DT _ 1))

BE CF DG AH

The ndg conditions: AB [{ XY Z, BC |y XYZ, CD |y XYZ, AD [f XY Z,
B#E, C#F, D#G, A#H.
The predicate form of this example is:

VA,B,...,H(HYP = CONC)

where
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HYP = ((COLL EB) A (COPL EXY Z) A (COLL FCB) A (COPL F XY Z)
ANCOLLGCD) A (COPLGXY Z) A (COLL HAD) A (COPL HXY Z)

A=(PRLP ABXY Z) N~(PRLPCBXY Z) A ~(PRLPCDXY Z)

A=(PRLPDAXYZ)AB#EANC #FAD # GA and A # H);

CONC = (AEEEC—GQHA)

BE CF DG AH
We may also consider circles and spheres. We define (CIR OPQ) to be the

circle in the plane OP() which has O as its center and passes through point P.
We define (SPHERE OP) to be the sphere with center O and passing through
point P. Then we can use the following new constructions.

(ON a(CIROUYV)). Take an arbitrary point on the circle.

(ON A(SPHERE OU)). Take an arbitrary point on the sphere.

(INTER A in(CIR OW P)). Take the intersection of line {n and circle
(CIROW P) which is different from W. We assume that line In and the
circle are in the same plane. Line In could be (LINEWV), (PLINEWUYV),
and(OLINEW LMN).

(INTER A in(SPHERE OW)). Take the intersection of line In and sphere
(SPHERE OW) which is different from W. Line In could be (LINEW V),
(PLINEWUV), and (OLINE W RPQ).

(INTER A(CIR O1WU)(CIR O,WV)). Take the intersection of circle

(CIR O;WU) and circle (CIR O,WV) which is different from V. We assume
that the two circles are in the same plane.

(INTER A(CIR O;UV)(SPHERE O,U)). Take the intersection of circle
(CIR O1UV) and sphere (SPHERE O,U) which is different from U.

Here, we introduce another 10 new constructions. Thus, totally we have 51
constructions. The following fact can be proved without much difficulty.

PROPOSITION 3.4. All the 51 constructions introduced in this subsection can
be reduced to constructions C1-C6.

4. Automated Theorem Proving for Class Sy

The volume method is to eliminate points from the conclusion of a geometry
statement. More precisely, we need to eliminate points from geometry quanti-
ties.

4.1. ELIMINATING POINTS FROM VOLUMES

The method of eliminating points from volumes is the basis of the volume
method. In this subsection, we will discuss four constructions C2-C5. C1 will
be treated in Section 4.4.
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LEMMA 4.1. Let Y be introduced by (PRATIOYWUV'r). Then we have

UW wv . , .
— +7r|Vapov +{ = —r|\Vapcy W ison line UV.
Vagow + T'(VABCV - VABCU) otherwise.

Proof. Let G = Vypoy. If W, U,V are collinear, by Proposition 2.6 we
have

Uy YV
G = —— Vapcv + = Vapcr
v v
Uw wvVv
= (t +T‘)VABCV + <:“ — 7’>VABCU-
v Uv
Otherwise, take a point S such that WS = UV. Then we have
WY YS
G = — Vapcs + — Vasew = Vapcs + (1 — r)Vapew.
ws WS
By Proposition 2.10, we have Vapcs = Vapow +Vapoy —Vapcw . Substituting

this into the above equation, we obtain the result. Note that the ndg condition
U # V is needed. O

LEMMA 4.2. Let Y be introduced by (ARATIOY LM N1 ryr3). Then we have

Vapoy = r1Vason + m2Vasom + r3Vaser-
Proof. This lemma is a direct consequence of Proposition 2.7. 0

LEMMA 4.3. Let Y be introduced by (INTER Y (LINE UV)(LINE I.J)). Then

we have

Sury Svig
Vapov —

VABC’Y - VA BCU-

Survy Svrv

Proof. By Propositions 2.6 and 2.1,

U YV SvrsVasecv — SvisVascu
Vapcy = —— Vapev + —— Vapcu = :
Uuv v Survs
Since UV [f IJ, we have Syv s # 0. O

LEMMA 4.4. Let Y be introduced by (INTER Y (LINEUV)(PLANE LM N)).
Then
1

Vascy = —— (VurmnVasev — VwimnVaseu)
Vuryny
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Proof. Let G = Vapcy. By Proposition 2.6 and the co-face theorem,

Uy YV
Vapcy = — Vabcev + — Vascu
Uuv Uuv
_ VurmnVasev — WirmnVascu
VuLmnv '
Since UV u/LMN, we have Viyropny ;é 0. O

4.2. ELIMINATING POINTS FROM AREA RATIOS

LEMMA 4.5. Let Y be introduced by (PRATIOYWUVr). Then we have

rVuaBwyv . . .

T — if W is not in plane ABY.
ABY | lvaswitlvasy if W is in plane ABY
_— = UCDEA
CDE but line UV is not.

S S -8

asw tr(Sapv—5asy) if WU, V, A, B,Y are coplanar.

\ Scom

Proof. If W ¢ ABY, let RP() be a parallel translation of triangle CDFE to
plane ABY, and WS be a parallel translation of UV to line WY (Figure 6). By
V.5,

Sapy VwaBy
G = = .
Srrq  VwrpPQ

By Proposition 2.12, Vrpow = Viwcpea. By Propositions 2.6 and 2.10,

WY
Vwapy = —— Vwwsas = rVuaBwv.
ws

We prove the first case. The second case can be proved similarly as the first case:
just replacing W by U. For the third case, see [3]. m|

LEMMA 4.6. Let Y be introduced by (ARATIOY LM Nryryr3). Then we have

2V ABM+T3VLABN .
M,N L
- a— if Qne of L , N, say L,
T = is not in ABY.
CDE nSaBLtr2SABMITISAEN if L, M, N are in plane ABY.

ScpEe
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Proof. If L is not in ABY,
ABY  Viasy

CDE Vicoea

Now the result comes from Lemma 4.2. The second case can be proved similarly
as Proposition 2.7. O

Sr—rv
\71711
Y, R
p Q
A B
NaNp

Fig. 6.

LEMMA 4.7. Let Y be introduced by (INTERY (LINEUV)(LINE 1J)). Then
we have

S \%i .
ﬁw—v—— ifone of U,V,1,J, say U,
ABY UIVJVUCDEA . .
= is not in ABY.
CDE SruvSaps—SruvSanr

ifUvV,1,J, A B,Y are coplanar.

ScoeSruiv

Proof. If U is not in ABY,

ABY  Vvapy UY Vwapv  Surs Vyasv
CDE Vucpea UV Vuepsa Suvivs Vucpea
The second case can be proved similarly as Lemma 4.3. a

LEMMA 4.8. Let Y be introduced by
C = (INTERY (LINEUV)(PLANE LM N)).

Then we have

ABY ‘ZJULLJ\TNA; ‘ZJUCA;;A if U (or V) is not in ABY.
ODE - VormnSasv—~WirimnSasu if U,V are in ABY.

SepeVuLMNY
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Proof. If U is not in ABY,

ABY  Vuapr UY Vyasy Vorun  Voasv

CDE Vucpea UV Vocoea Vurunv Vucppa

The second case is a consequence of Proposition 2.2 and the co-face theo-
rem. ]

4.3, ELIMINATING POINTS FROM LENGTH RATIOS

In the following lemmas, point Y is introduced by construction C.

LEMMA 4.9. Let G = %’ C = (PRATIOYWUVT). Then

DW i

U_]Z_F if D e WY.
14
G={ Yowuv o DEWY, U DWY.

Vewuvr

_Yopowv e p g WY, R¢ DWY.

Vuerwv

Spuwv
SeuFv

if all points are coplanar.

Proof. If all points are collinear (the first and the last cases), see [3, 15]. If
U ¢ DWY, take a point S such that DS = EF' (Figure 7). By the co-face
theorem

DY  Vpwuov Vowuv

DS  Vowovs Vewovr

If E ¢ DWY, take a point 1" such that WT = UV. By the co-side and co-face
theorems

DY  Spwr VowTE

DS Spwsr Vowres
By Propositions 2.10 and 2.12
Vowre = Vowve — Vowve = —Vuepwv,
Vowres = Vewrer = —VrwreE = —VrwvE + Vewue = Vuerwv

which prove the lemma. a
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F
S
E
Uu Vv
D
Y W T

Fig. 7.

LEMMA 4.10. Let G = ’S:% C = (ARATIOY LM Nry7yr3). Then we have

Yorun e p o LMN.

VELMNF
G={ -BMNE D e LMN, E¢ LMN, and DY |y NM.
VrMNE
Spmn . .
— if all points are coplanar and DY || N M.

Proof. If D ¢ LMN, the result is a direct consequence of Propositions 2.5
and 2.12. For the second case, take a point S such that DS = E'F. Then

a— DY  Spmn  Voune  Vomns _ VbmnE
DS Spmsy  Vpunes VeuNEF VrMNE
The third case can be proved similarly. a

LEMMA 4.11. Let G = % C = (INTERY (LINEUV)(LINE I.7)). Then we

have

YoUvi B o UVIJ and ~(COLLUVT).

Veuvrir
G={ 22  DeUVL], BF ¢UVIJ, and D ¢ UV.
EBEEFVU
SPYY. D.E,F arein UVL], and D ¢ UV.
EBUFV

Proof. The first case is a consequence of the co-face theorem. For the second
case, we assume D € UV IJ. Take a point S such that DS = EF. Then we
have

a— DY Spuv _ Vouve  Vpoove = Vouve
DS Spuv—Ssuv  Vpbuves Veuver Vrove

The third case can be proved similarly. a
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LEMMA 4.12. Let G = 2X ¢ = (INTERY(LINEUV)(PLANE LMN)).

Then we have

VoLmn . . )
T v if D is not in plane LM N.
= Lo __ if D e LMN and one of L, M, N,

Veuvr—Vruve

say L ¢ DUYV.

Proof. If D is not in plane LM N, the result is a direct consequence of the
co-face theorem. For the second case, take a point S such that DS = EF. Then
we have

DY  Vpuve Vouve
G=—"== - 0

DS Vouvis Veuvir

4.4. FREE POINTS AND VOLUME COORDINATES

After applying the above lemmas to any rational expression F in geometric
quantities, we can eliminate the non-free points introduced by all constructions
from E. Now the new E is a rational expression of indeterminates and volumes
of free points in space. For more than five free points in the space, the volumes of
the tetrahedra formed by them are not independent, e.g., see V.4 of Definition 2.4.
To deal with this problem, we introduce the concept of volume coordinates.

DEFINITION 4.13. Let X be a point in the space. For four noncoplanar points
O, W, U, and V, the volume coordinates of X w.r.t. OWUYV are

Vowux Vowxv Voxuv Vxwuov
T 3

71

= R = y = R T4 = .
Vowuv Vowuv Vowuv Vowuv

Itis clear that r{ + 12 + 73 +7r4 = 1.

The points in the space are in a one to one correspondence with the four-tuples
(z,y,2z,w) such that . +y + 2+ w = 1.

LEMMA 4.14. Let G = Vapoy, and O, W, U,V be four noncoplanar points.
Then we have

VoascvVowuy + VoapcuVovwy + Voasew Vouvy

G = Vapco +
Vowuv

Proof. We have

Vapcy = Vasco + Vapoy + Vaocy + Vosey - (1)
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Without loss of generality, we assume that YO meets plane WUV in X. (Oth-
erwise, let YW meet plane OUV in X, and so on.) By Proposition 2.5, we
have

oY Vowuvy Voasx
VoaBy = —= VoaBx = : 2
00X Vowuv
By Proposition 2.7,
Swux Swxv Sxuv
Voapx = Voapv + Voasu + Voasw - 3)
Swuv WUV wov

By Lemma 4.8, we have

Swux  Vowuy Swxv _ Vovwy Sxuv  Vouvy

Swov  Vowovy Swov  Vowuvvy Swov  Vowovy
Substituting them into (3) and (2), we have

VowuyVoasv + VovwyVoasu + Vouvy Voasw

4)

VoaBy = v
owuv

Similarly, we have

Vowuy Vosev + Vovwy Voseu + Vouvy Vosew

Voeey = v
owuv

Vowuy Vocav + Vovwy Vocau + Vouvy Vocaw

Vocay = v
owuv

Substituting them into (1) and noticing that Voapv + Vosov + Vocay =

Voasev, Yoasu + Voseu + Vocav = Voascu, and Voasw + Voow +
Vocaw = Voascw, we obtain the result. O

Now we can describe the volume method as follows: for a geometry statement
in Sg: S = (Cy,...,Cy, (Ey, Ey)), let the point introduced by C; be P;. Then we
can use the above lemmas to eliminate points P, P._y, ..., P| respectively from
E; and E,. At last, we obtain two rational expressions R and R; respectively. S
is a correct geometry statement if R, is identical to R;. For the formal description
of the algorithm, see the next section.

5. Automated Theorem Proving for Class S¢

5.1. THE PYTHAGOREAN DIFFERENCE

The Pythagorean difference Papc is defined as
Papc = AB +CB - AC".

It is easy to check that
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1. Pasg = 0; Papc = Popa; Papo + Pacs = 2BC” = Pyea,
2. If A, B, and C are collinear, Psgc = 2BA - BC,
For four points A, B, C, and D, we define
Papcp = Papp — Pepp = AB+CD° — BC® — DA

Then Papcp = —PapcB = Peapc = —Pcpa = Pecpap = —Fopap =

Ppcpa = —Ppagc.
The following properties of Pythagorean differences are taken for granted in

our volume method.

PROPOSITION 5.1. (1) (Pythagorean theorem) AB 1. BC' iff Papc = 0.
() IfOW L OU,OW L OV, and OU L OV, then V3y,y = =0W OU OV

In (2), we use the square of the volume, because the sign of the volume cannot
be determined by the signs of the edges of the tetrahedron.

PROPOSITION 5.2. AB L CD iff Pacp = Pcp or Pacsp = 0.
Proof. Let M and N be the orthogonal projections of A and B upon CD

respectively. Then AC* =AM + C’Mz, AD* =AM + DMZ, BC*=BN +
CN’°, BD" = BN’ + DN". Therefore
Pacep =CM’ — DM’ + DN’ — CN’ =2CD(DM — DN).

Hence Pacpp = 0 iff DM = DN, ie., iff M = N. It is clear that N = M iff
AB 1 CD. O

PROPOSITION 5.3. Let D be the foot of the perpendicular from point P fo a
line AB. Then we have
AD  Ppap DB Pppa

AB 4iB* AB JAB°

Proof. By Proposition 5.2, Ppap = Ppap = 2AB - AD. The result is clear
now. o

PROPOSITION 5.4. Let R be a point on line PQ with position ratio
@

PQ’ PQ
w.rt. PQ. Then for any points A and B, we have

1 ™2

Prap = mPgap +mPpaB
Parp = m1Pagp +mPapp — r1m2Ppgp.
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Proof. We first assume
RA” = TlQ—Az + 7‘2_15;42 — 7"17"275@—2 (1)

_R—Bz = TlQ—BZ + 7'21_3—52 -7 7”2?@2. (2)

Then Prap = RA +AB —RB =1(QA +AB — QB )+r(PA +AB" -
ﬁz) = r1Pgap + 12 Ppap. The second one can be proved similarly. To prove
(1), let us first notice that by Proposition 5.2,
Papr PR _
Papg PQ

1.

Then mmz—}—rzmz—r— 17’2?@2 = m2+—]3—f—3—2~T1PAPQ = mz“FP—R—Z—
Papr :Ez. 0

PROPOSITION 5.5. Let ABCD be a parallelogram. Then for points P and Q

in the same plane, we have

Papg + Pocpg = Pepg + Pppg or Pappg = Pppcg
Ppag + Ppcg = Pppg + Pppg +2PpaD.

Proof. Let O be the intersection of AC and BD. By the first equation of
Proposition 5.4, 2Popq = Papg + Pcpg = Ppg + Pppg. By the second
equation of Proposition 5.4,

1 1
2Ppog = Ppag + Ppcg — 3 Pyca = Pppg + Pppg — 5 PpppB.

We only need to show 2Pgsp = %(PACA — Pppp) which comes from Propo-
sition 5.4. O

5.2. METHODS OF ELIMINATING POINTS

Since we have a new geometry quantity, the constructive statements can be
enlarged in the following way: the conclusion of a statement can be equation
of two polynomials of length ratios, area ratios, volumes and Pythagorean dif-
ferences. The class of the enlarged constructive statements is still denoted by
Sc.

Now we have five constructions C2-C6 and four geometry quantities. We need
to give a method to eliminate a point introduced by each of the five constructions
from each of the four quantities. This section deals with the classes which are
not discussed in Section 4.
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Let Y be introduced by one of the constructions C2-C6. By Proposition 5.4,

to eliminate point Y from P4py or P4y g we only need to find the position ratios
Uy YV

i and —
v

Now there are only three cases left.

, and this has been done in Section 4.1. (For C6, see Proposition 5.3.)

LEMMA 5.6. If Y is introduced by (FOOT2LINE PUV') then

Ppyy Ppyy
VaBcy = Vapeq + VaBcp-
Pyvy Fyvuy
Proof. This is a consequence of Propositions 2.6 and 5.3. a

LEMMA 5.7. Let Y be introduced by (FOOT2LINE PUV'). Then

,

DU Pppu .
- if DeUV and D #U.

_ Vbpuv ,

QX _ J) Vepuvr fD¢Puv

EF | Youvs if D€ PUV and E ¢ PUV.
VeuvE
Spuv. if all points are coplanar.
SpUFV

In all cases, we assume P is not on line UV ; otherwise P =Y and % = g.

Proof. For the first and last cases, see [3]. The second case is consequence
of the co-face theorem. For the third case, let 7" be a point such that DT = EF'.
Then

DY _ DY Spuv  Vouve Vouve Vouve -

EF DT Spurv  Vouver Veuver VruvE

LEMMA 5.8. Let Y be introduced by (FOOT2LINE PUV'). Then

P Vi + P, Vi . . R
LiCA4 ’i’f;y PVUTPABY  if P is not in ABY.
2UV VpcpEea
P \%i . . R
POV UAEY if U is not in ABY.
SABY 2UV ' VycDEA
- P Vi . . .
ScpE S if V is not in ABY.
2UV VvopDEA
P S P S R .
PV ,4_31/24- PVU2ABY if P, U,V are in ABY.
L 2UV ScpEe




AUTOMATED PRODUCTION OF TRADITIONAL PROOFS 279

Proof. If P is not in ABY, by V.5 gABY — YPABY Now the result comes
CDE VpcpEA

from Lemma 5.6. The second and third cases can be proved similarly. For the
last case, see [3]. O

5.3. THE ALGORITHM

In the preceding subsection, we gave elimination methods for points introduced
by constructions C2-C6. Now we give the elimination method for free points.
By Lemma 4.14, volumes of tetrahedrons can be reduced to volume coordinates
w.r.t to four given points. The following lemma will also reduce the Pythagorean
difference to volume coordinates.

LEMMA 5.9. Let O,W,U, and V be four points not on the same plane such
that OW L OUV, OU L OWYV, and OV L OWU. Then

(1) Papc = AB° + CB° - AC".
52 =2 (Vaouve\? | =72 (Vaowve\? | =72/ Viowus\?
2) AB" =0W (VOWUV ) +0oU ( Vowuv ) +OV ( Vowuv ) ’

3) 3wy = OW 0UOV".

Proof. (1) is the definition. (3) is from Proposition 5.1. For (2), let R, P, and
@ be the orthogonal projections from the point B to the planes OUV, OWV,
and OWU respectively, and D, E, and F' be the orthogonal projections from
the point A to the lines BR, BP, and BQ respectively. By the Pythagorean
theorem

N 2
AB —OW(BD> 57]‘2(—_12) +OV<BF>
oW oU oV

Now the result comes from Lemma 4.9. |

Algorithm 5.10 (Volume)

INPUT: S = (Cy,C5,...,C, (E, F)) is a constructive geometric statement.

OUTPUT: The algorithm tells whether S is true or not, and if it is true, produces
a proof for S.

S1. Fori=k,...,1, do S2, S3, S4 and finally do S5.
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S2. Check whether the ndg conditions of C; are satisfied. The ndg condition of a
construction has three forms: A # B, PQ |fUV, PQ | WUYV. For the first

case, we check whether Paga = 2AB* = 0. For the second case, we check
whether Voguy = 0 and Spyy = Sguy. For the third case, we check
whether Vepw v = Vowov. If a ndg condition for a geometry statement is
not satisfied, the statement is trivially true. The algorithm terminates.

S3. Let Gy, ...,G; be the geometric quantities occurring in £ and F. For j =
1,...,5 do S4.

S4. Let H; be the result obtained by eliminating the point introduced by con-
struction C; from G using the lemmas in Sections 4 and 5. Replace G; by
H; in E and F' to obtain the new E and F.

S5. At least, F/ and F' are rational expressions in independent variables. Hence
if E = F, S is true under the ndg conditions. Otherwise S is false in the
Euclidean plane geometry.

Proof. The last E and F are rational expressions in free parameters. If £ = F/,
the statement is obviously true. Otherwise, we can find specific values for the
free parameters in E and F such that when substituting them into E and F, we
obtain two different values of E and F, i.c., we have found a counterexample.
The ndg conditions of the statement ensures the validity of each step, because
all the geometric quantities occurring in the proof have geometric meaning, i.e.,
their denominators will not vanish. ]

For the complexity of the algorithm, let m and n be the number of free
and non-free points in a statement, respectively. Then we will use the lemmas
(except 4.14 and 5.9) for at most n times. Also note that each lemma will replace
a geometric quantity by a rational expression with degree less than or equal to
three. Then if the conclusion of the geometry statement is of degree d, the result
after eliminating the nonfree points is at most degree 3"d. To eliminate the free
points using Lemmas 4.14 and 5.9, the final result is at most degree 4 - 3"d.

Remark 5.10. In the development of the volume method, no special property
of the real number field has been used. As a result, the volume method works
not only for Euclidean geometry but also for metric solid geometries associated
with any field with characteristic zero.

6. Experiment Results and Comparisons

We have implemented the algorithm in Common Lisp on a NeXT workstation.
The following is the machine produced proof for Example 2.13.
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EXAMPLE 6.1. For the input like Example 3.3, our program produces the fol-
lowing machine proof (in Latex form) automatically.

The machine proof

DA 06 BF AT
AH DG CF BE
H Vpxvz CG BF AE

Vaxyz DG CF BE

[l

Voxvz-Vexvyz BF AE

Vaxyz'Vpxvyz CF BE

simplify Voxyz BF AE

Vaxvz CF BE

F VoxvzVexyz AE
VaxyzVoexvz BE

simplify Vexyz AE
Vaxyz BE

E VexyzVaxvz
Vaxvz Vexyz

simplify 1

—

he eliminants

H Vpxvz
Vaxyz

&

Vexyz
Voxyz

s

Vexvyz
Vexyz

ey

Vaxvz
Vexyz

slE S RlE &S

In the above proof, the symbol Z means to eliminate point H. The eliminants
are the separate elimination results by using the lemmas in Sections 4 and 5.

The following table contains the timing and proof-length statistics for the 80
examples proved by our program. Maxterm means the number of terms of the
maximal polynomial occurring in a proof.

The Proof-Length

The Proving Time

Maxterm No. of Theorems Time (secs) No. of Theorems
m=1 18 t < 0.05 28
m=2 25 0.05<t<01 19
2<m<5 24 0.1<t<05 27
5<«m< 10 9 05<t<£1 3
10 <m < 140 4 I <t <100 3

The key to the volume method presented here is a collection of powerful, high
level theorems, such as the Co-face theorems about the signed volumes. This
method can be contrasted with the earlier algebraic methods, which also proved
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astonishingly difficult theorems in geometry, but with low-level, mind-numbing
polynomial manipulations. For more than eighty percent of the 80 theorems
proved by the volume method, the maximal polynomials in their proofs have less
than six terms. The maxterms of the proofs produced using algebraic methods are
rarely less than six. On the other hand, the algebraic methods are more general,
e.g., they can be used to prove theorems involving inequalities and theorems in
differential geometry. Also see [10] for an interesting method based on the vector
version of the Grobner basis.

The previous methods based on the AT approach can also produce readable
proofs for simple geometry theorems [6, 9]. The key tool in these methods are
the congruent of triangles which prevents these method from going very far
for two reasons. First, the congruent triangle techniques are used to prove some
basic geometry facts and the proofs for most of the high level geometry theorems
using other concepts besides the congruent triangles. Second, even in those proofs
based on congruent triangles, auxiliary points or lines are often needed to form
the required congruent triangles and these auxiliary points or lines are often
added by the user instead of the computer program.

Appendix. Machine Produced Proofs for Several Examples

The proofs (in IZIgX form) of the following examples are produced entirely
automatically by a program based on the Algorithm 5.10.

EXAMPLE 1 (Ceva’s Theorem for Skew Quadrilaterals). The planes passing
through a point O and the sides AB, BC, CD, and DA of any skew quadrilateral
meet the opposite sides of the quadrilateral in G, H, E, and F' respectively
(Figure 8). Show that
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Fig. 9.

The input
((POINTS ABCDO)

(INTER E(LINE AB)(PLANE OCD)
(INTER F(LINE BC)(PLANE OAD)
(INTER G(LINE CD)(PLANE OAB)

(INTER H (LINE DA)(PLANE OBC)
(@ G BF 7@:1))

N PN

AH DG CF BE

The machine proof The eliminants
DE UG BF iE DI H Vooo
AH DG CF BE AH  Vasoo
H Vecpo CG BF AE CG G Vasco
—VABco'fé'ﬁ'B_ﬁ DG Vaspo
G Veopo'Vasco BF AE BF F Vaspo
" VascoVaspo OF BE CF  Vacpo
simplify Vscpo BF AE AE E Vacpo
- Vaspo CF BE BE  Vacpo

F Vecpo(-Vaspo) AE
Vaspo(~Vacpo) BE

simplify Veopo AE
" Vacpo BE

E VeopoVACDO  simplify
Vacpo-Veepo -

The ndg conditions are AB | OCD; BC |f OAD;, CD |fOAB; AD |fOBC;,
B£E,C+F;,D4G, A+H.

EXAMPLE 2 (Centroid of a Tetrahedron). The four medians of a tetrahedron
meet in a point which divides each median in the ratio 3 : 1. The longer segment
being on the side of the vertex of the tetrahedron (Figure 9).



284

SHANG-CHING CHOU ET AL.

The input
((POINTS ABCD)
(MIDPOINT SBC)
(LRATIO ZAS2/3)
(LRATIOY DS2/3)
(INTER G(LINE DZ)(LINE AY))

(2-5)

The machine proof  The eliminants

1 (29) 4G G Sanz
3\GY YG Spzy
_Sapz 4
G Sbzv Sapz Y _E(SADZ)
3 Spzy 2\ Spsz
_Sapz
Y Sbsz S z
X ADZ £ 2(1)
2 Spsz
o(-3)
2
zZ 3
- 1
2)(~
(2) (3)
simplify 1

The ndg conditions are B# C, A# S, D# S, DZ |fAY, G #Y.

EXAMPLE 3. If P,(Q, R, and S are the feet of four cevains having the point O
in common, we have

op 0Q ORrR 035
et —t =t — =

—t =+t —=+—==1
AP CR CR DS

(see Figure 10).
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The input

((POINTS ABCDO))
(INTER P(LINE AO)(PLANE BCD)
(INTER Q(LINE BO)(PLANE ACD)
(INTER R(LINE CO)(PLANE ABD)
(INTER S(LINE DO)(PLANE ABC)
(§+@+2+O_jzl))

DS CR BQ AP

)
)
)
)

OP P —Vascpo
AP VaBcD
Veepo = Vacpo — Vaspo + Vasco — Vaseb

The machine proof
05 , OR , OQ  OP
===t =+ =
DS CR BQ AP
__ 50 —
—VABco—VABCD(_j—_.R—VABCD':Q~VABCD'O:€
CR BO AP

Il

—Vascp
oQ OP
~Vaspo-Vascp+Vasco-Vascp+V3 =4V} ==
ABCD 50 ABOD >

It

(Vascp)?

oQ oP
- (VABDO —Vapco—Vascp-—-Vagcp: —O:)
simplify BQ AP

Vasen

- (VACDO'VABC’D ~VaBpo-VYaBop+Vasco-VaBep+Vigon: j:i)

Vascp-(—=Vascp)

o VACDO*VABDO‘FVABCO"‘VABCD‘Q_g
simplify AP

Vasep
P —VeepoVaecp+Vacpo-Vasecp—~Vaspo-Vapco+Vascep-Vasep

(Vapep)?
simplify —(Vecpo—Vacpo+Vaspo—Vasco)

Vasop
_ —{(~Vagcebp)
Vasep
simplify 1
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Fig. 1L

The ndg conditions are AO [f BCD, BO [f ACD, CO | ABD, DO |f ABC,
A#P, B#Q,C# R, D#S.

A line joining the midpoints of two opposite edges of a tetrahedron will be
called a bimedian of the tetrahedron relative to the pair of edges considered. The
common perpendicular to the two opposite edges of a tetrahedron is called the
bialtitude of the tetrahedron relative to these edges.

EXAMPLE 4. The bialtitude relative to one pair of opposite edges of a tetra-
hedron is perpendicular to the two bimedians relative to the two other pairs of
opposite edges (Figure 11).

The input to the program is

The input

((POINTS XY AC)
(FOOT2LINE SAXY)
(ON B(LINE SA))
(FOOT2LINETCXY')
(OND(LINETCY)
(MIDPOINT M AB)
(MIDPOINT NBC)
(MIDPOINT PDC)
(MIDPOINT QAD)
(PERPENDICULAR NQXY))

The ndg conditions: X #Y, A# S, C#T, C# B, D # A.
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The machine proof

Pyxn

Pyxo

Q Pyxn
1
2

1
Pyxp+ EPYXA
(2)-Prxn
Pyxp+Pyrxa

(2)'(%PYXB+%PYXC)

The

=

Pyxp+Prxa

IS

Py xp+Pyxc
Pyxp+Prxa
Pyxp+Pyxc

e

TD
—Pyxr: I_£+PYXT+PYXC’ =—+Pyxa
TC TC

~(Pyxs+Pyxc)
—Pyxc—Prxa

SB SB
_PYXS‘S:B+PYXS+PYXC+PYXA' =
SA SA

[

Pyxc+Pyxa

_ —(=Prxc—Prxa)

Pyxc+Prxa

simplify 1

The eliminants

Pyxq 2 “(Pyxp + Prxa)

N
Pyxy = %(PYXB + Prxc)

D _ .ID _ _ .ID
Pyxp = (PYXT = Pyxt — Prxc ﬁ)

Pyxr = Pyxc o
SB

B SB
Pyxp = —(PYXS Ty Pyxs—Pyxa- ﬁ)

Pyxs=Prxa
EXAMPLE 5. * Let ABCD be a tetrahedron and G the centroid of triangle
ABC. The lines passing through points A, B, and C and parallel to line DG meet

their opposite face in P, Q, and R, respectively. Show that Vepgr = 3Vapep
(Figure 12).

* This is a problem from the 1964 International Mathematical Olympiad.
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The input

((POINTS ABCD)
(CENTROID GABC)
(INTER P(PLINE ADG)(PLANE BC D))
(INTER Q(PLINE BDG)(PLANE ACD))
(INTER R(PLINE CDG)(PLANE ABD))

(3Vasep = Vargr))

The eliminants
Vepaprp = —Vacpa
VBpar = —VaBbDc
Vecap = Vasep

Vboerg = —VBDGP
v __ VepeprVapep—Vecocar-Vacpa
capPQ =

Vacba
VoerqVaep—VearqVaspa

VGPQR - VaBbpa

The machine proof
(3)-Vasop
Verqr

(3)-VaBcp-Vaspa

=

Vboeprg'Vasecp—VoaergVaspa

1o

(3)Vasep-Vaspe Vacpa)?

SHANG-CHING CHOU ET AL.

~Vepar-VacpeVasoe—Veper VicpaVasco+VecerVicpe VaBoa

simplify (—3)-Vasep-Varpe-Vacpe

Vepar-VaspaVasep+Veper-VacpeVasep—Vecer-Vacpa Vaspa

P (—3)Vapcp-VaspaVacpa (Veona)

—3V3cpaVacoeVaspa-Vasen
simplify 1
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In the above proof the fact that GG is the centroid of triangle ABC is not used.
We thus have the following extension of Example 5.

EXAMPLE 6. Continue from Example 5. The result of Example 5 is still true if
point GG is any point in plane ABC.

We further ask whether the result of Example 5 is true or not if point  is an
arbitrary point.

The input
((POINTS ABCDG)

(INTER P(PLINE ADG)(PLANE BCD))
(INTER Q(PLINE BDG)(PLANE ACD))
(INTER R(PLINE C DG)(PLANE ABD))

(res)
3VapeD

The eliminants

R Vpcpq'Vasecp—Voagrq-Vasba
Vepor =

Vaspc
v Q VepepVasep—-Veocap Vachpa
cePQ = %
ACDG
v, g _y,
parg = —VBDGP
P
Vecer = —(Vasca — Vasep)
P
Vepcp = —VaBpa
P
Veper = —Vacpe

The machine proof
Vergr
(3)-Vasco
R VparqVascp—VoarqVaBpa

(3)'VaBcpVaspa

Q —VepaerVaBpeVaBpc—VepcprVicpeVasco+Vecer-Viepa VaBpa

(3)-Vasep Vaspa (Vacpa)?

simplify —(Vepep-Vaspc'Vapcp+Vepep-VacpoeVapep—Veoar-Vacpe Vaepa)

(3)-Vapep-Vappe (Vacpe)

P ~(Viopo'VacpaVaspaVasca —3V3opa'Vacpe VaepaVasep)

(3)-VaBepVaspa-Vacne(Veepa)?

~(Vapce—3VaBeD)

(3)-Vasco
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Py_4B

Fig. 13.

We thus obtain the following extension of Example 6:
EXAMPLE 7. Vgpgr = 3Vapc iff G is in plane ABC.

EXAMPLE 8. The sides AB and DC of a skew quadrilateral are cut into 2n+ 1
equal segments by points Py, ..., Py, and @y, ..., Q, respectively (Figure 13).
Show that Vp,p, . Qni1Qn = . Vapep.

(2n+1)?
The following figure shows the case n = 2. Note that in the following machine
proof for (1), we use some different names for points F,,, P11, @nt1, @n-

Constructive description The eliminants
- n+V n+V,
((POINTS ABCD) VXYUV v (Voxyu- +7j§m +Vexyu)
( ) Voxyu U (n+1)-Vepxy
1 241
U —Vepxyn
(LRATIO YAB 2n+ ) Voxyu = -‘%m-l ) ) |
(LRATIO UDC ) Vepxy Y —( BcDx-n+25j_?X+ ACDX T
X Vapcpn
( ) Vacpx = —3—_'_1——
Vxyvu Vi X ‘(”:L'F‘l)'VABCD*'
(VABCD )) BCDX — il -
The machine proof
—Vxyuv
Vasep
v —(=Vpxvun—Voxyun—Voxyu)

Vapep-(2n+1)

U 4Vopxy n*+4Vepxy n+Vopxy
Vapep-(2n+1)?
simplify Vepxy
Vascp-(2n+1)
~Veepxn—Vecpx—Vacpxn
Vascop-(2n+1)?

X —(=4Vasopn?—4Vapcpn—Vascp)

Vasop-(2n+1)*
simplify 1

(2n+1)?

1=
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