
Journal of Automated Reasoning 15: 95-165, 1995.
@ 1995 Kluwer Academic Publishers. Printed in the Netherlands.

95

A New Methodology for Query Answering in
Default Logics via Structure-Oriented
Theorem Proving

T. S C H A U B
IRISA, Campus de Beaulieu, F-35042 Rennes Cedex, France
e-mail: torsten@ irisa.fr

(Received: 30 March 1994; in final form: 1 September 1994)

Abstract. We present a new approach to query answering in default logics. The basic idea is
to treat default rules as classical implications along with some qualifying conditions restricting
the use of such rules while query answering. We accomplish this by taking advantage of the
conception of structure-oriented theorem proving provided by Bibel's connection method. We show
that the structure-sensitive nature of the connection method allows for an elegant characterization
of proofs in default logic. After introducing our basic method for query answering in default
logics, we present a corresponding algorithm and describe its implementation. Both the algorithm
and its implementation are obtained by slightly modifying an existing algorithm and an existing
implementation of the standard connection method. In turn, we give a couple of refinements of
the basic method that lead to conceptually different algorithms. The approach turns out to be
extraordinarily qualified for implementations by means of existing automated theorem proving
techniques. We substantiate this claim by presenting implementations of the various algorithms
along with some experimental analysis.
Even though our method has a general nature, we introduce it in the first part of this paper with the
example of constrained default logic. This default logic is tantamount to a variant due to Brewka,
and it coincides with Reiter's default logic and a variant due to Lukaszewicz on a large fragment
of default logic. Accordingly, our exposition applies to these instances of default logic without any
modifications.

Key words: default logics, query answering, credulous reasoning, theorem proving, connection
method.

AMS Subject Classification: 68T15, 68T27

1. I n t r o d u c t i o n

Reasoning in the absence of comple te information constitutes one of the most
important facets o f c o m m o n s e n s e reasoning. This fo rm of reasoning is frequently

accompl i shed by making default assumptions or s imply by default reasoning. A

versatile approach to this is Rei ter ' s default logic [30]. Since its introduction, it
has p roven to be ext remely valuable for formalizing default reasoning in various
domains. A m o n g others, it has been applied to diagnosis [31], natural language
[23], inheri tance networks [16], terminological logics [1], and databases [8]. In

particular, it provides semantics for truth maintenance systems [6] and diverse

96 ~ SCHAUB

forms of logic programming [17]. Hence, default logic is very expressive and
thus of theoretical importance. But expressiveness has its costs. Even though
default logic captures many practical approaches, it is hardly implementable in
full generality. The major cause for this is that regular default logic lacks several
properties that are indispensable for reasonable proof procedures, as discussed in
one of the following sections.

So far, this difficulty has been addressed in two different ways. First, it has
led to algorithmic approaches dealing with restricted subclasses of default logic,
which enjoy desirable computational properties [30, 2, 41]. Yet there are only few
computational approaches to full-fledged default logic [19, 42]. Second, it has
led to variants of default logic overcoming several shortcomings encountered
in the original approach [22, 5, 11]. Although these variants are more easily
' implementable' in full generality, this line has been rarely pursued [32].

In this paper, we address the aforementioned difficulty from a strictly different
point of view, namely, the one given by existing automated theorem provers for
classical logic. Our approach is driven by the desire to obtain a simple yet
powerful method for default theorem proving that is easily adaptable by existing
implementations of automated theorem provers.

So, the key question is how classical theorem proving differs from default the-
orem proving. In default logic, classical logic is augmented by so-called default
rules. These rules can be seen as rules of conjecture whose role is to augment
an underlying incomplete first-order theory. They differ from standard inference
rules in sanctioning inferences that rely upon given as well as absent information.
Hence, a default rule (c~ : /3)/3' has two types of antecedent: A prerequisite c~,
which is established if ~ is derivable, and a justification/3, which is established
if /3 is consistent in a certain way. If both conditions hold, the consequent ",/is
concluded by default. A set of conclusions sanctioned by a given set of default
rules and by means of classical logic is called an extension of an initial set of
facts.

Now, automated theorem provers handle classical logic extremely well. How-
ever, there are no means for dealing with default rules. Thus, the difference
between classical theorem proving and default theorem proving rests on the
notion of a default role, like (c~ : /3)/-'/. In contrast to such rules, automated
theorem provers deal with classical implications, like c~ --+ "~, or their clausal
form. Accordingly, the previously raised question reduces to the one upon the
difference between implications and default roles. Roughtly speaking, this dif-
ference boils down to that between sentential operators and inference roles on
the one hand, and an additional condition given by the consistency check on the
other hand. The last two notions strongly affect the application and the use of
default rules as opposed to classical implications.

As an example, consider the default role (A : --,S)/E, saying that adults (A)
are typically employed (E) unless they are students (S), along with its sentential
counterpart A -+ E. Of course, given an adult A (and nothing else), both rules

QUERY ANSWERING IN DEFAULT LOGICS 97

allow us to conclude E. However, given an unemployed person --,E, the implica-
tion allows us to conclude --,A (by contraposition) while this is impossible with
the default rule, since an inference rule cannot be applied in reverse order. Also,
we can derive E from A and S with the implication A -+ E while this is not
possible with the default rule, since its justification ~S is inconsistent with the
premises.

The basic idea of our approach is the following one. To allow for default
theorem proving based on classical automated theorem provers, we treat default
rules as classical implications along with some qualifying conditions restricting
the use of such rules. In concrete terms, this leads to two restrictions on classical
proofs: First, we restrict admissible proofs to those that are structured in a certain
way in order to account for the concept of an inference rule. Second, we impose
a condition of proofs ensuring the compatible use of default rules preserving
their consistency conditions.

In what follows, we develop a new approach to theorem proving in default
logics based on the connection method [3]. We have chosen this method because it
relies on analyzing the structure of formulas and thus allows for structure-oriented
theorem proving. Unlike resolution-based methods that decompose formulas in
order to derive a contradiction, the connection method analyzes the structure of
formulas for proving their unsatisfiability. This structure-sensitive nature allows
for an elegant characterization of the two aforementioned restrictions on classical
proofs. As a consequence, we obtain a homogeneous characterization of default
proofs at the level of the calculus.

In general, there are two approaches to query answering in default logics. In
the credulous approach, we accept a query if it belongs to one extension of a
considered default theory, whereas in the skeptical approach, we accept a query
if it belongs to all extension of the default theory. In the sequel, we exclusively
deal with the more basic approach, namely, credulous default reasoning. The
given approach is extended to skeptical reasoning in [45, 40].

Even though our method has a general nature, we introduce it in this paper
with the example of constrained default logic [10, 35, 11]. 1 Afterwards, we dis-
cuss in turn how our approach applies to other variants of default logic. For a
complement, we detail in [39] how our method applies to a prioritized version
of default logic, recently proposed by Brewka in [7]. Our initial exemplar, con-
strained default logic, enjoys several desirable computational properties needed
for reasonable proof procedures. Moreover, it has recently been shown in [12]
that in certain fragments of constrained default logic reasoning is significantly
easier than in Reiter's default logic - even though general goal-directed reasoning
remains exponential. All this renders our exemplar a prime candidate for com-
putational purposes. In general, however, credulous reasoning is 22P-complete,
while skeptical reasoning is liP-complete [18].

The paper is organized as follows. After some formal preliminaries accounting
for default logics in Section 2, we smooth the way for our approach by providing

98 ~ SCHAUB

computational characterizations of extensions, queries, and default theories in
Section 3. We introduce our basic method for query answering in default logics
in Section 4. In the subsequent section, we present a corresponding algorithm and
sketch an existing implementation obtained by carefully modifying an existing
connection method theorem prover. This endeavor is driven by our initial desire
to obtain a simple yet powerful method for default theorem proving which is
easily adaptable by existing implementations of automated theorem provers. To
this end, the latter implementation provides a case study in how far an existing
theorem prover for the connection method has to be modified in order to allow
for query answering in default logics.

We introduce in Section 6 an equivalent but conceptually different approach to
query answering in default logics. This results in an algorithm thatis orthogonal
to the one introduced in the first part of the paper. Section 7 gives an intermedi-
ate summary and contrasts our approach with other computational approaches to
default logic. We provide prototypical implementations of the different versions
of our approach in Section 8. These prototypes provide us with some experimen-
tal results as well as some implementation techniques needed for implementing
our approach. Section 9 describes several enhancements and extensions of our
approach. Among others, we show how our approach applies to other variants
of default logic and how it can be enriched by lemma handling. The proofs of
all subsequent theorems are given in the Appendix.

2. Default Logics

This section gives some basic definitions dealing with default logic. Since our
approach is initially applied to constrained default logic, most of the formal pre-
liminaries account for this variant of default logic. However, we will try to be
as general as possible and indicate each special reference to this specific vari-
ant. Nevertheless, constrained default logic coincides with other default logics,
like Reiter's [30] and Lukaszewicz' [22], on the fragment of so-called normal
default theories (see below). Also, it is tantamount to a variant due to Brewka [5]
when neglecting representational issues (see [37, 11] for details). Consequently,
the following exposition applies to these instances of default logic as well. We
discuss the adaptation of our approach to the latter variants of default logic in
Section 9.

In what follows, we deal with a propositional language Z;r~ over a finite
alphabet N. Arguably, the restriction to a decidable logic is a necessary one.
Otherwise the resulting system would not even be semi-decidable, given the
reference to consistency while deriving formulas in default logic (cf. [30]).

As mentioned in the introduction, the central concepts in default logic are
default rules along with their induced extensions of an initial set of facts. In
default logics, knowledge is represented by default theories (D, W) consisting
of a consistent 2 set of formulas W and a set of default rules D. A normal default

QUERY ANSWERING IN DEFAULT LOGICS 99

theory is restricted to normal default rules whose justification in equivalent to
the consequent. In any default logic, default rules induce one or more extensions
of an initial set of facts: Given a set of facts W and a set of default rules D,
any such extension E is a deductively closed set of formulas containing W such
that, for any (a" fl)/7 E D, if c~ E E and -7/3 ~ E, then 7 E E.

Now, let us make all this more precise and look at our exemplary variant,
constrained default logic [11]. This variant enjoys several desirable computational
properties that are given only for restricted default theories in Reiter's default
logic. One such desirable property is the existence of extensions. Another even
more important property for query answering is that of semi-monotonicity, since
it allows us to restrict our attention to default rules relevant for proving a query. 3
Moreover, semi-monotonicity implies the existence of extensions.

In constrained default logic, an extension, E, comes with an underlying set
of constraints, C, which is used for accumulating the set of justifications of the
applied default rules. Formally, this amounts to the usual fixed-point definition
given for extensions in default logics:

DEFINITION 2.1. Let (D, W) be a default theory. For any set of formulas T
let T (T) be the pair of smallest sets of formulas (S ~, T ~) such that

(1) w c_ s ' C T',
(2) S' = Th(S') and T' = Th(T') ,
(3) For any (a • /3) /7 E D, if a E S' and T U {/3} U {7} ~ 2_ then 7 E S'

and ¢3 A 7 E T ~.
A pair of sets of formulas (E, C) is a constrained extension of (D, W) iff

T (c) = (E , c) .

As an example, consider the statements 'students are typically adults', 'adults
usually drive a car', and 'adults are typically employed unless they are students',
along with a student S. The corresponding default theory is the following one.

f S ! A A . C A: S
L A ' c ' S' s J • (2.1)

In both Reiter's and constrained default logic, this default theory yields a unique
extension Th({S, A, C}) in which a student is an adult driving a car. In this
simple example, the constraints in constrained default logic coincide with the
actual extension. It is instructive to verify that the constraints differ from the
extension obtained when substituting the fact S by A. In this case, we obtain
in both default logics the extension Th({A, C, E}), which is supplemented with
constraints, Yh({A, C, E, -~S}), in constrained default logic. Apart from supple-
menting constraints, the difference between both approaches rests on the different
interpretation of consistency. 4 In Reiter's approach, the consistency of a justifica-
tion/3 is checked wrt the extension E by 7/3 ~ E, whereas in constrained default
logic the same is done wrt the constraints C by --1(/3 A 7) ~ C (where 7 is the
consequent of the considered default rule). 5 The former condition ensures that

100 T. SCHAUB

each justification/3 is individually consistent with a final extension, while the
latter enforces the joint consistency of all justifications (of all applying default
rules) with a final extension.

3. The Fundamental Basis

In this section, we provide the fundamental basis for our approach to query
answering in default logics. To this end, let us first tum to the two features
distinguishing default rules from classical implications, namely, the character
of an inference rule and the additional consistency check. While the latter is
handled in the usual manner by testing satisfiability, the former needs a more
subtle treatment. In fact, the character of an inference rule can be captured by
the notion of groundedness. 6 This fundamental concept is common to all existing
default logics. We call a set of default rules D grounded in a set of facts W iff
there exists an enumeration ((~i)iEI of D such that for i C I,

W U Conseq({80, . . . , ~i-1 }) ~- Prereq(~i). (3.2)

For convenience, we denote the prerequisite of a default rule ~ by Prereq(~), its
justification by Justif(~), and its consequent by Conseq(~). 7

In particular, each set of default rules 'generating' an extension is grounded
in the set of facts. 8 In the above example (2.1), the extension Th({S, A, C}) is
generated by the first two default rules. This results in the enumeration ((S •
A)/A, (A • C) /C) , whose defaults are obviously grounded in {S}. In general,
groundedness distinguishes default rules from classical implications. For instance,
the above default rule (A • - , S) / E is (trivially) not grounded in the set of
facts {--,E} so that reasoning by contraposition becomes impossible. That is, ~A
is not derivable from -~E. Moreover, groundedness prevents circular chains of
reasoning. Consider the default rules (A • C) / C and (C • A) /A and no facts.
In this case, neither A nor C is derivable since there is no nonempty grounded
sequence of default rules.

So, from the perspective of the introductory section, groundedness and consis-
tency constitute the two qualifying conditions for the application and the use of
default rules. In particular, these two notions allow for characterizing extensions
in a considerably simpler way. As a first result, we obtain a nonfixed point char-
acterization of constrained extensions, which is indispensable for computational
purposes:

THEOREM 3.1. Let (D, W) be a default theory, and let E and C be sets of
formulas. Then, (E, C) is a constrained extension of (D, W) iff

E = Th(W UConseq(D')) ,

C = Th(W U Justif(D') UConseq(D'))

for a maximal D ~ C_ D such that D ~ is grounded in W and W U Justif(D ~) U
Conseq(D ~) is consistent.

QUERY ANSWERING IN DEFAULT LOGICS 101

That is, an extension is characterized as the deductive closure of the set of facts
and the consequents of a maximal set of default rules which is grounded and
preserves consistency. Accordingly, the computation of a constrained extension
boils down to classical deduction along with enforcement of groundedness and
consistency.

This suggests the following approach to query answering in default logics. To
verify whether a formula ~ is in some extension E of a default theory (D, W),
we have to find a subset of D that allows for deriving ~ and complies with the
above requirements. As already noticed in [30], this can be accomplished in a
reasonable way only if we can confine ourselves to default rules relevant for
deriving ~p. The formal counterpart of this observation is given by the proper-
ty of semi-monotonicity - on which also our approach relies. Formally, semi-
monotonicity stipulates that if D' C_ D for two sets of default rules, then if E ' is
an extension of (D', W), there is an extension E of (D, W) such that E ' C E.
Given this property, it is sufficient to consider a relevant subset of default rules
while answering a query, since applying other default rules would only enlarge
or preserve the partial extension at hand.

Semi-monotonicity holds only for restricted fragments of Reiter's default log-
ic, whereas it is enjoyed by constrained default logic in its full generality. This
is one of the reason we have chosen constrained default logic as an illustration
of our method.

Anyway, this property leads us to the following corollary to Theorem 3.1
providing a formal characterization of query answering in constrained default
logic.

COROLLARY 3.2. Let (D, W) be a default theory. Then, ~ 6 t~, for some
constrained extension (E, C) of (D, W) iff

W U Conseq(D') R

for some D' C_ D such that D' is grounded in W and W U Justif(D 9 U
Conseq(D') is consistent.

That is, for verifying whether ~ is in some extension of a default theory (D, W),
it is enough to determine a grounded and consistent set of default roles D' C D
that allows for proving ~ from the facts in W and all default rules in D'.

Theorem 3.1 and Corollary 3.2 provide the fundamental basis for our approach
to query answering in (constrained) default logic. They are strongly rooted in the
basic concepts of groundedness and consistency. Observe that in both specifica-
tions the latter concepts constitute rather separate constraints on the default rules
under consideration. We will stepwisely refine this approach in the two following
sections. In fact, Section 5 strongly relies on the possibility of separating these
concepts for implementing our approach by using existing automated theorem
provers.

102 T. SCHAUB

Another salient feature of the previous specifications is the formation of
sequences of default rules. This will come to the fore more and more in the
subsequent sections, in particular, in Section 6, where we provide an alternative
approach by meshing together the concepts of groundedness and consistency for
forming sequences of default rules. Moreover, we have shown in [39] that such
a combination is very useful for implementing priorities.

We now turn to the issue of default theorem proving using conventional
theorem provers. As argued in the introductory section, classical theorem provers
cannot deal with default rules but conventional clauses only. As a first step, we
thus shift information from the default part into the classical part of a default
theory in order to facilitate the treatment of default theories. To this end, we
transform default theories by substituting default rules by so-called atomic default
rules consisting of new atomic propositions and by extending the facts with a
set of implications relating these propositions to the constituents of the original
default rules: For a default theory (D, W) in/22, let/2~, be the language obtained
by adding the new propositions a6, t36,76 for each ~ C D. The function 7- maps
a default theory (D, W) in /2z into a default theory (D ~, W t) in/22, , where

76

W ' = W U {Prereq(fi) --+ ar, fl6 --+ Justif(~), 76 --+ Conseq(d) [~ E D}.

The resulting default theory (D ~, W ~) is called the atomic format of the original
default theory (D, W). That is, (D', W ~) contains only atomic default rules.

Consider the default rule (S : A) /A (for short 31) in default theory (2.1).
Applying 7. to this theory yields for 31 the default rule ($61 : Arl)/Ar~ (where
5;6~ and A& are new propositional letters) 9 along with the implications S --+ $6~
and A61 -+ A.

The transformation of default theories into their atomic format does not affect
the computation of queries to the original default theory, as shown in [33]. l°

THEOREM 3.3 (33). Let (D, W) be a default theory in £~. Let E, C be sets of
formulas in E2 and El, C be sets of formulas in 122, such that E = E ~ M E2
and C = C' O/22. Then, (E, C) is a constrained extension of (D, W) iff (t?,', C')
is a constrained extension of T.(D, W).

The major advantage of atomic default rules over arbitrary ones is that the con-
stituents of default rules are not spread over several clauses while transforming
them into clausal format. Rather, each atomic default rule can be represented as
a single binary clause, as we will see in the next section. Strictly speaking, this is
not absolutely necessary but it simplifies matters dramatically. This concerns the
formal presentation of the approach and moreover its implementation by existing
automated theorem provers. With the above transformation, we can (and will)

QUERY ANSWERING IN DEFAULT LOGICS 103

therefore confine ourselves to default theories with atomic default rules only
(without losing generality).

4. A Method for Query Answering in Default Logics

In this section, we develop a method for query answering in default logics based
on the connection method [3]. The connection method allows for testing the
unsatisfiability of formulas in conjunctive normal form (CNF). Unlike resolution-
based methods that decompose formulas in order to derive a contradiction, the
connection method analyzes the structure of formulas for proving their unsatis-
fiability. This structure-sensitive nature allows for an elegant characterization of
proofs in default logic, as we will see below.

4.1. THE CONNECTION METHOD

In the connection method, formulas in CNF are displayed two-dimensionally in
the form of matrices. A matrix is a set of sets of literals (literal occurrences, to
be precise). 11 Such a matrix is given in (4.3) below. Each column of a matrix
represents a clause of the CNF of the formula. In order to show that a sentence

is entailed by a sentence W, we prove that W A -,~ is unsatisfiable. In the con-
nection method this is accomplished by path checking: A path through a matrix
is a set of literals, one from each clause. A connection is an unordered pair of
literals which are identical except for the negation sign (and possible indexes). A
mating is a set of connections. A mating spans a matrix if each path through the
matrix contains a connection from the mating. Finally, a formula, like W A - ~ ,
is unsatisfiable iff there is a spanning mating for its matrix.

Let us briefly illustrate this by verifying whether C is entailed by

S A (S - + A) A (A -+ C).

For this, we prove that conjoining the negated query ~C to the latter formula
yields an unsatisfiable formula. Transforming the resulting formula into its CNF
yields

S A (-~S V A) A (-.A V C) A -~C

whose two-dimensional representation is the following one (by ignoring the
arcs).

S A C
(4.3)

104 ~ SCHAUB

This matrix has a spanning mating whose connections are represented by arcs
linking the respective literals. This is so because matrix (4.3) contains four paths,
like {S, A, ~A, ~C}, all of which contain at least one connection, like {A, --,A}.
In this way, we have shown that C is entailed by S A (S --+ A) A (A --+ C).

In the sequel, we sometimes refer to certain submatrices or supermatrices
of a given matrix. We call a matrix M' a submatrix of a matrix M if M ~ is
obtainable from M by deleting literals or even clauses in M. The definition of
supermatrices is analogous. We say that a path is complementary or closed if it
contains a connection from a given mating. Otherwise, we say that the path is
noncomplementary or open. Finally, we call a matrix complementary if it has a
spanning mating or, in other words, if each path through the matrix contains a
connection from a mating at hand.

4.2. COMPLEMENTARITY

In this section, we describe how to turn default theories into matrices and how
to verify the complementarity of the resulting matrices.

Our approach relies on the idea that a default role can be decomposed into a
classical implication along with two qualifying conditions, one accounting for the
character of an inference role and another one enforcing the respective consisten-
cy condition. 12 The computational counterparts of these qualifying conditions are
given by the proof-oriented concepts of admissibility and compatibility, which
we will introduce in the following two subsections.

To find out whether a formula ~ is contained in some extension of a default
theory (D, W), we proceed as follows. First, we transform the atomic default
roles in D into their sentential counterparts. This yields a set of indexed impli-
cations

WD={C~6--+.y~ c ~ ' ~ ED}.

In what follows, we adopt this notation and write WD, = {c~ -~ ",/~l(o~ :
P~)/7~ E D'} for any subset D' of D. Second, we transform both W and WD
into their clausal forms, Cw and CD. The clauses in CD, like {--,c~, 3'~}, are
called g-clauses; all other clauses like those in Cw are refered to as co-clauses.
Now, we are ready for query answering. That is, a query ~p is derivable from
(D, W) iff there is a spanning mating for the matrix Cw U CD U {--,cp} agreeing
with the concepts of admissibility and compatibility. 13

Consider our student example. The encoding of the set of default rules yields
the following set, WD, of implications:

The indexes denote the respective default roles in default theory (2.1) from
left to right. In order to verify that a student drives a car, C, we first have to

QUERY ANSWERING IN DEFAULT LOGICS 105

transform the fact S (in default theory (2.1)) and the implications in WD into
their clausal form. The resulting clauses are given two-dimensionally as the first
four columns of the matrix in (4.4). The full matrix is obtained by adding the
clause containing the negated query, --,C. In fact, the matrix has a spanning
mating, { {S, "nSSl }, {As~,-~Ah }, C h , - ,C} }. As above, we have indicated these
connections in (4.4) as arcs linking the respective literals.

S A~ 1 C6~ E ~
(4.4)

For simplicity, we have refrained from transforming default theory (2.1) into
atomic format because it already consists of atomic formulas. In such a case,
let us rather adopt the following two conventions. First, let us agree on simply
labeling components of a default rule and allowing for connections between com-
plementary literals having different indexes (if any at all). Second, let us assume
that we can always distinguish between the prerequisite and the consequent in
a G-clause. Observe that both conventions are obsolete as soon as we enforce
default theories in atomic format by transformation 7- (cf. Section 2). First, we
obtain in atomic format two standard connections, rather than a 'mixed' con-
nection between an indexed and unindexed literal. For instance, instead of two
clauses {S} and {-~Ssl, Asl } (from S, (S : A) / A) along with the 'mixed' connec-
tion {S, ~Ssl }, we would obtain three clauses {S}, {~S, $6~ }, and {--nSSl , A61 }
(from S, S -+ Ss, , (Ss, : As,) /A~ 1) along with two standard connections {S,-~S}
and {Ssl,-~Ss~ }. The same applies to the remaining clauses in matrix (4.4). Sec-
ond, observe that in atomic format the distinction between prerequisites and
consequents of &clause is trivial. This is so because the prerequisite is given
by the negative literal in the G-clause and the consequent by the positive liter-
al. We support this in two-dimensional notation by stacking prerequisites over
consequents.

The above matrix illustrates yet another point: Not all of the clauses are nec-
essarily involved in providing a spanning mating for a matrix. A useful concept
is then that of a core of a matrix M wrt a mating II, which allows for isolating
the clauses relevant to the underlying proof. We define the core of M wrt Yl as
follows. 14

DEFINITION 4.1. Let 13 be a mating for the matrix M. Then, we define the
core of M wrt II as

106 T. SCHAUB

For instance, the core of the preceding matrix relative to the drawn mating is
given by the first three and the last clauses.

So far, it might seem that classical theorem proving with co- and &clauses
suffices for querying default theories. To see that this is not enough, consider
again the default rule (A : ~S)/E along with the fact -~E. In default logics,
there is no way to derive --A. However, the resulting matrix, given in (4.5), has
a spanning mating, which amounts to deriving -~A by contraposition.

-'A63 A

-~E E ~
(4.5)

This example shows that pure deduction with 5-clauses cannot account for
the inference rule character of the original default rules.

4.3. ADMISSIBILITY

In default logics, the nature of an inference rule is reflected by the property
of groundedness, which relies on forming sequences of default rules. In fact,
the connection method allows for imposing a similar restriction on the clausal
counterparts of default rules. This leads us to our first qualifying condition on
proofs given by the concept of admissibility.

DEFINITION 4.2 (Admissibility). Let Cw be a set of co-clauses and CD be a
set of &clauses, and let H be a mating for Cw U CD. Then, (Cw U CD, I-i) is
admissible iff there is an enumeration ({--,a6~, 3'6~})ieI of n(CD, II) such that for
i E I , H is a spanning mating for

Cw U (?o{{~c~,~j, 7,~j U {{-~a,h}}. (4.6)

Note that normally not all connections in II are needed for showing the unsat-
isfiability of the submatrices in (4.6). We say that (Cw U CD, H) is admissible at
i in an index set I if (4.6) holds for i C I. Moreover, we say that (Cw U CD, II)
is admissible wrt I if it is admissible at all i E I.

The previous definition may be nicely illustrated by the proof in our student
example given in (4.4). There, we obtain the enumeration

<{~Sa,, A~, }, {~Aa2, Ca2 }),

which in turn leads to the following matrices, each representing a set of clauses
as specified in (4.6):

QUERY ANSWERING IN DEFAULT LOGICS]07

S S A~t
(4.7)

Observe that the preceding matrices are in fact submatrices of matrix (4.4).
Clearly, each of these submatrices has a spanning mating, so that the origi-
nal matrix along with its mating, given in (4.4), constitute an admissible proof.
Observe that the proof in the example involving contraposition violates admissi-
bility. This is so because there is no spanning mating for the submatrix {{-~E},
{-nAG3}} of matrix (4.5).

In the remainder of this subsection, we provide an incremental approach to
admissibility. This is made precise in the following theorem.

THEOREM 4.1. Let Cw be a set of co-clauses and CD be a set of &clauses.
Let II be a mating for CN U Cz) such that (Cw U CD, II) is admissible wrt I.
Let {-~oz~,'y~} be a (Lclause. Then, (Cw U CD U {{-~a~,3,~}}, II) is admissible
iff II is a spanning mating for Cw U Ui6i{{~/~-i}} U {{-~o~6}}.

Informally, this theorem allows us to discard paths through 'prerequisites of
admissible &clauses' while verifying admissibility. Hence, for verifying the
admissibility of the proof given in (4.4), we can proceed as follows. For illus-
tration, consider also the two submatrices in (4.7). We start with the set of open
paths through all co-clauses. There is only one such path in our example, {S}.
For verifying the admissibility of 15 {~$61, A61 }, we have to check whether all
such open paths contain a literal complementary to ~$6~. Since this is the case,
we can proceed by verifying the admissibility of {-~A62, C62}. For this, we can
discard all paths through --,$6l. Thus, we can restrict ourselves to all open paths
obtained by adding A61 to all open paths through all co-clauses. There is only
one such path in our example, {S, A6l}. As above, this path has to contain a
literal complementary to -~A~2 for confirming the admissibility of the second
~-clause. Clearly, the path {S, A~ } O {~A~2} is closed, so that admissibility is
confirmed.

Moreover, the theorem shows that admissibility is in fact the proof-theoretic
counterpart of groundedness. That is, if C'w is the clausal representation of W,
then there is a spanning mating for Cw U Uin_=_0{{7a~}} u {{-~oz~}} iff W u
Conseq({30,... ,#n}) F- Prereq(3), where 3'~, = Conseq(3i). Observe that the
latter corresponds to the condition given for groundedness in (3.2).

108 T. SCHAUB

4.4. COMPATIBILITY

The second qualifying condition for proofs is given by the concept of com-
patibility; it relies on the notion of consistency specific to constrained default
logic.

DEFINITION 4.3 (Compatibility). Let Cw be a set of co-clauses and CD be a set
of g-clauses, and let 1I be a mating for Cw U CD. Then, (Cw U CD, 11) is com-
patible iff there is no spanning mating for Cw U C j, where C j = {{/3~}, {76} I
{--nO~3,"yr} E t~(CD, 11),/~3 = Justif(~)}.

Notably, this is the first place where we refer to a notion specific to constrained
default logic; the entire preceding exposition involving the concept of admissi-
bility applies to any (semi-monotonic) default logic.

Consider again our student example. For compatibility, we have to verify that
the matrix {{S}} U {{Arl }, {C62 }} or two-dimensionally

IS A61 C62] (4.8)

has no spanning mating. This matrix is formed by the facts {S} and the justifi-
cations Arx and C62 of the first two default rules in (2.1). Obviously, matrix (4.8)
has no spanning mating, since it has a noncomplementary path, {S, A~2, E33 }.
We thus obtain an admissible and compatible proof for the original query, S,
asking whether a student drives a car. Note that an open path gives a model of
the considered formula.

In order to give an example for an incompatible proof, we consider the
matrix

{{S}} U {{A}, {-,S}, {E}}

whose compatibility is verified while answering the query E from the fact S and
the default rules (S : A)/A and (A : ~S)/I~,. This matrix has a spanning mating
{{S,-~S}} indicating an incompatible use of default rules.

In principle, compatibility is separate from admissibility. However, the next
theorem shows that compatibility can be verified on (almost) the same matrices
as used for verifying complementarity and admissibility.

THEOREM 4.2. Let Cw be a set of co-clauses and CD be a set of&clauses. Let
II be a mating for Cw U CD such that (Cw U CD, H) is admissible. Then, 11 is
a spanning mating for Cw © CD U {{/~6} I {-n°~6,"/6} C CD,fl6 = Justif(g)} iff
11 is a spanning mating for Cw U C j, where Cj = {{/36}, {76} I {-~o~6, 3'6} E
CD,/36 = Justif(~) }.

This theorem offers the computational advantage of structure and information
sharing while query answering. Observe that a simpler formulation is obtained

QUERY ANSWERING IN DEFAULT LOGICS 1 09

for normal default theories. Then, II is a spanning mating for Cw U CD iff H is
a spanning mating for Cw U {{"/6} I {-~c~6, "/6} E CD}.

Above, we have verified the compatibility of the proof obtained in our student
example by regarding the matrix given in (4.8). Theorem 4.2 tells us that this
is equivalent to checking whether the following admissible supermatrix of (4.8)
has no spanning mating. 16

S A~I C62
(4.9)

Even though the latter matrix is larger than the one in (4.8), it shares the structure
of the matrices used for verifying complementarity and admissibility. In fact,
it is at the same time a supermatrix of the largest matrix used for checking
admissibility in (4.7) and a submatrix of the actual matrix used for proving the
query C in (4.4). That is, matrix (4.9) is obtained by adding C62 to the rightmost
clause of the right matrix in (4.7). Analogously, we obtain the proof for C in
(4.4) by adding the query clause {~C} to matrix (4.9). We will take up these
ideas in Section 6.

4.5. CHARACTERIZING DEFAULT PROOFS

In Section 3, we have decomposed default theorem proving in default logic into
classical deduction along with the concepts of groundedness and consistency.
In the preceding subsections, we have carefully mapped these notions onto the
connection method. We have accomplished this by identifying the concepts com-
plementarity, admissibility, and compatibility as the proof-theoretic counterparts
of classical deduction, groundedness, and consistency, respectively.

As a result, we obtain the following theorem showing that our method is
correct and complete for constrained default logic:

THEOREM 4.3. Let (D, W) be a default theory in atomic format and ~ an
atomic formula. Then, 9~ C E for some constrained extension (E, C) of (D, W)
iff there is a ~panning mating II for the matrix M of W U WD U {-~9~} such that
(M, II) is admissible and compatible.

As agreed upon above, we have that WD = {c~6 -+ "/6 I (c~6 : /36)/"/6 E D}.
Finally, let us summarize our approach in the remainder of this section by

means of a coherent example. Consider the statements 'students are typically not

110 T. SCHAUB

employed' , 'students are typically adults', and 'adults are typically employed' ,
along with the corresponding default theory dealing with a student.

--,E ' A ' E , { S . (4.10)

The encoding of the set of default rules yields the following set of implica-
tions.

W D = {S6 ~ ~E31 , S,~ 2 --~ Ah, Aa2 -+ Ea3 }.

As before, the indexes denote the respective default roles in default theory (4.10)
from left to right. Let us consider the query E, asking whether a student is
employed. Transforming the fact S, the implications in W D , and the negated
query -~E into clausal form yields the matrix in (4.11).

S -'Eh A~2 E~a
(4.11)

In fact, the matrix has a spanning mating, {{S,-~$62} , {Aa2, ~Aa3}, {/~3' ~E}},
whose connections are indicated as arcs linking the respective literals. This
default proof yields the following enumeration

({~Sa2, Aa2}, {-~Aa3, E~2})

For admissibility, we have to consider the following submatrices of matrix
(4.11)

~ 62

S S A~=
(4.12)

Observe that each of these submatrices has a spanning mating, so that the original
matrix and its mating, given in (4.11), constitute an admissible proof.

For compatibility, we have to verify that the following matrix has no spanning
mating. 17

Obviously this is the case because there is a noncomplementary path, {S, Aa2,
Ea3 }. We thus obtain an admissible and compatible proof for the original query,
E, asking whether a student is employed. Note that we used Theorem 4.2 for
verifying compatibility.

QUERY ANSWERING IN DEFAULT LOGICS 1 1 1

S A~ E~ 3

Observe that there is yet another spanning mating for the matrix in (4.11),
namely,

{{S, "nS~l }, {~.~, "-nS~2 }, {-aE~l , E~3}, {A~ 2 , ~A~3 }). (4.13)

This mating discards the negated query ~E. The cause for this is that we deal with
conflicting defaults. That is, from S we can derive --,E by the first default role in
default theory (4.11) as well as E by the second and third default role. Although
the resulting proof can be shown to be admissible, it is not compatible.

S -~E~ A62 Er~

This matrix has the spanning mating given in (4.13), too. This shows that the
corresponding proof is not compatible.

The last part of the example stresses the importance of the concept of com-
patibility. In particular, it seems advantageous to prone incompatible proofs as
early as possible, since defaults might conflict with each other.

5. Implementing the Approach by Existing Automated Theorem
Provers

In this section, we pursue our initial goal of providing a simple method for query
answering in default logics that needs few modifications to existing implemen-
tations of automated theorem provers.

There are several ways of implementing our approach by using existing auto-
mated theorem provers. An extreme way would be to prove each query conven-
tionally and to leave the verification of admissibility and compatibility to special-
purpose algorithms. This is rather expensive, since one might have to generate
numerous proofs before our qualifying conditions are confirmed or even denied.
The opposite approach would be to modify an existing automated theorem prover
in order to incorporate the verification of admissibility and compatibility. To this
end, however, one has to put consistency checks into the 'inner loop' of a theorem
prover, which is a difficult and (sometimes) expensive undertaking, too.

112 T. SCHAUB

5.1. AN ALGORITHM

In all, both aforementioned approaches do not concur with our initial desire for a
simple and feasible approach to default theorem proving that is easily adaptable
by existing implementations of the connection method, like SETHEO [21] or PPP
[26]. We address this problem in this section by separating the verification of
compatibility (or consistency) from that of complementarity and admissibility.
This is motivated by the incongruity between the 'global' notion of consistency
employed in default logics (by referring to the final extension or constraints)
and the stepwise execution of inference steps encountered in existing theorem
provers. In order to avoid the resulting difficulties, we rather pursue an 'off-line'
approach by compiling compatibility, thereby taking advantage of the compliant
conception of consistency in constrained default logic. This approach is justified
by the following corollary to Theorem 3.1.

COROLLARY 5.1. Let (D, W) be a default theory, and let E and C be sets
of formulas. Then, (E, C) is a constrained extension of (D, W) iff (E, C) is
a constrained extension of (D t, W) for a maximal D t c_ D such that W U
Justif(D') tO Conseq(D') is consistent.

We say that a default theory (D, W) is compatible iff WU Justif(D)UConseq(D)
is consistent. Accordingly, we compile a given default theory (D, W) into several
compatible default theories (D', W). Compiling a default theory (D, W) amounts
to computing the generating default rules 18 D t of each extension of the default
theory

({ flA"y:flA"f o~ " E D } , W) .

Observe that any compatible default theory has a unique constrained exten-
sion.

For example, we can turn default theory (2.1) into a single compatible default
theory by removing the last default rule, (A : -~S)/E. This usually costly com-
putation should be done 'off-line' by special-purpose algorithms, as described in
[1] or even [43]. Once this has been done, we can verify whether a query is in the
unique extension of a compatible default theory without any consistency checks.
An effective way of querying multiple compatible default theories is described
in [33]. The precomputation of compatible default theories has the advantage
that we are able to prune computations with incompatible defaults in advance.
Thus, for instance, the approach avoids the difficulties with incompatible default
theories sketched at the end of Section 4.

On the other hand, the approach is problematic if there is a large number
of compatible default theories. In fact, there may be an exponential number
of such theories in the worst case. 19 In general, such a compilation is favorable

QUERY ANSWERING IN DEFAULT LOGICS 1 13

whenever its computational cost can be amortized over the total set of subsequent
queries.

The purpose of this compilation approach is to minimize modifications to
existing automated theorem provers. In fact, it turns out that admissibility is
more integrative than compatibility as regards such modifications. We discuss
alternative approaches in brief at the end of this section and in more detail in
Section 6.

Let us now turn to the verification of admissibility and complementarity. In
fact, we confirm admissibility while systematically checking the complementarity
of each path through a matrix, Following [14], we use compl(p, M) for defining
a declarative algorithm for deciding whether a matrix is complementary and
admissible. With it, Eder shows in [14] that a matrix M consisting of co-clauses
only is complementary iff compl(~, M) is true wrt the first two conditions of
the following definition.

DEFINITION 5.1. Let Cw be a set of co-clauses and CD be a set of &clauses.
Let p be a set of literals and let M = Cw, U Cz), for Cw, c_ Cw and CD, C_ CD.
Then, we define compl(p, M) relative to Cw as follows. 2°

1. If M = ~, then compl(p, M) is false.
2. If M ¢ 2~ and c E M is an co-clause, then compl(p, M) is true iff for all

L E c at least one of the following two conditions holds.
(a) L is complementary to some literal of p.
(b) compl(p U {L}, M\{c}) is true.

3. If M ¢ ~ and c C M is a &clause, then compl(p, M) is true iff the following
two conditions hold, where c = {--,c~6,-y~}.
(a) ~y~ is complementary to some literal of p.
(b) compl({-~c~}, (M\{c}) U Cw) is true.

As mentioned above, the first two conditions provide a sound and complete algo-
rithmic characterization of the standard connection method (see [14] for details).
In fact, the original characterization given in [14] differs only in two extreme-
ly minor points from the one obtained by deleting Condition (3) above. First,
there is no case analysis in Condition (2) for distinguishing co- from ~-clauses.
Second, compl(p, M) is independent of Uw in [14]. The latter set represents
in Definition 5.1 the original set of co-clauses, whereas Gw, and C D, function
as parameters. This distinction is necessary because Condition (3b) makes refer-
ence to the original set of co-clauses, given by Cw. We will come back to this
below.

Now, let us discuss Definition 5.1 in some detail. Condition (1) accounts for
the limiting case where the matrix is empty. Condition (2) deals with co-clauses.
Each literal L in the co-clause at hand either has to be complementary to some
]literal on the active path p or all paths through p extended by L and the remaining

114 T. SCHAUB

clauses have to be complementary. The choice of the w-clause from M is a don't
care-choice. That is, the result is independent of what w-clause is taken.

Condition (3) deals with &clauses. Condition (3a) corresponds to Condi-
tion (2a) and says that the consequent of a default rule -y6 can be used for
query answering as any other proposition - provided Condition (3b) is satisfied.
In fact, (3b) ' implements' Statement (4.6) in Definition 4.2 and ensures that the
prerequisite o~a of a default role is derivable in a noncircular way. Observe that
we do not provide two alternatives for resolving 7a in (3b), as done in (2). In
fact, we can restrict ourselves to one of the alternatives in (2a) and (2b) for
solving a single literal. 21 The purpose of resolving -ya in analogy to (2a) rather
than (2b) is to minimize the 'application of default mles' in the course of a proof
search. This minimization is advantageous because the choice of &clauses in
(3) is a don't know choice. That is, one has to find the right one, which means
that - in the worst case - all possibilities have to be tested. The choice is don't
know because a selected ~-clause may not lead to an admissible proof so that
Condition (3b) will be falsified.

Another interesting point in Condition (3b) is the addition of the initial set
of w-clauses Cw to (M\{c}) . The need for this is obvious because admissi-
bility has to be verified wrt the given set of facts represented by Cw. Some
of these w-clauses, however, might have been 'consumed' at an earlier stage.
This is so because Eder's formulation deletes in Condition (2b) w-clauses after
their 'usage' .22 So on the one hand, our approach avoids verifying admissibility
by ever-increasing submatrices, as stipulated in Definition 4.2. In this way, it
compromises the query-oriented and thus ' top-down' search for a proof with the
'bottom-up' verification of admissibility. On the other hand, an w-clause may
contribute to the derivation of several 'prerequisites'. Thus, in the worst case,
this yields a proof length bounded by O([Cw[x ([CD] q-- 1)), where IMI stands
for the number of clauses in a matrix M.

We observe how easily complementarity and admissibility can be verified
simultaneously by adding a single condition to the original definition of
compl(p, M) in [14] - provided that M represents a compatible default theory.
Let us illustrate this along with our algorithm by investigating the 'compatible'
matrix

{{S}, {-"$61, Aal }, {-~Aa2, C62}, {-,C}}

obtained by removing clause {-~Aa3, Ea3 } from matrix (4.4). To proceed in a
query-oriented way, we 'push' the negated query ~T on the initial path, and use
the w- and &clauses, Cw U CD representing the underlying default theory as
the initial matrix. That is, we verify whether compl({=T}, Cw U CD) is true.
Selecting the query clause {-~C} makes us confirm

compl({--,C}, {{S}, {--,Sa,, Aa, }, {mAa 2 , C6z}}). (5.14)

This can be done by choosing clause {--'Aa2, C62 } in Condition (3). This choice is
not arbitrary; rather, it reflects the connection-driven search used in the connection

QUERY ANSWERING IN DEFAULT LOGICS 1 15

method. That is, C62 is complementary to -~C so that (3a) is satisfied. In addition,
we have to establish

compl((-~A62 }, {{S}, {-~$6,, Ar~ }}) (5.15)

according to (3b). It is instructive to verify that the latter corresponds to invoking
our algorithm on the second (sub)matrix in (4.7), after applying Condition (2b)
to the clause {-~A h }.

Applying Condition (3) to the goal in (5.15) yields

compl({-~Sr~), {(S))) (5.16)

which is true by (2a). Accordingly, the query C is provable from the compatible
equivalent of default theory (2.1) by means of default rules (S : A)/A and
(A : C) / C .

For a complement, let us consider the proof in (4.5) involving reasoning by
contraposition. This proof is not admissible. We start with

compl({A}, {{--,E}, {~A h , E~ 3 }}).

We choose {-~A83 , E83 } in Condition (3). Since ~A53 is complementary to A,
we have to confirm

compl({-~A63 }, {{~E}}).

Clearly, this is false because there are no complementary literals left. The same
result is obtained by initially choosing {~E}. Hence, our initial goal is not
confirmed, thus showing that the proof in (4.5) is not admissible.

The general relation between query answering in constrained default logic
and the above algorithm is made precise in the following theorem. 23

THEOREM 5.2. Let (D, W) be a default theory in atomic format, and let
be an atomic formula. Then, qo E E for some constrained extension (E, C) of
(D, W) iff compl({--,~}, M) is true for the matrix M of W U WD, for some
WD, C_ WD such that W U Justif(D') tg Conseq(D ~) is consistent.

Observe that merely the choice of the compatible set of default rules D ~ is
specific to constrained default logic. Hence this result and with it the underlying
algorithm apply to 'compatible' default theories in any (semi-monotonic) default
logic - provided that an appropriate notion of compatibility is provided (cf.
Section 9).

The previous exposition is dominated by the view that the integration of
consistency into existing implementations of automated theorem provers is dif-
ficult. In particular, we have argued in favor of special-purpose algorithms for
compilation into compatible default theories. Without question, these algorithms
show a better performance than a theorem prover whose failure indicates that the

116 I". SCHAUB

underlying formula is satisfiable. For coherence, actually, notice that we can also
compile default theories into compatible ones by means of compl(p, M) . That
is, a default theory (D, W) is compatible iff compl(p, M) is false for the matrix
of W U Justif(D) U Conseq(D).

Also, recall that the compilation of default theories leads to difficulties when-
ever there are a large number of compatible default theories. Then, an 'on-line'
approach is definitely preferable over an 'off-line' approach. In fact, this can also
be accomplished by means of what we have developed so far. Let (CD) ~° be the
set of w-clauses obtained by turning each 3-clause in CD into an w-clause. This
leads us to the following corollary to Theorem 5.2, which allows us to reason
from arbitrary and thus also noncompatible default theories.

COROLLARY 5.3. Let (D, W) be a default theory in atomic format, and let qo
be an atomic formula. Then, qa C E for some constrained extension (E, C) of
(D, W) i f f compl ({ -~} , M) is true, and compl(Justif(D'), M ~) is false for the
matrix M of W U WD, for some WD, C_ WD.

Observe that this corollary relies on Theorem 4.2, which shows that compatibility
is verifiable on the same matrix M as used in compl({--,~}, M). Also, we used
the fact that for any (unit-)clanse {L} containing a single literal L, we have that
compl(p, M U {{L}}) is true iff compl(p U { L } , M) is true. Hence, we shifted
all justifications on the initial path. In this way, the actual matrix M remained
the same in compl({-~p}, M) and compl(Justif(D'), M~°).

5.2. A CASE STUDY

Aaron Rothschild has implemented the approach in [33] by slightly extending
PPP, a PROLOG implementation of a (first-order) theorem prover carrying out the
pool-based connection calculus [26]. The purpose of this implementation was
to provide an initial case study in how far an existing theorem prover for the
connection method has to be modified for incorporating admissibility.

We briefly describe the main idea underlying the implementation while assum-
ing some basic familiarity with the connection method: We prove in a goal-
oriented fashion, starting from the goal and attempting to find complementary
paths through the matrix. As soon as a path cannot be complemented by using
facts only, we call in &clauses to achieve complementarity. As in Definition 5.1,
we do not attempt to use ever-increasing submatrices, as stipulated in Defini-
tion 4.2 for verifying admissibility. Rather, we enforce the admissible applica-
tion of defaults by two extra conditions resembling the ones in Condition (3)
in Definition 5.1: The first condition (corresponding to (3a)) says that only con-
nections 'into' -y~-literals of &clauses {--,o~, 3'~} are permissible in the course of
the backward chained search. In this way, a subgoal is never resolvable by the
prerequisite c~ of a default rule. Once an inference step with a &clause is per-
formed, the second condition restricts the resolution of subgoals with literals of

QUERY ANSWERING IN DEFAULT LOGICS 1 17

the current path to literals that entered the path after the aforementioned 'default
step'. This amounts to discarding the literals of the path p in (3b) in order to
avoid circular chains of inference.

Importantly, these two conditions are implemented by simply adding another
PROLOG clause (along with some case-analysis distinguishing 5- and co-clauses)
to the PROLOG implementation of PPP. That is, apart from a single PROLOG clause
the rest of our implementation corresponds to the original implementation given
in [26]. Hence, it was possible to minimize modifications by utilizing as much
of the original implementation as possible.

In practice, however, the length of the proofs had to be limited by a parameter
in the size of O([CwI x (ICDI + 1)) in order to guarantee completeness in the
propositional case. Otherwise the implementation ran into infinite branches since
PPP is a first-order theorem prover that deals with clause instances. A simpler
PROLOG implementation that relies on the characterization in Definition 5.1 is
given in Section 8.

Finally, the question arises how our method can be transposed onto a high-
performance theorem-prover like SETHEO [21]. In fact, this should not be that dif-
ficult provided that we keep separating the verification of compatibility. SETHEO

is a PROLOG-technology theorem prover written in the programming language C.
It is built on top of the SETHEO-abstract machine that works with PROLOa-like
roles. To this end, each clause, like {A V B}, is transformed into its contrapos-
itives, ~A -+ B and ~ B --+ A. Roughly speaking, this suggests the following
two changes for dealing with G-clauses - apart from some case analysis. First,
&clauses like {~ozr,'y~} are transformed in a single contrapositive c~6 --+ ~/6.
Second, the head of such a '~-contrapositive' has to be proven by deleting all
literals on the active path. Observe that these two restrictions correspond to
Conditions (3a) and (3b) in Definition 5.1. A detailed study of modifying the
treatment of contrapositives is given in [44, 25].

6. An Alternative Approach

In the preceding section, we developed an algorithm for our method while aim-
ing at implementing the approach by using existing automated theorem provers.
For this purpose, we concentrated on minimizing the modifications to existing
implementations. This has led to a pragmatic solution separating the verification
of compatibility (or consistency) from that of complementarity and admissibil-
ity. In this section, we investigate an alternative approach that requires more
modifications to an automated theorem prover but that allows for integrating the
verification of compatibility.

118 T. SCHAUB

6.1. AN ALTERNATIVE CHARACTERIZATION OF EXTENSIONS

The fundamental basis for the approach developed in the preceding sections
was provided by Theorem 3.1. In particular, we have stressed the fact that semi-
monotonicity allows for focusing on the default rules needed for proving a query,
while developing the corresponding characterization of query answering in Corol-
lary 3.2.

In fact, semi-monotonicity offers yet another but conceptually different char-
acterization of extensions. Observe that the specification given in Theorem 3.1
employs a rather 'global' notion of consistency. Now, semi-monotonicity implies
that extensions are constructible in a truly iterative way by applying one appli-
cable default rule after another. This involves an incremental and thus rather
local notion of consistency. To this end, semi-monotonicity leads us to the fol-
lowing corollary to Theorem 3.1 that provides an alternative characterization of
constrained extensions:

COROLLARY 6.1. Let (D, W) be a default theory, and let E and C be sets of
formulas. Then, (E, C) is a constrained extension of (D, W) iff

E = Th(W U Conseq(D')) and

C = Th(W U Justif(D') tO Conseq(D'))

for a maximal D ~ C_ D such that there exists an enumeration (~i)ieI of D~, where
for i C I we have that

(1) W to Conseq({~0,. . . , ~i-1)) F- Prereq(~i), and
(2) W tO Conseq({30, . . . ,3i_l) U Justif({30, . . . ,3i_l)) ~z ~Justif(~i)V

~Conseq(3i).

This specification explicates the formation of sequences of default rules that
remained implicit in Theorem 3.1. In fact, Condition (1) spells out that D ~ has
to be grounded in W. So the conceptional difference between the two alterna-
tive characterizations rests on the second condition. Condition (2) expresses the
aforementioned notion of incremental consistency. Here, the 'consistent' appli-
cation of a default rule is checked at each step, whereas this is done jointly for
all default rules in D ~ in Theorem 3.1.

Corollary 6.1 provides the fundamental basis for the approach to query answer-
ing, which we develop in this section. The characterization of query answering
is analogous to the one given in Corollary 3.2. Observe that in Theorem 3.1
groundedness and consistency constitute rather separate constraints on the 'gen-
erating default rules' in D ~. We strongly relied on the possibility of separating
these concepts in Section 5. In contrast to this, the concepts of groundedness and
consistency are meshed together in Corollary 6.1. Hence, both concepts jointly
direct the formation of sequences of default rules. This is the salient feature of

QUERY ANSWERING IN DEFAULT LOGICS 1 19

the approach developed in the sequel. Moreover, we can see in [39] that the
combination of both concepts is very useful for implementing priorities.

6.2. INCREMENTAL COMPATIBILITY

Clearly, the 'global' notion of compatibility given in Definition 4.3 is inappro-
priate in order to account for the above characterization. Rather Condition (2) in
Corollary 6.1 requires an incremental approach in which compatibility is grad-
ually verified each time a ~-clause is considered. This motivates the following
definition.

DEFINITION 6.1 (Incremental compatibility). Let Cw be a set of a>clauses and
CD be a set of 6-clauses, and let II be a mating for Cw U CD. Let ({c~, 76~ }}i~I
be an enumeration of t~(CD, II). Then, (Cw U CD, II) is incrementally compat-
ible wrt I iff for all i C I, there is no spanning mating for

") u u (6.17)

where/36i = Justif(~i).

We say that (Cw U CD, i-I) is compatible at i in an index set I if (6.17) holds
for i C I. Moreover, we say that (Cw U CD, I-I) is incrementally compatible wrt
an index set I if it is compatible at all i E I.

The next theorem tells us that 'global' and incremental compatibility are in
fact equivalent.

THEOREM 6.2. Let Cw be a set of w-clauses and CD be a set of &clauses,
and let II be a mating for Cw U C D. Let ({~o~6i , ")/di})iEI be an enumeration of
~c(Cd, l-I). Then, (Cw U CD, II) is compatible iff (Cw U CD, II) is incrementally
compatible wrt I.

Consider our initial student example. Instead of checking whether the matrix in
(4.8) has no spanning mating, we can stepwisely verify whether this holds for
the following matrices.

[S As,] IS A3l C~2] (6.18)

In this way, we check first the compatibility of the facts {S} and the consequent
of 61. Then, the same test is performed on the matrix extended by the consequent
of 62. Note that at each step it is sufficient to consider only the noncomplementary
paths obtained in the previous step.

We obtain the following corollary to Theorem 4.3 and Theorem 6.2. This result
shows that our incremental method is correct and complete for query answering
in constrained default logic.

120 T. SCHAUB

COROLLARY 6.3. Let (D, W) be a default theory in atomic format and ~ an
atomic formula. Then, ~ E E for some constrained extension (E, C) of (D, W)
iff there is a spanning mating II for the matrix M = Cw U CD U {{~qo}} of
W U WD U {~qo} and an enumeration (ci)icI of tC(CD, H) such that (M, II) is
admissible wrt I and incrementally compatible wrt I.

Now, recall that by Theorem 4.2 compatibility and hence also incremental com-
patibility can be verified by using 5-clauses, like {~o~,76 }, instead of clauses
containing merely the consequent of a default, like {7~}, in the case of 'admissi-
ble matrices'. Consequently, incremental compatibility can be equivalently veri-
fied by replacing the matrices in (6.17) by matrices of the following form:

) (;0)
This offers the computational advantage that we can verify incremental compat-
ibility on (almost) the same matrices as used for verifying admissibility. In fact,
admissibility is checked on matrices of the form (cf. Equation (4.6))

,_l)

For admissibility, all paths through the latter matrix have to be complementary.
For compatibility, there has to emerge an open path if we replace the clause
{{~o~6~}} by the clause {{-~o~6~,76~}}, simply by adding the consequent of the
default 5i. In addition, each such open path must not contain a literal complemen-
tary to any justification in i-1 (Uj=0{{/3~j }}) u {{/3~ }}. This additional requirement
is obsolete in the case of normal default theories. On the whole, Theorem 4.2
provides a valuable refinement that allows for structure and information sharing
while jointly verifying admissibility and compatibility.

To illustrate this, let us look at our initial default proof in (4.4). For verifying
its admissibility, we used the submatrices in (4.12). These are repeated as M1 and
M3 below. In fact, we can share the use of these matrices for testing compatibility.
This amounts to considering in turn the following submatrices of (4.4):

MI : ~ 1 M~ :
S

m 3
S Ah

M4

S A~t

S A6~ Cs 2

QUERY ANSWERING IN DEFAULT LOGICS 1 2 1

We start by verifying whether all paths through matrix M1 are complementary.
Since this is the case, M1 is admissible. For checking the compatibility of M2,
we merely have to look for a noncomplementary path through the facts, here
{{S}} and the consequent of 31,A&. All other paths are complementary by
admissibility. In fact, the path {S, A~ 1 } is not complementary and so the matrix
M2 is compatible.

For verifying admissibility in the case of matrix M3, we can make use of
the information gathered on Me. In this example, it is enough to check whether
adding the negated prerequisite of ~2, ~A~2 closes all open path in matrix M2.
In fact, this is the case since {S, A~I } in the only open path in the matrix M2
and {,_q, Ar~ } U {-~A62} is complementary. The compatibility of matrix M4 is
established in analogy to that of M2; again by reusing the information gathered
while verifying admissibility for M3. The final proof of the query C in (4.4) is
obtained by adding the query clause {~C} to matrix M4. Clearly, the resulting
matrix is complementary so that the proof is completed.

6.3. AN ALTERNATIVE ALGORITHM

The general idea of our algorithmic approach is to proceed in a query-oriented
manner. We extend the definition of compl(p, M) as given in Definition 5.1 in
the following way. We use a predicate compl(p, Cw, CD) for defining a declara-
tive algorithm for deciding whether a matrix is complementary, admissible, and
compatible. The first argument is a set of literals describing a partial path, the
second argument represents a set of w-clauses, and the last argument accounts
for 3-clauses.

DEFINITION 6.2. Let Cw be a set of w-clauses and CD be a set of 6-clauses.
Let p be a set of literals, and let Cw, C_ Cw and CD, C_ CD. Then we define
compl(p, Cw,, CD,) relative to Cw as follows. 24

1. If Cw, U CD, = CD, L , 0, then compl(p, Cw,, CD,) is false.
2. If Cw, ¢ o and c E Cw,, then compl(p, Cw,, CD,) is true iff the following

two conditions hold for c = Cl U c2.
(a) for all L E cl, L is complementary to some literal of p.
(b) for all L E c2, there is a set of ~-clauses CD, L C_ CD, such that following

two conditions hold.
(i) compt(p U {L}, Cw,\{c}, CD,L) is true.

(ii) compl(Justif(ULcc2 D~), C w U ULcc2 C'D' L, ;g) is false.
3. If CD, 7 ~ 25 and c E CD,, then compl(p, Cw,,UD,) is true iff the following

two conditions hold for c = {~oz6, 3'6}.
(a) ?6 is complementary to some literal of p.
(b) There is a set of ~-clauses CD,, C_ CD, such that {--,c~6,3'6} C CD,\CD,,

and the following two conditions hold.
(i) compl({~oz6}, Cw, CD,,) is true.

122 T. SCHAUB

(ii) compl(Justif(Dn U {6}), Cw V CD,, U {{-~ar, 76}}, O) is false.

As in Definition 5.1, Cw and CD represent the original set of co- and &clauses,
whereas Cw, and CD, function as parameters. Conditions (1) and (2) corre-
spond to the ones in Definition 5.1. There are two differences. First, we have
separated co- and &clauses. This separation allows for an easier formulation of
Condition (3). Second, we have added Condition (2bii) in order to guarantee
the compatibility of multiple subproofs found in (2bi). We explain the treatment
of compatibility in (2bii) in the context of Condition (3bii) below. Anyway, we
have that a matrix M (representing a satisfiable formula) consisting of co-clauses
only is complementary iff compl(~, M, 25) is true wrt the first two conditions of
Definition 6.2.

As in Definition 5.1, Condition (3a) corresponds to Condition (2a) and allows
for solving subgoals on the actual path by the consequent of a default rule
3'6 - provided Condition (3b) is satisfied. Condition (3b) combines the verifi-
cation of admissibility with that of incremental compatibility. For that, a set
of g-clauses CD,, is selected from the available set of &clauses CD,. CD,, is
meant to represent a compatible subset of g-clauses that allows for deriving
the 'prerequisite' o~6. In this way, CD,, can be seen as the 'default proof' of
ozr. Condition (3bi) corresponds to Condition (3b) in Definition 5.1; here it is
restricted to the &clauses in CD,,. Condition (3bii) ' implements' incremental
compatibility. For coherence, the compatibility of &clauses in CD,, is verified
by the part of compl(p, Cw, CD) accounting for co-clauses only. For this, we
tum all &clauses in CD,, U {{--,o~6, 76}} into co-clauses and add the latter ones to
the original set of co-clauses in Cw. In this way, we make use of Theorem 4.2
and pass the matrix Cw U CD,, U {{--,o~6}} - whose admissibility is verified in
Condition (3bi) - to the compatibility check in (3bii). There, the clause {--,c~6}
is extended by 3'6. Moreover, we push the justifications of the default rules in
D" along with the justification of the considered default rule 3 on the path.
This additional requirement is obsolete in the case of normal default theories.
The failure of compl(Jus t i f (D"U {~}), Cw U CD,, U { {-,ar, 76 } }, ~) indicates
that W U Conseq(Dn U {8}) U Justif(D" U {8}) is consistent (by completeness
of the standard connection method). A minimal condition that is equivalent to
Condition (3bii) is the following one:

(ii') compl(Conseq(Dn U { d}) U Justif(D") U {8}), Cw, e) is false.

The incoherence of this condition to Condition (3bi), however, is not favorable
for an efficient algorithm meshing conditions (3bi) and (3bii). However, in the
above algorithm, neither condition benefits from the information gathered in the
other one, since both are verified separately for the sake of simplicity.

To illustrate the definition of compl(p, Cw, CD), let us reconsider the deriva-
tion given in (5.14) to (5.16). There, we have shown that C is a default conclusion
of our initial default theory (2.1). For this, we have shown that compl({-~C}, M)

QUERY ANSWERING IN DEFAULT LOGICS 1 23

is true for the 'compatible' matrix M = {{S}, {--n~q3t, A31}~ {--lAd 2, C~2} }. Now,
the restriction to 'compatible' matrices is obsolete. Rather we show that

compl({-,C}, {{S}}, {{-~Sri, Ac~l}, {~A~2,C62}, {'-'A53, E53 }}) is true.

Observe that together, the query clause {--,C}, the co-clause in {{S}}, and
the 5-clauses in {{--S~1, A61}, {-'A62, C~2}, {~A63,/?763}} form the matrix giv-
en in (4.4).

As in Section 5, we select clauses in a connection-driven way. Thus, we
select the clause {-~A62, C62} since C62 is complementary to the literal -~C on
the active path. This establishes Condition (3a). Next, we have to verify Condi-
tion (3b). For this, we have to find a subset CD,, of the remaining &clauses in
{{-'1S61 , Arl }, {-hA63, E6 3 }} that satisfies Conditions (3bi) and (3bii). For illustra-
tion, we direct our subsequent choises along the line sketched by the derivation
in (5.14) to (5.16). Accordingly, we choose CD,, = {{-~$6~, Arl}}. This choice
along with the previously chosen &clause c = {--'A62, C62} yields in turn the
following evaluations. 25

1. compl({~A62 }, {{S}}, {{~$6~, Ar~ }}) is true, since by Condition (3), where
c = {~Sri, Arl } and CD,, = 2s,
(a) compl({--S~ }, {{S}}, ~) is true by (2a).
(b) compl(e, {{S}, {-~$6~, Arx }}, ~) is false by (2b) and (1).

2. compl({C62 }, {{S}}, {~S,A}, {~A, C}}, ~) i s false, since by repeated appli-
cations of (2)
compl({C62},S,A, C},2~,~) is false.

Items (1) and (2) confirm Condition (3bi) and (3bii) so that our proof of C is
completed.

Observe that choosing CD,, = {{-nSrl, Arl}, {~A63, E63} } yields the same
result, while the choices CD,, = Z or CD,, = {{--'A63, E63 }} lead to a failure.
One possibility for choosing UD,, is to consider ever-increasing subsets of the
given set of &clauses CD,. Another, more promising-possibility is to leave the
choice of CD,, to the admissibility check in (3bi). In concrete terms, this can be
accomplished by passing all &clauses in CD, to Condition (3bi) and adding an
additional argument to compl(p, Cw, Co) in order to account for the &rules that
are actually used for establishing admissibility in (3bi). Then, the returned set of
6-clauses is checked for compatibility in (3bii). Such an approach is described
in Section 8.

For a complement, consider the default rules (S : A)/A and (A : --,S)/E
along with the fact S. For answering the query E, we have to check whether

compl({-~E}, {{S}}, {{--1S61 , Ar~ }, {-hA53 , E63 }}) is true.

For solving the negated query --,E, we have to select clause {-hA53 , E53 } in
Condition (3). This, however, requires by Condition (3bii), where the active path
{-~S} is formed by the justification of the default rule (A : -~S)/E, that

compl({=S}, {{S} U CD,, U {{~A63, E~3}}}, Z) is false

124 T. SCHAUB

Algor i thm Method Prun ing by]
admissibili ty compat ibi l i ty I

A M incremental compila t ion]
A' M incremental addit ional test I
A i M i incremental incremental]

Fig. 1. A summary of the algorithmic approaches.

for some 5-clauses CD,,. This is impossible, however, since any path through the
underlying matrix contains the connection {S, ~S}. That is, the justification ~ S
is inconsistent with the set of facts {S}.

Finally, we obtain the following result showing that our incremental algorithm
is correct and complete for query answering in constrained default logic:

THEOREM 6.4. Let (D, W) be a default theory in atomic format, and let
be an atomic formula. Then, qo E E for some constrained extension (E, C) of
(D, W) iff compl({~qo}, Cw, CD) is true, where Cw is the matrix of W and
CD is the matrix of WD.

7. Discussion and Related Work

In this section, we summarize the different versions of our approach developed
in the preceding sections. Afterwards, we compare our approach with other pro-
posals found in the literature.

Our approach integrates the distinguishing features of default logics into a
classical deduction method. This allows for a homogeneous characterization and
treatment of default proofs at the level of the calculus. In this way, there are no
limits for interactions between the three notions of complementary, admissibili-
ty, and compatibility - corresponding to classical deduction and the concepts of
groundedness and consistency in default logic. Our basic method, say M, relies on
Theorem 3.1 and provides with admissibility and compatibility two independent
concepts restricting default proofs to classical proofs confirming the two previous
properties. To a turn, we refined our approach by meshing together the concepts
of admissibility and (incremental) compatibility. While the resulting method, say
M i, leaves admissibility unaffected, it offers an incremental approach to compat-
ibility in which the consistent usage of 6-clauses is gradually verified. Hence, the
conceptional difference between the two methods M and M i rests on the treat-
ment of consistency. While M relies on a rather global notion of consistency, M i
employs an incremental and thus rather local notion of consistency.

Apart from the encoding of default rules as implication, a distinguishing fea-
ture of our approach is the formation of sequences of 5-clauses. In M, this

QUERY ANSWERING IN DEFAULT LOGICS 125

formation is mainly affected by the notion of gmundedness, while consistency
plays more or less the role of a global constraint. In contrast to this, ground-
edness and consistency are meshed together in M i and hence jointly direct the
formation of sequences of &clauses. In both versions, groundedness and consis-
tency are integrated into the underlying logical calculus. This is another feature
distinguishing our methods from others found in the literature.

We have seen that both methods result in algorithms supporting an easy con-
current verification of complementarity and admissibility. In other words, ground-
edness is enforced while query answering. The concurrent verification of con-
sistency is added to the algorithm derived from M i. Moreover, we have shown
in Section 6 that M i allows for structure and information sharing while joint-
ly verifying admissibility and (incremental) compatibility. All of the presented
algorithms are query oriented. This reflects the idea that the theorem prover is in
charge of finding a proof that is gradually confirmed by the concepts of admissi-
bility and compatibility in the course of the proof search. In this way, the proof
search is directed by the notions of groundedness and consistency. A summary
of the derived algorithms along with their features is given in Figure 1.

We have proposed an 'off-line' integration of compatibility in order to min-
imize modifications while using existing automated theorem provers for imple-
menting our method. This has resulted in the algorithm given in Definition 5.1,
say A, which allows for simultaneously verifying complementary and admissibil-
ity. This approach is derived from our basic method M that allows for separating
the concepts of admissibility and compatibility. Algorithm A expects matrices
stemming from compatible default theories. In this way, it never runs into redun-
dant computations with incompatible defaults. This approach is advantageous
over all others whenever there are few compatible default theories. In such a
case, the derivation of a query is not 'distracted' by any consistency checking,
since all conflicts have been 'compiled away'. In fact, we can verify whether
a query is in the unique extension of a compatible default theory without any
consistency checks. In the worst case, however, there may be an exponential
number of compatible default theories.

A simple alternative to compiling default theories is described in Corollary 5.3.
This variant, say N, uses algorithm A but refrains from compiling consisten-
cy and rather verifies compatibility for each completed, admissible proof. This
approach shares with A the advantage of minimizing changes to existing automat-
ed theorem provers. Also, it avoids representing a possibly exponential number
of compatible default theories. However, it is a 'generate and test' approach in
principle, in which we generate admissible proofs and verify their compatibili-
ty afterwards. In the worst case, however, this belated compatibility check may
have to be performed exponentially many times. Consequently, A ~ may cause a
lot of redundancy, since incompatible proofs are not avoided in the course of the
proof.

126 T. SCHAUB

Algorithm A i is derived from M i and hence integrates the verification of
compatibility (cf. Definition 6.2). As A I, this approach is not restricted to matrices
stemming from compatible default theories. Rather each g-clause has to confirm
admissibility and compatibility when entering a proof. In this way, redundant
computations with incompatible defaults are avoided. In general, this approach
is advantageous over the other ones whenever a default theory contains many
conflicting default rules. Then, the additional costs of repeated consistency checks
can be amortized by pruning many incompatible subproofs. The disadvantage
of this approach is, however, that it requires more modifications to existing
automated theorem provers. This renders algorithm A i orthogonal to A (and N).
Also, the successive consistency checks may slow down the performance of
the prover. This applies in particular to domains where proofs are usually built
from compatible default rules only. A promising way of avoiding this is to use
model-checking techniques as described in [43] (see also Section 9).

In all, we argue that the concurrent verification of admissibility while query
answering is indispensable. In particular, we have demonstrated that this can
be done with few modifications to an automated theorem prover. The treatment
of compatibility is more subtle. Here, a lot depends on the underlying theory.
That is, if a default theory comprises a feasible number of compatible default
theories, then a precompilation of compatibility is favorable. Otherwise, that is, if
a default theory comprises too many compatible default theories, an integration
of compatibility is preferable, as done in A i. This has been confirmed by our
experimental studies (see Section 8). On the whole, the common general idea of
all versions of our approach is to employ a goal-directed search for a proof while
minimizing redundancy. We will see below that other approaches exhibit a much
stronger separation of the notions of derivability, groundedness, and consistency,
which often causes much more redundancy.

A related approach is given in [30] for normal default theories. The first con-
ceptual difference is given by the encoding of default rules. While we convert
default rules into standard implications (along with some qualifying conditions),
Reiter considers initially only their consequents. The latter requires a separate
verification of the prerequisites, which finally leads to an iterative format of
default proofs: Given a default theory (D, W) along with a query ~, the idea
is to determine a subset Do of D such that W U Conseq(D0) k qa. Next, the
problem is to determine a set D1 C_ D such that W U Conseq(D1) ~- Prereq(D0).
This process is iterated until Dk = o for some k. In a final step, it is checked

k whether W U Ui=0 Conseq(Di) is consistent. In this way, a default proof consists
of numerous successive proofs depending on the number of iterations required
for verifying the respective prerequisite. This leads to meta-theoretic charac-
terization of defaults proofs, since the approach steps outside the underlying
calculus, namely, linear resolution. This is due to the iterative format of default
proofs and the separation of consistency checking. In addition, this is a very
rigid way of query answering. This is so because each derivation of the form

QUERY ANSWERING IN DEFAULT LOGICS 127

W U Conseq(Di) ~- Prereq(Di_l) has to be completed before one can carry on
with the next step. In contrast, our approach integrates groundedness and con-
sistency into the underlying calculus by taking advantage of structure-oriented
theorem proving. This allows for compacting the aforementioned iterations into
a single default proof. In this way, our approach imposes no format on the way
we proceed for answering a given query. In all, the notion of a default proof
manifests a second conceptional difference to Reiter's approach.

From an algorithmic perspective, we observe that Reiter's procedure is also
query oriented and in favor of a separate confirmation of consistency, as algo-
rithm N. That is, consistency is verified after a proof has been completed. As
argued above, this causes a lot of redundancy in the presence of many proofs built
upon incompatible defaults. In particular, one might have to generate numerous
proofs before consistency is confirmed or even denied. Also, in the top-down
resolution procedure of [30] groundedness is not explicitly taken into account,
so that the proof procedure may exhibit a nonterminating behavior when faced
with cyclic default rules, like (A • C) / C and (C • A) / A (and nothing else). 26
Such cyclic inferences are not possible within our algorithm, since groundedness
is explicitly checked.

Camilla Schwind introduced in [41] a tableau-based method for computing
extensions of normal default theories. This work has been extended in [42]
to general default theories. Vincent Risch has adapted the approach in [32] to
Lukaszewicz's variant of default logic [22].

In [42] a tableau-based theorem prover is used to construct a set of gener-
ating defaults D t C_ D of an extension of a default theory (D, W) in Reiter's
default logic. The idea is to start from a tableau, or simply a matrix in our jar-
gon, representing the set of facts, W, and the consequences of all default rules
in the original set of default rules, D. Then, consequents of default rules are
successively removed until there is an open path through the resulting matrix of
W U Conseq(D t) (where all defaults in D \ D ~ have been removed). This indi-
cates that W U Conseq(D ~) is consistent. Observe that this procedure amounts
to computing compatible default theories (cf. Section 5). Accordingly, we may
obtain exponentially many tableaux, each representing a compatible default the-
ory. Next, each default in D t and D \ D ~ is inspected. For each d C D ~, it is
checked that its prerequisite is derivable from the matrix of W U Conseq(D ~)
and that its justification is consistent wrt to the same matrix. For each ~ E D \ D ~,
one of the two previous conditions must fail. The inspection of the default rules
in D \ D t is obsolete for normal default rules. In such a case, also the consistency
of the justification of the default rules in D t is guaranteed since then we are
reasoning from a 'compatible' set of default rules. In a final step, groundedness
is verified for the default rules in D ~. This is done in separation from the previous
steps.

The logical basis of Schwind's approach is a (fixed-point) criterion resem
bling the one given in Theorem 3.1. However, this characterization requires the

128 T SCHAUB

inspection of all default roles in D due to the lack of semi-monotonicity in regu-
lar default logic. The conceptional differences to our approach are the following.
First, default rules are represented by their consequents, which leads necessarily
to a separate derivation of their prerequisites. Although our algorithms show a
similar treatment of prerequisites, this is not stipulated by their underlying meth-
ods. Second, the proof procedure in [42] is merely consistency-driven, i.e., only
those steps are performed that ensure the consistency of the formulas under con-
sideration. No query is taken into account because entire extensions are computed.
Third, groundedness of D ~ is checked separately at the end of the computation
and thus leads to additional computational costs of the algorithm. As argued in
the case of separating consistency, such a 'generate and test' approach may cause
a lot of redundancy, since nongrounded proofs are not avoided in the course of
the procedure. The same consideration apply to the approach described in [32].
This renders both approaches orthogonal to ours.

In [19] a default theory is transformed into a TMS network [13]. The nodes
of the TMS reflect any possible dependency between the formulas of the default
theory; thereby the derivability relation is 'coded' into the network. Finally,
there exists a one-to-one correspondence between an admissible labeling of such
a TMS network and the set of generating defaults of an extension of the default
theory. However, this encoding requires the computation of a tremendous amount
of derivational dependencies which might not even contribute to the formation
of an extension.

In the two last approaches, entire extensions are computed. While the tableau
approach is close to classical theorem proving, the TMS approach is complete-
ly abstracted from derivability in the base language. Once all extensions are
computed using any of the two approaches, query answering may be performed
using a small number of steps (within the respective framework). In the worst
case, however, all - and there may be exponentially many - extensions have
to be considered for query answering. Other approaches for computing entire
extensions of default theories in Reiter's default logic are described in [15, 46].
Both approaches use approximation techniques for finding a set of generating
default rules while abstracting from the underlying theorem prover. In [9], it
is shown that this leads to an exponential amount of space in order to avoid
non-termination.

With our method no such precomputation of all extensions in their entirety is
needed (even though it is possible [33]). On the other hand, algorithm A may be
seen as compromising the 'off-line' computation of compatible sets of defaults
with 'on-line' query answering. So our general idea is to employ a goal-directed
search for a proof while minimizing redundancy.

A number of other algorithms have been conceived for restricted classes of
defaults. In particular, prerequisite-free normal default theories are attractive can-
didates for implementations, since they do not exhibit dependencies between the
prerequisites of defaults. Thus, there is no need to enforce groundedness. Query

QUERY ANSWERING IN DEFAULT LOGICS 129

answering in our approach then reduces to query answering in classical logic
with an additional consistency check. Other implementations for this fragment
of default logic exist [2, 29, 4].

Niemelfi provides in [27, 28] different methods for nonmonotonic reasoning
based on autoepistemic reasoning. This and other approaches to autoepistemic
logic [24] are in principle adaptable to default logics via certain transformations
between default and autoepistemic logic. The discussion of these approaches is,
however, beyond the scope of this paper.

8. Experiments

In this section, we present prototypical implementations of the algorithms describ-
ed in the previous sections. The purpose of this is twofold. First, we wish to show
how these approaches can be implemented. Second, we wish to provide some
experimental analysis.

We have seen how easily admissibility and compatibility are simultaneously
verifiable. Hence, it will be interesting to investigate whether this is a feasi-
ble process. Moreover, we explore the issue of compatibility by comparing the
results obtained in the diverse approaches. In all, we wish to know which mod-
ifications to an existing automated theorem provers are worthwhile under which
circumstances.

We have refrained from using any advanced implementation techniques in
order to keep the exposition transparent. Thus, the prototypes are intended to
provide transparent case studies for certain default reasoning architectures rather
than efficient implementations. For instance, none of the given programs makes
use of structure sharing, as suggested in Section 6. Moreover, such enhancements
would influence the different settings in different ways so that the corresponding
results would be hardly comparable. Rather we use in each implementation the
same classical inference mechanism and the same way of consistency checking.
This allows for a simple common implementation platform. For simplicity, we
restrict ourselves to normal default theories.

8.1. A STRAIGHTFORWARD IMPLEMENTATION

We start by giving an extremely simple and straightforward PROLOG implementa-
tion of Eder's algorithm for the standard connection method [14]. This implemen-
tation serves two purposes. First, it provides the basic theorem proving techniques
that we will use for our prototypical implementations. Second, it supplies us with
a simple way for consistency checking.

The implementation given in Figure 2 corresponds to the first two conditions
given in Definition 5.1. Matrices are represented by lists of lists of literals. A
literal is the form a or - a . The first program clause of compl/2 implements
Condition (1) in Definition 5.1, while the second one selects clauses out of the

130 T. SCHAUB

compl(_Path, []) :- !,fail.
compl(Path, Matrix) :-

select(Clause,Matrix,MatrixRest),!,
complC(Path,Clause,MatrixRest).

complC(_Path, [] ,_Matrix) .
compIC(Path, [LiterallClauseRest], Matrix) :-

complL(Path,Literal),!,
complC(Path,ClauseRest,Matrix).

complC(Path, [Literal[ClauseRest], Matrix) :-
compl([niteral[Path],Natrix),
complC(Path,ClauseRest,Matrix).

compiL(Path, Literal) :-
neg(Literal,NegLiteral),),
member(NegLiteral,Path).

Fig. 2. An implementation of Eder's algorithm.

matrix M and initiates their treatment in complC(Path, Clause,MatrixRest)
according to Condition (2) in Definition 5.1. complC/3 verifies that each literal
in a considered clause satisfies either Condition (2a) or (2b). That is, while
the first program clause of complC/3 captures the limiting case, the second one
accounts for Condition (2a) and the third one accounts for Condition (2b). Finally,
complL/2 checks whether the negation of the literal L i t e r a l is a member of
the path Pa th . Auxiliary program clauses, like neg /2 , are given in Figure 3. The
predicates member/2, s e l e c t / 3 , etc. have their obvious meaning and belong to
the underlying PROLOG system.

As mentioned above, we refrain from using any advanced implementation
techniques in order to provide a simple common implementation platform. For
this purpose, we verify the compatibility of a set of 6-clauses relative to a set of
co-clauses by appeal to compl /2 . This results in the predicate c o m p a t i b l e / 2 giv-
en in Figure 4. c o m p a t i b l e / 2 takes a list of w-clauses CW and a list of &clauses
CD, unions CW with the consequents of the 6-clauses in CD, and checks whether
the result satisfies not(compl([] ,M)). This amounts to a classical satisfiability
test.

8.2. IMPLEMENTATIONS SEPARATING COMPATIBILITY

In this section, we give implementations that simultaneously verify admissibility
and complementarity but separate the verification of compatibility. That is, we
discuss implementations of the algorithm given in Definition 5.1.

For illustration, let us start by introducing the underlying representation. Con-
sider the default theory

({S'A S'-~E A:C A'E} })
A ' ~ E ' C ' E , {S .

QUERY ANSWERING IN DEFAULT LOGICS 131

neg(-Literal, Literal) "- ! .

neg(Literal, -Literal)

split([], [], []
split([ClauselMatrixRest], CW , [ClauselCD]

d_clause(Clause),!,
split(MatrixRest,CW,CD).

split([ClauseIMatrixRest], [Clause)OWl, CD
w_clause(Clause),!,
split(MatrixRest,CW,CD).

d_clause([_AlphaLiteral > _GammaLiteral]).
w_clause(Clause) :-

not(d_clause(Clause)).

omega([] , []) .
omega([[_Alpha>Gamma]~CDRest], [[Samana]ICWRest]) :-

omega(CDRest,CWRest).

,
) : -

) : -

Fig. 3. Auxiliary program clauses.

compatible(CW, CD) :-
omega(CD,CDOmega),
union(CW,CDOmega,M),
n o t (c o m p l ([] , M)) .

Fig. 4. A simple way of checking compatibility.

The representation of this default theory is given in the left column of Fig-
ure 5. As mentioned above, co-clauses are lists of literals. &clauses like {-~S, A}
are represented as Is > a]. This allows for an easy distinction between co- and
d-clauses and moreover between 'prerequisites' and 'consequents' of &clauses.
The compatible counterpart of the default theory is given in the right column
of Figure 5. For transparency, we have chosen this naive representation rather

sample (students, [
[s],
[s > a] ,
IS> -e],
[a>e],
[a>e]
]).

sample (student sC, [
Is],
[s>aj ,
Is> -el,
[a>c]
]).

sample (studentsC, [
Is],
Is>a],
[a>e],
[a>e]
]).

Fig. 5. The representation of our example.

1 3 2 Y. SCHAUB

compl(Path, M, Proof) :-
split(M,CW,CD),
compl(Path,CW,CD,CW,Proof).

compl(_Path, [], [] Proof) :- !,fail.
compl(Path, CW, CD, M, Proof) :-

select(OmegaClause,CW,CWRest),
select(Literal,OmegaClause,OmegaClauseRest),
complL(Path,Literal);
compIW(Path,OmegaClauseRest,CWRest,CD,M,Proof).

compl(Path, CW, CD, M, Proof) :-
select([Alpha>Gamma],CD,CDRest),
complL(Path,Gamma),!,
complD(Path,[Alpha>Samma],CW,CDRest,M,Proof).

complW(_Path, [3 ,_CW,_CD,_M, []) .
complW(Path, [LiterallClauseRest], CW, CD, M, Proof) :-

complL(Path,Literal),
complW(Path,ClauseRest,CW,CD,M,Proof).

complW(Path, [LiterallClauseRest], CW, CD, M, Proof) :-
compl([LiterallPath],CW,CD,M,Proofl),
complW(Path,ClauseKest,CW,CD,M,Proof2),
append(Proofl,Proof2,Proof).

complD(_Path, [Alpha>Gamma],_CW, CD, M, [[Alpha>Gamma]lProof]
neg(Alpha,NegAipha),
compl([NegAlpha],M,CD,M,Proof).

) : -

Fig. 6. h An implementation of Algorithm A.

than a more efficient one where each 6-clause in represented only once. Such a
representation is used in [33].

The implementation, I say, of the algorithm in Definition 5.1 is given in Fig-
ure 6. As in Definition 6.2, we have separated co- and &clauses. Moreover, we
have extended each predicate by two additional arguments: one containing the
original set of co-clauses, and another one accumulating the proof of the query.
Observe that the counterpart of compl/2 in Figure 2 is given by compl/5.
The principal difference is that compl/5 selects co- as well as &clauses in a
connection-driven way. That is, a clause is selected only if one of its literals is
complementary to a literal on the active path. The counterpart of complC/3 in
Figure 2 is given by complW/6 and complD/6, complW/6 treats co-clauses and is
identical to complC/3 in Figure 2. &clauses are processed by complD/6. Since
the complementarity of the consequent Gsrnrna to one of the literals on the active
path is checked in compl/5, merely Condition (3b) in Definition 5.1 remains to
be verified by complD/6. This is done by compl([NegAlpha],M, CD, M, Proof) .
Observe that this is the point where the original set of co-clauses M 'reenters'
the proof. This is necessary for checking admissibility. If the last subgoal in
complD/6 succeeds, the 6-clause [Alpha > Gamma] is added to the proof in
Proof .

QUERY ANSWERING IN DEFAULT LOGICS 133

A query like e is posed to the 'knowledge base' s t u d e n t s C 27 in Figure 5 by
evaluating the following PROLOG query:

'~ -- sample(s tudentsC,M), compl([--e], M, P).
This yields the answer:
p : > e], [s > a]].
We have tested the implementation on numerous examples. First of all, how-

ever, let us consider the results on the s t uden t sC example given in Figure 5. All
results on this example are summarized in Figure 7. The left column of tables
given there shows the results on querying - e ; the right one does the same for
the query e. The tables have the following format2S:

calleeName/calleeArity callerName/callerArity count

The number given in count expresses the number of calls of ealleeName from
cal lerName. Note that we keep track only of callers inside the considered imple-
mentation. In this way, we discard for instance all calls from predicates in the
program given in Figure 2.

The first line of tables in Figure 7 gives the results of implementation I. It
is worth noticing that compl/5 has been called two times from compl/3 on the
query e. This expresses the problem with our naive representation of compatible
default theories. In fact, the program tries to prove e first from the first compatible
default theory in Figure 5, which is impossible. Afterwards, it finds a proof by
looking at the second compatible default theory. Usually, connection method
theorem provers employ so-called connection graphs that indicate the location of
clauses containing complementary literals. Clearly, such a data structure would
avoid this problem in our example.

For comparison, we have also implemented algorithm A'. Its implementation,
say 1', is obtained by replacing the definition of compl/3 in Figure 6 by the one
given in Figure 8. The results on the students example are given in the second
line of tables in Figure 7. Observe that c o m p a t i b l e / 2 is called only once. This
indicates that both proofs were initially found. That is, each of them was formed
by a set of compatible default rules. We will take up this algorithmic variant of
A in the next subsection.

The major question addressed in this subsection is whether the integration of
admissibility slows the underlying theorem prover. To answer this question, let us
consider the exemplary (compatible) matrices az and pyramid along with their
classical counterparts azW and pyramidW obtained by replacing each ~-clause like
[a > b] by a Hornclause like [-a , b]. The corresponding 'knowledge bases' are
listed in Figure 9. In turn, we query both the 'default knowledge bases' and their
classical counterparts with the same query. The results given in Figure 10 speak
for themselves. In fact, we observe that the 'default proofs' (in the left column
of Figure 10) need in all respects less counts than their classical counterparts (in
the right column). This is a strong argument in favor of our approach to 'on-line'
admissibility (or groundedness) checking.

134 ~ SCHAUB

8.3. IMPLEMENTATIONS INTEGRATING COMPATIBILITY

This section gives implementations that integrate the verification of compati-
bility. Figure 11 contains an implementation of algorithm A i, as described in
Definition 6.2. This implementation is obtained from the one given in Figure 6
by modifying the definitions of complW/6 and complD/6. As stipulated in Con-
dition (2bii) in Definition 6.2, we extended complW/6 in order to check the
compatibility of all accomplished subproofs. This modification is given by the
last two lines of complW/6 in Figure 11. Analogously, we have added a single
line of code to complD/6 in order to check the compatibility of the considered
&clause with the accomplished subproof. The results obtained in our simple
students example are the same as for the previous implementations with the
exception that c o m p a t i b l e / 2 is called twice in the case of the query e. This
reflects the fact that two &clauses are used for deriving e. See the tables in the
third line of Figure 7.

It is interesting to observe that the implementation avoids the selection of the
sets of &clauses CD, n and CD,, in conditions (2bii) and (3bii), respectively. As
suggested in Section 6, we leave the selection of these sets to the theorem prover
along with the admissibility check by taking the &clauses obtained from the
subproof in Proof in complW/6 and complD/6. In this way, compatibility acts
as a local constraint on subproofs. In fact, we often observed that default proofs
in non-artificial examples were quite rarely corrected by the compatibility check.
Hence, the resulting default proofs contained only few occasions for distracting
the theorem prover by choosing incompatible &clauses.

For comparison, we have also implemented a 'generate-and-test' version,
called I~, in which arbitrary subsets are generated and afterwards treated by
admissibility and compatibility. This has been done by replacing the definition of
complD/6 in Figure 11 by the one given in Figure 12. The predicate subseq0/2
is provided by the underlying PROLOG system and is used to generate subsets
(or better subsequences) of the 8-clauses at hand. Even in our simple students
example this yields a drastic increase of calls to the respective predicates. This
can be verified by looking at the tables in the last line of Figure 7 and comparing
them with the ones given for I i.

In the remainder of this section, we analyze the influence of the compatibility
check. For this purpose, we have slightly extended example az, given Figure 9.
We have added the ~-clauses

I-c,-hi, [z,-c], [z,-g], [z,-o], [z,-s], [z,-w]

to az. We call the resulting example azno. The purpose of the six a;-clauses
containing the literal z is to provide several ways of proving z. However, all of
them are denied because c and b are inconsistent by I-c,--b]. Hence, there is
no proof for z. The left column of Figure 13 summarizes the results obtained in
the various implementations. It is interesting to observe that our implementation

QUERY ANSWERING IN DEFAULT LOGICS 135

I szudentsC/-e
compl/5 compl/3
compl/S complD/6
compiD/6 compl/S
complL/2 compl/S
complW/6 comp1/5
neg/2 complD/6
neg/2 complL/2

I' s tudents / -e
compatible/2 comp1/3
compl/5 comp1/3
compl/5 complD/6
complD/6 compl/5
compIL/2 compl/S
complW/6 compl/5
neg/2 complD/6
neg/2 compiL/2

J* students/-e
compatible/2 complD/6
compl/5 compl/3
compl/5 complD/6
complD/6 compl/5
compiL/2 compl/5
complW/6 compl/5
neg/2 complD/6
neg/2 complL/2

I~ s~udents/-e
compatible/2 compiD/6
compl/S compl/3
compl/5 complD/6
complD/6 compl/5
complL/2 compl/S
complW/6 compl/5
neg/2 compiD/6
neg/2 complL/2

4
1
4
1
7
4
1
21

I
comp1/5
compl/5
complD/6
complL/2
complW/6
neg/2
neg/2

studentsC/e
compl/3
compID/6
compl/5
compl/5
compl/S
complD/6
compiL/2

2
2
2
ii
1
2
II

J' students/e
compatible/2 compl/3
compl/5 comp1/3
compl/S complD/6
complD/6 compl/5
complL/2 compl/5
compIW/6 compl/5
neg/2 complD/6
neg/2 complL/2

I
1
2
2
8
1
2
II

[~ students/e
compaZible/2 complD/6
compl/5 compl/3
compl/5 complD/6
compID/6 compl/5
complL/2 compl/5
complW/6 compl/5
neg/2 compiD/6
neg/2 complL/2

2
1
2
2
8
1
2
13

~ s tudents /e
compatible/2 comp1D/6
compl/S compl/3
compl/5 compID/6
complD/6 compl/5
complL/2 compl/5
compIW/6 compl/5
neg/2 complD/6
neg/2 complL/2

4
1
8
3
19
2
3
34

Fig. 7. Results in the student example.

compl(Path, M, Proof) :-
split(M,CW,CD),
compl(Path,CW,CD,CW,Proof),
compatible(CW,Proof).

Fig. 8. I': The change for algorithm A'.

I i (integrating compatibility) invokes fewer times the predicate neg/2 than I'
(which separates compatibility) - even though I i performs almost twice as much
compatibility checks, namely, 3914, as I', which performs 1957 compatibility
checks. This is remarkable since neg /2 is one of the innermost predicates of the
'theorem-proving loop'. In this way, the incremental compatibility check pays
off. The least number of calls to neg /2 is done by program I that deals with
'compatible matrices'.

136 T. SCHAUB

sample (az, [
Ca],.
[a>bJ
[b>c]
[c>d]
[d>e]
[e>f]
If>g]
[g>h]

l h>i] i>j]
[j>k]
[k>l]
[l>m]
[re>n]
In>o]
[o>p]
[p>q]
[q>r]
[r>s]

I s>t], t>u],
[u>v],
Iv>w],
Iv>x],
[x>y],
[y>z]
]).

sample (azW, [
[a],
[-a,b]
[-b,cJ
C-c,dJ
[-d,e]
[-e, L]
[-f,gJ
[-g,h],
[-h,i],
[-i,j],
[-j,k],
[-k,1],
[-1,m],
[-m, n].
[-n,o],
[-o,p],
[-p, q],
[-q,r],
[-r,s],
[- s , t] ,
C-t,u],
[-u,vj,
[-v ,wj ,
[-w,xJ,
[-x,y],
[-y,z]
]).

sample(pyramid,[sample(pyramidW,[
[at], [al] '
[a2], [a2] :
[a3], [a3],
[a4], [a4],
[aS], [aS],
[a6], [a6],
[a7], [aT],
[~81, [aS],
[al>bl], [-al,bl],
[a2>b2], [-a2,b2]
[-bl , -b2,c12], [-b1,-b2,c12],
[c12>d12], [-c12,d12],
[a3>b3], [-a3 b3],
Ea4>b4], [-a4:b4],
[-b3,-b4,c34], [-b3,-b4,c34],
[c34>d34], [-c34,d34],
[-d12,-d34,e1234], [-d12,-d34,e1234],
[-e1234,ft234], [-e1234,f1234],
[aS>b5], [-aS,b5],
[a6>b6], [-a6,b6],
[-bS,-b6~c56]. [-bS,-b6,c56],
[c56>d56], [-c56,d56],
[a7>b7], [-a7,b7],
Ca8>b8], [-a8,bSJ,
[-b7,-bS,c78], [-b7,-bS,c78],
[c78>d78], [-¢78,d78],
[-d56,-d78,e5678], [-d56,-d78,e5678],
[-e5678,f5678], [-e5678,fSS78],
[-f1234,-f5678,g] [-f1234,-f5678,g]
]).]).

Fig. 9. The az and the pyramid example.

I
compl/5
compl/5
complD/6
complL/2
complW/6
neg/2
neg/2

az/z
compl/3
comp1D/6
compl/5
comp1/S
comp1/5
comp1D/6
comp1L/2

1
25
25
351
1
25
351

I
compl/5
compl/5
compl/5
compID/6
complL/2
compIL/2
compiW/6
complW/6
neg/2
neg/2

py ~mid/g
comp1/3
comp1D/6
compIW/6
comp1/5
compl/5
complW/6
compl/S
complW/6
complD/6
comp1L/2

1
12
16
12
653
16
17
16
12
669

I
compl/5
compl/S
compIL/2
compiL/2
complW/6
compiW/6
neg/2

azw/z
compl/3
comp1W/6
compl/5
comp1W/6
compl/5
complW/6
comp1L/2

1
25
676
25
26
25
701

l pyramidW/g
¢ompl/5 compl/3
compl/S complW/6
compIL/2 compl/5
complL/2 compiW/6
complW/6 compl/5
complW/6 complW/6
neg/2 complL/2

1
28
731
28
29
28
759

Fig. 10. Results in the az and pyramid example.

Observe that in this example the conflict given by the clause [- c , - b] is
located at the 'bottom' of the sequence of 6-clauses given in example az. For a
complement, let us thus consider the example obtained by adding the clauses

[-<-j], [z,-k], [z,-o], [z,-s], [z,-w]

QUERY ANSWERING IN DEFAULT LOGICS 137

compl(Path, M, Proof) :-
spIit(M,CW,CD),
compl(Path,CW,CD,CW,Proof).

compl(_Path, [], [] Proof) :- !,fail.
compl(Path, CW, CD, M, Proof) :-

select(OmegaClause,CW,CWRest),
select(Literal,OmegaClause,OmegaClauseRest),
complL(Path,Literal),
complW(Path,OmegaClauseRest,CWRest,CD,M,Proof).

compl(Path, CW, CD, M, Proof) :-
select([Alpha>Gamma],CD,CDRest),
complL(Path,Gamma),!,
complD(Path,[Alpha>Gamma],CW,CDRest,M,Proof).

complW(_Path, [] ,_CW,_CD,_M, []) .
complW(Path, [LiterallClauseRest], CW, CD, M, Proof) :-

complL(Path,Literal),
complW(Path,ClauseRest,CW,CD,M,Proof).

complW(Path, [LiterallClauseRest], CW, CD, M, Proof) :-
¢ompl([LiterallPath],CW,CD,M,Proofl),
complW(Path,ClauseRest,CW,CD,M,Proof2),
append(Proofl,Proof2,Proof),
compatible(M,Proof).

complD(_Path, [Alpha>Gamma],_CW, CD, M, [[Alpha>Gamma]NProof]
neg(Alpha,NegAlpha),
compl([NegAlpha],M,CD,M,Proof),
compatible(M,[[Alpha>Gamma]IProof]).

) : -

Fig. 11. l i: An implementation of algorithm A i.

¢omplD(_Path, [Alpha>Gamma],_CW, CD, M, [[Alpha>Gamma]lProof]
neg(Alpha,NegAlpha),
subseqO(CD,CD1),
compl([NegAIpha],M,CDi,M,Proof),
compatible(M,[[Alpha>Gamma][CD1]).

) : -

Fig. 12. The change for implementation I~.

to az. In this way, we moved the conflict - now given by the clause [- ± , - j]
- upwards in the sequence of &clauses (cf. Figure 9). We call the resulting
example aznon. The right column of Figure 13 summarizes the obtained results.
We observe that the number of compatibility checks in I i is now nine times larger
than in 1'. This has to be contrasted with the number of calls to neg /2 that is in
I i only 1.2 times larger than in 1 '. As above, the least number of calls to neg /2
is obtained in program I.

We observe that program I performs best on the given examples because of
the lack of consistency checking. However, we have already discussed that this
approach has its difficulties in the presence of many conflicting default rules. In

138 ~ SCHAUB

such a case, our experiments suggest that it is worthwhile to integrate compati-
bility checks in order to prune redundant incompatible subproofs, rather than to
check compatibility separated from the actual proof procedure. The first of the
two examples extending az gives an impression of situations where incremental
compatibility checking pays off.

9. Extensions

This section provides some enhancements and extensions of our approach. A
major extension, namely, the incorporation of priorities, is described in [39].
Another major extension is the treatment of skeptical reasoning. This is discussed
in a forthcoming paper [40].

9.1. OTHER VARIANTS OF DEFAULT LOGIC

As discussed in Section 2, constrained default logic coincides with other default
logics, like Reiter's [30] and Lukaszewicz's [22], on the fragment of normal
default theories. As a consequence, our approach can also be used for query
answering from normal default theories in these variants.

A closely related approach is cumulative default logic [5] where assertions,
that is, formulas labeled with the justifications and consequents of applied default
rules (e.g., (o~, {c~1,. . . , an})), are used. An assertional default theory is a pair
(D, ~/V), where D is a set of default rules and W is a set of assertions. Informally,
an assertional extension of (D, VV) is the smallest set of assertions E being
deductively closed under an extended 29 theory operator ~ and containing
such that for any (o~ :/3)/ '7 E D, if (c~, Supp(c~)) E C and Form(E)USupp(E)U
{/3,~,} t z _1_, then (-y, Supp(o~) U {/3,'y}) C E.

The following theorem shows that constrained and cumulative default logic
are in fact equivalent for assertional default theories (D, W) having nonsupported
facts, i.e., Supp(l,V) = 2~.

THEOREM 9.1 ([371). Let (D, W) be a default theory and (D, l/V) be the asser-
tional default theory, where V~ = {(~, ~) I c~ C W}. Then, if (E, C) is a con-
strained extension of (D, W), there is an assertional extension E of (D, I/V) such
that E = Form(E) and C = Th(Form(E)USupp(C)) ; and, conversely if E is an
assertional extension of (D, V~), then (Form(E), Th(Form(E) t5 Supp(E))) is a
constrained extension of (D, W).

This result has been extended in [38] to arbitrary assertional default theories and
default theories supplied with an initial set of constraints in constrained default
logic.

As a consequence, we can use our approach for query answering from asser-
tional default theories with nonsupported facts without any modifications. For
arbitrary assertional default theories, we merely have to add the formulas in

QUERY ANSWERING IN DEFAULT LOGICS 139

I
compl/5
compl/5
compl/5
complD/6
compIL/2
complL/2
comp1W/5
neg/2
neg/2

aznoC/z
compl/3
compiD/6
compiW/6
compl/5
compl/5
compiW/6
comp1/5
compID/6
compIL/2

2
13098
3912
13098
348304
3912
3912
13098
352216

I' aZno/z
compatible/2 compl/3
compl/5 compl/3
compl/5 complD/6
compl/5 complW/6
complD/6 comp1/S
complL/2 compl/5
complL/2 complW/6
complW/6 comp1/5
compIW/6 comp1W/6
neg/2 comp1D/6
neg/2 complL/2

1957
1
5573
1956
5573
152045
1956
3913
9786
5573
1053720

[I azno/z
compatible/2 complD/6
compl/5 compl/3
compl/5 complD/6
compl/5 comp1W/6
complD/6 compl/5
complL/2 compl/5
compiL/2 complW/6
complW/6 compl/5
neg/2 comp1D/6
neg/2 comp1L/2

3914
1
5573
1956
5573
152045
1956
3913
5573
983769

I
comp1/5
comp1/5
comp1/5
compID/6
complL/2
comp1L/2
complW/6
neg/2
neg/2

aznonC/z
compl/3
complD/6
complW/6
compl/5
compl/5
complW/6
compl/$
complD/6
coEplL/2

2
385
128
385
11848
128
128
385
11976

] t aZ~On/Z
compatible/2 compl/3
compl/5 compl/3
compl/5 complD/6
comp1/5 complW/6
compiD/6 compl/5
complL/2 compl/5
complL/2 complW/6
complW/6 compl/5
complW/6 complW/6
neg/2 complD/6
neg/2 complL/2

65
1
745
64
745
14339
64
129
196
745
23222

]l aZ~OD./Z
compat ible/2 complD/6
compl/5 compl/3
¢ompl/5 comp10/6
compl/5 compiW/6
complD/6 compl/5
complL/2 comp1/5
complL/2 complW/6
complW/6 compl/5
neg/2 complD/6
neg/2 complL/2

585
1
745
64
745
14339
64
129
745
28573

Fig. 13. Further results in the az example.

Supp(142) for verifying compatibility. The same applies to our algorithms, where
clauses representing Supp(14~) have to be added while checking consistency. The
formal underpinnings for this approach are given in [38].

To capture query answering in Lukaszewicz's variant of default logic, we
have to adjust the concept of compatibility. All other notions remain the same
because this variant enjoys semi-monotonicity.

9.2. INTEGRATION OF LEMMA HANDLING

The integration of lemma handling is of great practical relevance in automated
theorem proving. This is so because the use of lemmas is often needed for
reducing computational efforts. Since computation in default logics involves not
only deduction but also consistency checks, the need to incorporate lemmas is
even greater in default theorem proving than in standard theorem proving.

In [37], we introduced an approach to lemma handling in Reiter's and con-
strained default logic. 3° Inspired by default logic's natural distinction between

140 T. SCHAUB

facts and defaults, default lemmas are regarded as abbreviations for the corre-
sponding default proofs. This results in the concept of a lemma default rule:

DEFINITION 9.1 ([37]). Let (D, W) be a default theory, and let (E, C) be a
constrained extension of (D, W). Let 7) E E and D~, be a default proof of 7) in
(E, C) from (D, W). We define a lemma default rule @ for 7) as

: A Justif(g)A A Conseq(g)
gcp = 6ED~o 6ED~o

7)
A default proof D~o of 7) in (E, C) from (D, W) is a subset of the set of
generating default rules 31 of (E, C) such that W U Conseq(D~) F 7).

At the methodical level, we can generate lemma default rules or 'lemma
g-clauses' for any proven query 7). In such a case, we have spanning mating
II for the matrix M of W U WD U {-~7)} such that (M, II) is admissible and
compatible. The default proof is then given by

= {gl c r i f t .

At the algorithmic level, we can generate lemma default roles for each obtained
subproof as follows. Consider Condition (3b) in Definition 6.2. A 'lemma &clause'
for 3'6 can be generated from the default proof

= {g I cD,,}.

For general formulas 7), it is sufficient to find a subset D~o of D such that
compl({--,7)}, C w , CD~,) is true. Similar considerations apply to the implemen-
tations in Section 8.

The usage of such lemma default roles is obvious at the methodical level,
since they constitute ordinary albeit prerequisite-free default roles. The distinction
between lemma default rules and standard default rules is more interesting at
the algorithmic and implementation level. For using 'lemma &clauses', we can
simplify Condition (3) in Definition 6.2 as follows:

(4) If CD, 7 ~ 2~ and c E CD' is a lemma g-clause, then compl(p, Cw,, CD')
is true iff 76 is complementary to some literal o f p for c = {-,o~,76}.

This drastic simplification is possible because neither admissibility nor com-
patibility has to be verified for 'lemma &clauses'. The former is obsolete because
lemma default roles are prerequisite-free default rules, while the latter is redun-
dant because the compatibility with C w has been checked while generating the
lemma. The compatibility with the remaining &clauses in the proof is checked
at a higher level of the recursion. Similar considerations apply to the implemen-
tations in Section 8.

9.3. OTHER EXTENSIONS

This section sketches some extensions and fruitful topics for further research.

QUERY ANSWERING IN DEFAULT LOGICS l 41

Computing Extensions. Although we have presented the approach so far in a
query-oriented setting, it can also be used for computing entire extensions by
proceeding 'bottom up'. This can be accomplished by starting from the clausal
representation of the initial set of facts and by successively extending this matrix
by &clauses preserving admissibility and compatibility. In this way, we obtain
a matrix representing the facts along with the set of generating default rules of
an extension. Then, a formula belongs to this extension if the matrix is rendered
complementary by adding the clausal representation of the negated formula.

Model Checking. A promising avenue for future research seems to replace con-
sistency checking by model checking. The idea is to start with a model of the
underlying facts. A default applies if it is compatible with the current model or if
a new model can be constructed from the facts and all defaults contributing to the
current proof. In this way, a model may be reused for several consistency checks
in the course of the proof search. This is motivated by two observations. First,
some experiments on 'meaningful' (i.e., nonartificial) examples have shown that
a 'model ' is changed quite rarely in the course of the proof search. That is, on
some examples, we observed that the resulting default proofs contained only few
occasions for distracting the theorem prover by choosing incompatible ~-clauses.
This is an argument in favor of integrating a compatibility check that allows for
using information gathered on compatibility checks in the subproofs. Second,
the semantics of constrained default logic [34, 11] stipulates the existence of a
single so-called 'focused model ' which jointly satisfies the facts along with all
generating default rules of an extension.

Other Execution Models. So far, we have pursued only a single execution model.
However, our underlying methods leave room for a variety of procedures for
query answering. One of them has already been sketched in Section 6, where
we discussed an approach to structure sharing while verifying admissibility and
compatibility. Also, there are parallel execution models of our algorithms. For
instance, observe that all algorithms are nondeterministic and inherently parallel,
although parallel processes sometimes have to be combined after their execu-
tion as a result of compatibility checks, as in Condition (2bii) in Definition 6.2.
Another possibility is to design a 'daemon-driven' compatibility check by using
a 'daemon process' to keep a watch on the compatibility of the respective sub-
proofs. All these issues seem to be fruitful avenues for further research.

10. Conclusion

We have presented a new approach to query answering in default logics by treat-
ing default rules as classical implications along with some qualifying conditions
restricting the use of such roles in the course of the proof search. This has
resulted in a novel methodology taking advantage of the conception of structure-

142 ~ SCHAUB

oriented theorem proving provided by the connection method. To this end, we
have decomposed default theorem proving (in the connection method) into the
verification of Complementarity, admissibility, and compatibility - correspond-
ing to classical deduction and the concepts of groundedness and consistency in
default logic.

We introduced in Section 4 our basic method that provides with admissibility
and compatibility two independent concepts restricting default proofs to classical
proofs confirming the two previous properties. To a turn, we refined our approach
in Section 6 by meshing together the concepts of admissibility and (incremental)
compatibility. While the former approach relies on a rather global notion of
consistency, the latter employs an incremental and thus rather local notion of
consistency.

Apart from the enconding of default rules as implications, a distinguishing
feature of our approach is the formation of sequences of default rules or ~-clauses,
respectively. In our basic method, this formation is primarily directed by the
notion of groundedness, while consistency plays more or less the role of a global
constraint. In contrast to this, groundedness and consistency jointly direct the
formation of sequences of 8-clanses in our refined method.

We have discussed in detail the different versions of our approach and their
differences to other approaches found in the literature in Section 7. To summarize,
the distinguishing methodical features of our approach are

• the treatment of default rules as classical implications,
• the formation of sequences of default rules or ~-clauses, respectively, and
• the integration of the concepts of groundedness and consistency into a

classical deduction method.
These qualities allow for a homogeneous characterization and treatment of

default proofs at the level of the logical calculus. This makes our approach espe-
cially qualified for implementations by means of existing automated theorem-
proving techniques. We have substantiated this claim by implementing the result-
ing algorithms in diverse settings.

At first, we derived in Section 5 from our basic method an algorithm that
supports the joint verification of complementarity and admissibility in a very
natural way. Notably, the algorithm is obtained by slightly extending an existing
algorithm for the standard connection method due to [14]. However, we have
proposed an 'off-line' integration of compatibility by compiling default theories
into compatible default theories. This separation is supported by the indepen-
dence of admissibility and compatibility in our basic method. The advantages
of this approach are the following. First, the algorithm never runs into redun-
dant computations with incompatible defaults. Second, it is implementable with
very few modifications to an existing automated theorem prover. This is under-
pinned by a case study due to Aaron Rothschild [33]. In fact, Rothschild was
able to implement our algorithm by slightly extending an existing (simple yet
full-fledged) automated theorem prover for the connection method. The disad-

QUERY ANSWERING IN DEFAULT LOGICS 143

vantage, however, is that one might obtain an exponential number of compatible
default theories in the worst case. So in general, such an approach is favorable
whenever the computational cost of the compilation can be amortized over the
total set of subsequent queries.

Second, we have presented an alternative algorithm based on the refinement
of our basic method. This algorithm fully integrates the concepts of comple-
mentarity, admissibility, and compatibility and accordingly supports their joint
verification. Hence, it works with arbitrary default theories and thus avoids the
pre-compilation of default theories into compatible fragments. At the same time,
it also avoids redundant computations with incompatible defaults. On the other
hand, this approach requires more changes to existing automated theorem provers.
Also, successive consistency checking may slow the performance of the prover.
A promising way of avoiding this seems to use model-checking techniques, as
sketched in Section 9.

However, our experiments in Section 8 have shown that the latter approach is
still favorable over a belated consistency check that verifies the compatibility of
completed, admissible proofs. Moreover, our experiments have demonstrated that
enforcing groundedness while query answering poses no additional burden on the
theorem prover. Hence, we argue that the concurrent verification of admissibility
and complementarity is indispensable for query answering in default logic. As
discussed in Section 7, the treatment of compatibility is more subtle. Here, a lot
depends on the underlying theory. That is, if a default theory comprises a feasible
number of compatible default theories, then our former approach along with
its precompilation of compatibility is favorable. Otherwise, that is, if a default
theory comprises many conflicting defaults, an integration of compatibility as
accomplished in our latter approach is preferable.

All of the presented algorithms along with their implementations are query
oriented. This reflects the idea that the theorem prover is in charge of finding
a proof while being directed by the concepts of admissibility and compatibility.
On the other hand, our method leaves plenty of room for other algorithmic
approaches, which have not yet been pursued. For instance, Section 6 provides
another valuable refinement that allows for structure and information sharing
while jointly verifying admissibility and compatibility.

Even though our approach has been presented from the perspective of con-
strained default logic, it has a general nature that principally allows for query
answering in any (semi-monotonic) default logic. To this end, one merely has to
adjust the concept of compatibility in order to account for the respective notion
of consistency. In particular, we have shown in Section 9 that our approach car-
ties over to cumulative default logic [5] without any substantial modifications.
In the same section, we have described how lemma handling can be added to
our approach.

For a complement, we have applied our approach in [39] to a prioritized ver-
sion of default logic, recently introduced by Brewka in [7]. This has been accom-

144 T. SCHAUB

plished by stepwisely refining the concepts developed for prioritized default logic
and by mapping them in turn onto the techniques developed in the preceding sec-
tions. This extension of our method has served two purposes. First, it has shown
that our method is flexible enough to be adapted to other conceptions of default
logic. Second, it has shown how priorities can be integrated.

In all, our approach bridges the gap between default logics and classical
theorem proving by providing a simple yet powerful method for default theo-
rem proving that is easily adaptable by existing implementations of automated
theorem provers. In particular, the approach should be easily extensible to a
(decidable) first-order language because it relies on standard theorem-proving
techniques.

Appendix. Proofs of Theorems

In the sequel, we will refer to some definitions and results on which we draw on
in the following chapters. We give these results for the reader's convenience.

DEFINITION A.1. [36] Let (D, W) he a default theory and S and T sets of
formulas. The set of generating default rules for (S, T) wrt D is defined as

G D (DS'T) = { a " fl E D e~ E S, TU{~}U{'y}JZ_l_}.
-y

THEOREM A.1. [36] Let (E, C) be a constrained extension of a default theory
(D, W). We have

E=Th(WUConseq(GD(DE'C))) ,

C = Th(W U Conseq(GD(DE'C))) U Justif(GD(DE'C))).

THEOREM A.2. [36] Let (E, C) be a constrained extension of (D, W). Then,
there exists an enumeration (~i)icI of GD(D E'C) such that for i E I

W tO Conseq({3o, • • •, 3i-1 }) [- Prereq(ai).

THEOREM A.3 [36] Let (D, W) be a default theory, and let E and C be sets
of formulas. Define Eo = W and Co = W and for i >1 0

{ a ' / 3 E D , a c E i , CU{/3}U{3'}IX-l-}, Ei+l = Th(Ei) U 3' 9/

{ I cu{;}uer}v±} U /3£7 7

QUERY ANSWERING IN DEFAULT LOGICS 145

cx) eo C (E, C) is a constrained extension of (D, W) iff (E, C) = (Ui=0 Ei, Ui=0 i).

Proof3.1. Recall that we have restricted ourselves early in the paper to con-
sistent sets of facts. That is, for a default theory (D, W) we stipulate that W is
consistent.

only-if part. Let (E, C) be a constrained extension of (D, W).

We define D' = GD(D E'c) according to Definition A.1.
By Theorem A.1, we have

E = Th(W U Conseq(D1)),

C = Th(W U Justif(D') U Conseq(D')).

By Theorem A.2, we have that D' is grounded in W.
According to [36, Corollary 4.3.3], we have that W is consistent iff C is

consistent. By definition, W is consistent; hence C is consistent. By Theorem A. l,
we obtain that W U Justif(D') U Conseq(D') is consistent.

Now, assume D', and so GD(D E'c), is not a maximal subset of D satisfy-
ing the above requirements. Then, there is a set of default roles D" such that

GD(D E'c) c D" C_ D, D" is grounded in W and W U Justif(D") U Conseq(D '1)

is consistent. Consequently, there is a default rule 6" E (D"\GD(D E'c)) such that
W U Conseq(D') ~- Prereq(6"). This is so because, by assumption, D' and D H
are grounded in W. The last derivability relation implies that

Prereq(6/') E E,

since E = Th(W U Conseq(D')) by Theorem A.1.
By monotonocity, we have that W U Justif(D' U {6"}) U Conseq(D' U {6"})

is consistent, since W U Justif(D") U Conseq(D") is consistent. Hence, we have
that

C U Justif(6") U Conseq(6") Y ±,

since C = Th(W U Justif(D') U Conseq(D')) by Theorem A.1.

By Definition A. 1, (A. 19) and (A.20) imply 6" E GD (E'c), a contradiction.

if part. Let

E = Th(W U Conseq(D1)),

C = Th(W U Justif(D') U Justif(D'))

for a maximal D' C_ D such that D' is grounded in W and W U Justif(D ~) U
Conseq(D') is consistent.

146 T. SCHAUB

According to Theorem A.3, (E, G) is a constrained extension iff (E, C) =
(Ui=o Ei, ~ = = oc Ui=o Ci) such that Eo W and Co W, and for i i> 0

{ I Ei+l = Th(Ei) O "7 7

o<./3 E D , ,~ e E~, cu { /3 }u {0 , }u i } . ci+l = Th(Ci) U /3 A "y 3'

We will show that (E, C) = (Ui~0 Ei, Ui~=o Ci). Therefore, we consider the
following two cases.

oo oc C (1) Ui=0 Ei c_ E, U~=o ~ c_ C.
We show by induction that Ei C_ E and Ci C C for i /> 0.

Base. By definition, W C_ E. Since E0 = W, we have E0 C E.
Analogously, we obtain Co c_ C.

Step. Let Ei C E and Ci c_ C. Consider r]E Ei+l U Ci+l.
(a) If ~7 E Th(Ei), then, by the induction hypothesis and the fact that E is

deductively closed, we obtain ~7 E E.
(b) Similarly, if ~? E Th(Ci), we obtain B E C.
(c) Otherwise, ~ E {/3, 7} such that there is a default rule (a • /3)/3' E D,

where o< E E i and C U {/3} U {7} tz _1_.
By the induction hypothesis c~ E E. Hence, there is an i E I such that

W U Conseq({50 , . . . , 6i-1}))- c~,

where {go , . . - , 6 i -1} C__ D'. Thus, D' U {(o< • /3)/3'} is grounded in W. Also,
by definition of C, we have that W U Justif(D') U {/3} U Conseq(D') U {3'} is
consistent. By maximality of D', this implies that (c~ •/3)/7 E D'. Consequently,
3' E E and/3 A 7 E C and both cases for r] are covered.

From the three cases, we obtain Ei+l c_ E and Ci+l C_ C.

(2) E c_ U~o E~, C < U~=o G.
Since O' is grounded in W, there is an enumeration (6i)iel of D' such that

W U Conseq({60 , . . . , 6i-1}) t- Prereq(6i)

((Ei, C~)hez as follows: for i E I. With this, we define a sequence ' '

(E6, c~) : (w, w)

! !

(Ei+I , el+l) = (Th(E~ U {7i}), Th(C~ U {fli A 7i})),

o o ! o o /
= " = = U i = o c ' ~ . where 6i (c~i flO/"/i. Clearly, E Ui=o E~ and C

Hence, we show inductively that E~ C_ Ui~=o Ei and G~ C_ U ~ 0 Ci for
i~>O.

QUERY ANSWERING IN DEFAULT LOGICS 147

Base. Since E L = C~ = W and E0 = Co = W, the result is obvious.

Step. According to the induction hypothesis, E~ C_ Ui°°=0 Ei and C~ c_ Ui~o Ci.
Because W U Conseq({50, . . . ,5 i_l}) k- Prereq(Si) we have ai E E~ and

(E~+I, C~+l) = (Th(E~ U {3'i}), Th(C~ U {/3/A "Yi})), where 5i = (ai: /3i)/ 'yi .
By the induction hypothesis, we obtain a E Ui°°__o El. By compactness and

monotonicity, there exists a k such that c~i E Ek. By definition of C and the fact
that W U Justif(D') U Conseq(D') is consistent, we obtain that C U {/3/} U {qq}
I . Then, EL ~ c~i and CU{fii}O{"/i} ~z Z, implies 7 / E Ek+l and 7iA/3i 6 Ck+l.
Hence, 7i E Ui~o Ei and 7i A fli E Ui~0 Ci.

By the definition of ~ ' ~o Ui=o Ei and Oi=0 Ci are E~+ 1 and C~+ 1 and the fact that oo
! oo / oo

- Ui=0 Ei and C~+ 1 c_ Ui=0 C/. deductively closed, we obtain Ei+ 1 C

Proof 4.1 Let Cw be a set of co-clauses and CD be a set of 5-clauses. Let II
be a mating for Cw U CD such that (Cw U CD,II) is admissible wrt I.

only-if part. Let (Cw U CD U { { ~ o ~ 6 , ' T 6 } } , I ~ I) be admissible for some 5-
clause {--,c*6, 36}- Therefore, II is a spanning mating for

\ i E I

Then, II is also a spanning mating for the submatrix

\ i E I

This is so because all paths through the latter matrix are also paths through the
former matrix.

if part. Let gi be a spanning mating for Cw U Uicr{{ff6~}} u {{~o~}}, for
some &clause {~c~a, 76}. By assumption, (Cw U CD, FI) is admissible wrt I.
That is, 1-I is a spanning mating for

}}) Cw U (j__Uo{ {-~o~6,, -y6 , u {{--,o~a~}} for i E I.

Since H is
furthermore

G'w U

a spanning mating for Cw tO Uiei{{~/6~}} tO {{~c~a}}, we obtain
that II is a spanning mating for

This implies that (Cw tO Up tO {{-~c~6, "Y6}}, II) is admissible.

Proof4.2 Let Cw be a set of co-clauses and CD be a set of &clauses. Let H
be a mating for Cw U CD such that (Cw U CD, i-i) is admissible.

148 m SCHAUB

only-if part. Let II be a spanning mating for

Cw U CD U {{/36} [{~a6,'Y6} E CD, /36 = Justif(6)}.

Then, I-i is also a spanning mating for the submatrix

c w u {{~6} I {~6, 'y6} ~ cz)}
U {{/36} [{-nO~6,'Y6} E CD, /36 = Justif(6)}.

This is so because all paths through the latter matrix are also paths through the
former matrix.

if part. Let II be a spanning mating for

U {{/36}] {-~c~6,3'6} 6 CD, /36 = Justif(6)}.

By assumption, (Cw U CD, I]) is admissible wrt some index set I. That is, II is
a spanning mating for

i-1)
Cwu(jUo{{~6~,~6j} } u {{-~c~6{}} for i E I.

Consequently, II is a spanning mating for

Cw tO CD U {{--'a6}} for all {-~c~6, 76} C CD.

Consider the matrix

M = c w u {{-~a6,'~6} ~ o n }
u {{fie) I {~6 ,76} E CD, /36 = Justif(6)}.

By (A.21), all paths through M containing a literal "Y6 are complementary. By
(A.22), all paths through M containing a literal -~a6 are complementary. Hence,
all paths through M are complementary. Consequently, II is a spanning mating
for

M = G'w U CD U {{f16} I {-'o~6, 76} E G'D, /36 = Justif(6)}.

Proof 4.3 Let (D, W) be a default theory in atomic format, and let Wo =
{a6 --~ 76 [(oz6 :/36)/3'6 E D} and ~p an atomic formula.

only-if part. Let (E, C) be a constrained extension of (D, W), and let ~ C E.
Then, there is a set of default rules D~ C_ D such that

(1) W U Conseq(D~,) ~- ~,
(2) D~ is grounded in W,
(3) W U Justif(D~) U Conseq(D~) is consistent.

QUERY ANSWERING IN DEFAULT LOGICS 149

By assumption, W tO Justif(D~o) tO Conseq(D~) is consistent. By completeness
of the connection method [3], this implies that the matrix of W U Justif(D~,) tO
Conseq(Dv) has no spanning mating. That is, there is no spanning mating for
Cw U Cj where Cw is the matrix of W and Co, = {{Justif(6) I a E D~} U
Conseq(5) I 5 E D~}}. Thus, (M, I-I) is compatible for the matrix M of W tO
WD tO {-~qo} and any mating II, if the core of M is given by the &clauses in
{{-~aa,O'a} I 5 E D~}.

We prove the rest of the theorem by induction on the cardinality of D~.

Base. D~, = ~. In this case, we have

W~-~.

Then, by completeness of the connection method [3], there is a spanning mating
II for the matrix M of W U {~p}. Clearly, (M, rI) is admissible.

Step. D~ 5¢ ;g. By compactness and the fact that W tO Conseq(D~o) k- qo, there
is a set {5o,. . . ,5i} C D~ such that

I/V U Conseq({5o,..., 5i}) k- qo.

Consider 6j. Clearly, Prereq(Sj) E E. Then, by the induction hypothesis, there
is a spanning mating lid for the matrix Mj of W U WD~,\{aa} U {~Prereq(Sj)}
such that (Mj, IId) is admissible.

Hence each path in Mj contains a connection from IIj. Observe that each
such path in Mj contains the literal -~Prereq(6j).

Consider the matrix M of

i

W U U (WD~,\{a,} U {-~Prereq(Sj),Conseq(Sj)}) U {~qo}.
j=o

Observe that each path in M containing a literal -~Prereq(Sj) contains a connec-
tion from li d for some j C {0, . . . , i} . Hence all paths in M not containing a
literal -~Prereq(6j) contain the set of literals

{Conseq(5o),..., Conseq(6i)} tO { ~ } .

By completeness of the connection method [3] and the fact that W ~0 Conseq(D~)
{-- ~p, there is a spanning mating II 1 for the matrix M t of W U Conseq(D~) tO

Consequently, we have that II = FI t O U}--0 IIj is a spanning mating for the
matrix M.

Now, it remains to be shown that (M, I-I) is admissible.
By the induction hypothesis, we have that (Mj, IIj) is admissible for all j E

{0, . . . , i} . Clearly, U}=oMj c M and U}=oUj c 1-I implies the admissibility
of (M, 11).

150 T. SCHAUB

if part. Let II be a spanning mating for the matrix M of W U WD tO {--n~)}
such that (M, II) is admissible and compatible. Let CD be the set of 6-clauses
in M, and let Cw be the set of w-clauses in M.

We define

D~ = {6 [{-~oz~,"y,s} E ~(CD, I I) } .

Clearly, (M, II) is complementary, admissible, and compatible if the matrix M~
of W to WD~, tO {-~} along with II fulfills these conditions.

In what follows, we prove that
(1) W U Conseq(D~) F- ~,
(2) D~ is grounded in W,
(3) W U Justif(D~) U Conseq(D~o) is consistent.

By semi-monotonicity, the latter conditions imply that there is a constrained
extension (E, C) of (D, W) such that ~ E E.

First, we prove Condition 3. Since (M~, II) is compatible, there is no spanning
mating for Cw U {{/3a}, {3'a} I {-'c~6,0'6} E t~(CD,II), f16 ---- Justif(6)}. Since
this is the matrix of W U Justif(D~,) U Conseq(D~o), we obtain, by completeness
of the connection method [3], that WUJustif(D~)Ueonseq(D~) is consistent.

Since (M~,II) is admissible, there is an enumeration ({--,o~6{,76{})iEI of
t~(Cm, II) such that for i E I, II is a spanning mating for

i-1)
~wU(Uo{{-noz6j,'Y6j} } U {{-nc~6, }}.

By compactness, I is finite. That is, I = {0, . . . ,hi/i}, where 111 stands for the
cardinality of I.

We define I ' = {0, . . . ,nlZl,nM+l } and o~%/1+ 1 := ~. By assumption, II is a
spanning mating for M~, namely,

/hill)

We prove that W U {010,... ,0//-1} F- c~i for i E I'. Clearly, this implies Condi-
tions 1 and 2.

By assumption, II is a spanning mating for the matrix Mi of

)
for i E I' . Consider the matrix M',

i - 1 }})
c w u .= u

QUERY ANSWERING IN DEFAULT LOGICS 151

Assume that H is not a spanning mating for M~. Then, there is a path Pv¢ through
Cw such that the path

i - 1

pw u U u
)=0

is not complementary. However, this path is also a path through Mi, contradicting
our initial assumption. Therefore, II is also a spanning mating for M~. By correct-
ness of the connection method [3], this implies that W U {7o, . . . ,3 ' i- l} ~ ai.

Proof 5.2 Let (D, W) be a default theory in atomic format, and let WD =
{c~ --+ 3'~ [~ E D} and ~ an atomic formula.

Without loss of generality, we assume that W U Justif(D) U Conseq(D) is
consistent. Then, compl({~qo}, M) is true 32 for the matrix M of W U WD iff

E E for the unique constrained extension (E, C) of (D, W).
According to Theorem 4.3, this is equivalent to the following proposition:

c o m p l ({ ~ } , M) is true iff there is a spanning mating ri for M U { - ~ } such
that (M U { ~ } , II) is admissible.

Observe that for any clause {L} containing a single literal L, we have that
compl(p, M U {{L}}) is tree iff compl(p U {L}, M) is true.

In fact, we prove below a slightly stronger statement: For a set of literals p
and a matrix M, let M p be the matrix UL~p{{L}} U M. Then, compl(p, M) is
true iff there is a spanning mating II for M p such that (M p, I-I) is admissible.

Given a set of literals p and a matrix M = Cw U CD consisting of co- and
&clauses, we define the rank of the matrix M p = ULEp{{L}} U CW U CD as

 (MP) = (ICDI, ICwl, I;I),

where IS[stands for the number of elements in the set S.
We prove the latter statement by induction on the lexicographic order < on

the rank of M p.

only-if part. Let p be a set of literals and let Cw, C Cw and CD, C_ CD. We
prove for M = Cw, U CD, that if compl(p, M) is true relative to Cv¢, then there
is a spanning mating I-i for (M U C w) p such that ((M U C w) p, I-I) is admissible.
Clearly, this implies that if compl(p, Cw UCD) is true relative to Cw, then there
is a spanning mating II for (Cw UCD) p anch ((Cw UCD) p, I-I) is admissible.

Base. MP = z or p(M p) = (0, 0, 0). Trivial, since compl(z , z) is false
according to Condition 1 in Definition 5.1. 3s

Step. M p ¢ ¢g or p(MP) ¢ (0, 0, 0). Recall that

(Cw, U {{z,}} uc'w, uc ,.
L6p

Assume compl(p, M) is true relative to CN. Consider c E M p. We distinguish
the following three cases.

152 T, SCHAUB

(1) c E Cw,. Consider L E c. Since c E Cw,, we have according to Condi-
tion 2 in Definition 5.1 that one of the following two cases holds.

(a) L is complementary to some literal of p.

Consequently, there is spanning mating IlL for the matrix

M L = U {{_n}} U { {Z } }u (M\{c})

(b) compl(p U {r} , M\{c}) is true.
First, observe, that

p((M\{c}) pu{L}) < p(MP).

Thus, we obtain by the induction hypothesis that there is spanning mating IlL
for the matrix

ML= U {{K}}U{{L}}U(M\{c})
KEp

such that (ML, IlL) is admissible.

By (a) and (b), we therefore obtain for all L E c a spanning mating IlL for
the matrix Mr,. Clearly, this implies that

U IlL
LEc

is a spanning mating for the matrix

MP = U { {K } } u { {L I L E c}} U (M\{c}).
KEp

Moreover, (M p, ULEc IlL) is admissible because c is an w-clause and (ML, IlL)
is admissible for some L E c. This is so because admissibility is verified wrt to
the original set of w-clauses Cw and all 8-clauses in CD,.

The fact that ULec IlL is a spanning mating for the matrix m p such that
(Mp, UcEc IlL) is admissible implies that the same holds for the matrix (M U

CwF.
(2) c E CD,. That is, c = {~c~,'76}.
According to Condition 3, in Definition 5.1, we consider the following two

cases.

(a) "7~ is complementary to some literal of p.
Consequently, there is spanning mating II.y for the matrix

= U { { K } } u u
KEp

Clearly, II~, is also a spanning mating for the matrix M-~ U Cw.

QUERY ANSWERING IN DEFAULT LOGICS 153

(b) compl({-~o~6}, (M \ { c }) U C w) is true.
First, observe, that

p(((M\{c}) u C,,)~s~) < p(M;).
Thus, we obtain by the induction hypothesis that there is spanning mating
IIs for the matrix

Ms = { { ~ } } u (M\{~}) uCw
such that (Ms, IIs) is admissible.

Now, (a) and (b) imply that II.y U IIs is a spanning mating for the matrix

(MUCw)p = U {{K}} u { {~ , - r~ } } u (M\{c}) uCw.
KCp

It remains to be shown that ((M U Cw) p, II- r U IIs) is admissible. From what
we have shown, we obtain that (UK@{{K}} U Cw U (CD,\{c}), IIz U IIs)
is admissible. Also, we have shown that II.~ U IIs is a spanning mating for
U~:@{{K}}UCwU(CD,\{c})U{{-~c~}}. This implies that ((MUCw)P, IITU
IIs) is admissible.

(3) c C_ p. This case is subsumed by the previous two cases.

if part. We prove for M = Cv¢, U CD, that if there is a spanning mating 1ii
for M p such that (M p, II) is admissible, then compl(p, M) is true relative to
Cw.

Base. M p = e or p(M p) = (0, 0, 0). There is only one path through U p,
namely, the empty path ~. Clearly, this path is not complementary, since it
contains no connection. Therefore, there is no spanning mating for M p. This
trivially verifies the c la im) 4

Step. M p 7~ ~ or p(M p) ¢ (0, 0, 0). Recall that

M~= (cw, ucz),)p= U{{r}}uCw, UC~,.
LCp

Let II be a spanning mating for M p such that (M p, 171) is admissible. Consider
c E M p. We distinguish the following three cases.

(1) c E Cw,. Consider L C c. Clearly, II is also a spanning mating for the
matrix

M L = U { {K } } U{ {L } } U (M\{c})
KEp

such that (ML, II) is admissible. That is, each path through ML contains a
connection from II. Then, one of the following two cases holds.

(a) L is complementary to some literal of p.
(b) By rewriting ML, we have that II is a spanning mating for matrix

154 ~ SCHAUB

such that ((M\{c}) pU{L), H) is admissible. Observe that
p((M\{c}) pU{L}) < p(MP).

Thus, we obtain by the induction hypothesis that compl(p U {L}, M\{c})
is true.

Since both cases of Condition 2 in Definition 5.1 are covered, we have that
compl(p, M) is tree.

(2) c E C9,. Without loss of generality, we assume that c is necessary for the
complementarity of M p. That is, II is no spanning mating for MP\{c}.

To show that compl(p, M) is tree, we reduce this problem by applying Con-
dition 2 in Definition 5.1 to all clauses c E Cw,. As a consequence, compl(p, M)
is true iff compl(p U Pw,, CD,) is true for all noncomplementary paths p U Pw,
where Pw, is a path through Cw,. That is, we have for all such paths p U Pw,
and all 7r E I I that 7r n (p u pw,) = ~.

Thus, in what follows, we show that compl(p U Pw,, CD,) is true relative to
Cw for all noncomplementary paths p t0 Pw'.

Consider c = {~oz6i, "Y6i }. We distinguish the following two cases.

(a) By assumption, H is a spanning mating for the matrix

{ { ~ } } U (M \ { 4 F = U { {K } } UCw, u { {7~ } }u (C~ , \ {4) .
K E p

Then, II is also a spanning mating for all matrices

U { {K} } U {{76,}} U (C~,\{4),
[45 C pUPw t

for all noncomplementary paths pUpw, (where Pw, is a path through Cw,).
Now, all paths through such a matrix are of the form

pUpw, u {~ l f f e {-,o~,,~} • CD,\ {4} U {'W}.
By assumption, some of these paths are not complementary without "Y6~.
Since 761 cannot be complementary to any literal in {# I # C {~c~, 7} E
CD, \{c}}, we have that ~6~ must be complementary to some negated literal
in p U Pw,.

(b) By assumption, II is a spanning mating for the matrix {{~o~6~}}U
(M\{c}) p. Also, ({{~a6~}} U (M\{c})P,H) is admissible wrt {j [j < i}.
By admissibility, H is thus a spanning mating for the matrix

(Cw u {{-'%,s',~j} I J < i}){~%}.
In addition,

((Cw u { {-~%, % } I J < i }) ~>'~ }, n)
is admissible wrt {j [j < i}. Accordingly,

compl({~a6i}, {{~a~j,76j}] j < i} U Cw)
is true by the induction hypothesis. This implies that compl({-~a6~ }, M\{c}
U Cw) is tree, since adding redundant 5-clanses does not change the satis-
fiability of the former condition.

QUERY ANSWERING IN DEFAULT LOGICS 155

We have shown in (a) that 76i is complementary to some literal in p U Pw'
(where Pw' is a path through Cw,). In (b), we have shown that compl({-~c~,h},
M\{c} U Cw) is true. Therefore, compl(p Upw,, CD,) is true for all noncom-
plementary paths p U Pw,. As shown above, this implies that compl(p, M) is
true.

(3) c c_ p. This case is subsumed by the first cases.

Proof6.2 Let II be a mating for Cw U CD, where Cw and CD are sets of co--
and 5-clauses. Let ({--,o~6~, "Y6~})iEx be an enumeration of ~(CD, II).

only-if part. Assume that (Cw U CD, II) is compatible. Then, there is no
spanning mating for

c w u

iEI

Hence there is an open path

p = ; w u
iE1

through the latter matrix for some path Pw through Cw. This implies that for
all i E I,

= p w u
j s i

is not complementary. Accordingly, there is no spanning mating for

j~<i

for i E I. This demonstrates that (Cw U CD, 1~) is incrementally compatible
wrt I.

if part. Trivial. This is so because checking incremental compatibility for that
last &clause in the sequence ({--,ah, "/~i})iEI is equivalent to checking compat-
ibility.

Proof 6.4 Let (D, W) be a default theory in atomic format, and let WD =
{c~ --+ 76 [5 E D} and ~ an atomic formula.

We show that ~ E E for some constrained extension (E, C) of (D, W) iff
c o m p l ({ ~ } , Cw, CD) is true, where Cw is the matrix of W and CD is the
matrix of WD.

According to Corollary 6.3, this is equivalent to the following proposition:
compl({~qo}, Cw, CD) is true iff there is a spanning mating II for the matrix
M = C W U C D U {{--n~}} and an enumeration (ci)iEX of t~(CD, I~) such that
(M, H) is admissible wrt I and incrementally compatible wrt I.

156 ~ SCHAUB

As in Proof 5.2, we prove below a slightly stronger statement: For a set
of literals p and a matrix M, let M p be the matrix UL@{{L}} U M. Then,
the theorem reduces to this: compl(p, Cw, CD) is true iff there is a spanning
mating II for (Cw U CD) p and an enumeration (ci)iei of t~(CD, II) such that
((Cw U CD) p, 17) is admissible and incrementally compatible wrt I.

As in Proof 5.2, we define the rank of matrix Cw U CD along with a set of
literals p, (Cw U CD) p = UL@{{L}} U Cw U CD a s

p((cw u F) = (ICDI, ICwI, IPl),

where ISJ stands for the number of elements in the set S.
In analogy to Proof 5.2, we prove the latter statement by induction on the

lexicographic order < on the rank of (Cw U CD) p.

only-if part. Let p be a set of literals and let Cw, c_ Cw and CD, C_ CD.
We prove that if compl(p, Cw,, CD,) is tree relative to Cw, then there is a
spanning mating 17 for ((Cw, U CD,) U CW) p and an enumeration (ci)ici, of
n(CD, , II) such that (((Cw, U CD,) U Cw) p, 1I) is admissible and incrementally
compatible wrt I ' . Clearly, this implies that if compl(p, Cw, CD) is true relative
to Cw, then there is a spanning mating II for (Cw U CD) p and an enumeration
(ci)iei of n(CD, I-i) such that ((Cw U CD) p, I-i) is admissible and incrementally
compatible wrt I.

Base. Analogous to Proof 5.2.

Step. (Cw, UCD,) p ¢ 2; or p((Cw, UCD,) p) ¢ (0,0,0). Recall that

(Cw, UCD,) p= U{{L}}UCw, UCD,.
L6p

Assume compl(p, Cw, , CD') is tree relative to Cw. Consider C E (Cw, U CD') p.
We distinguish the following three cases.

(1) c C_ p. Analogous to Proof 5.2.
(2) c C Cw,. Consider L E c. Since c E Cw,, we have according to Con-

dition 2 in Definition 5.1 that one of the following two cases holds, where

C = C l Me2 .
(a) L E Cl and L is complementary to some literal of p.

Consequently, there is spanning mating IIL for the matrix

ML = U { {K } } u { {L}} .
K6p

(b) L E C2 and there is a set of &clauses CD£ C C D, such that compl(p U

(L}, Cw,\{c}, CD,L) is tree.
First, observe, that

p(, u < u

QUERY ANSWERING IN DEFAULT LOGICS 157

Thus, we obtain by the induction hypothesis that there is spanning mating
IlL for the matrix

ME= U {{K}}U{{L}}U((Cw'\{c})UCD's)
KEp

and an enumeration (Ci)iCIL of E(CDL , IlL) such that (ML, IlL) is admis--
, . L ,

sible and incrementally compatible wrt IL.
By (a) and (b), we therefore obtain for all L E c a spanning mating IlL for

the matrix ML. Clearly, this implies that

U nL
LEc

is a spanning mating for the matrix

(Cw, UCo, F = U { {K}}U{{L I L E c}}U((Cw,\tc})UCm,).
KCp

Consider the enumeration (ci}ieI obtained by meshing together the enumerations
(ci)i~Ir of t~(CD,L, IlL) for each L E c2 such that (ci)icI respects the order of 8-
clauses in each (ci)i~IL. Clearly, (c/)iex is an enumeration of n(CD,, Uc~c IlL).
Also it is easy to see that ((Cw, U CD,) p, UcecilL) is admissible wrt I , since
(ML, IlL) is admissible for all L E c2.

Moreover, we have that compl(Justif(ULec2 D~L), Cw to (-JL~c2 CD'c, ;a) is
false. This implies that compl(~, M j , 2J) is false for the matrix

Mj= U {{K}}UCwU U c,,.

By [14] and the completeness of the connection method, this implies that there is
no spanning mating for Mj. Since ((Cw, U ULc¢2 CD'r) p, ULc¢2 IlL) is admis-
sible wrt I , we obtain by Theorem 4.2 that there is no spanning mating for

M' =CwU U {{K}}u U {{K}}.
K Co,,seq(U

Accordingly, we have that ((Cw, U ULEc2 CDtL)P, ULcczIiL) is compatible.
Applying Theorem 6.2 to this along with (ci)i~i yields that ((Cw, U CD,) p,
[-JLcc2 IlL) is incrementally compatible wrt I.

The fact that ULe¢ IlL is a spanning mating for the matrix (Cw, U CD,) p and
that (ci)i~I is an enumeration of t~(CD,, ULcc IlL) such that ((Cw, U CD,) p,
ULcc IlL) is admissible and incrementally compatible wrt I implies that the same
holds for the matrix ((Cw, tO CD,) tO Cw) p.

(3) c E CD,. That is, c = {~as , 3'~}.
According to Condition 3, in Definition 5.1, we consider the following two

cases.

158 T. SCHAUB

(a) "76 is complementary to some literal of p.
Consequently, there is spanning mating 117 for the matrix

M7 = U {{K}} u {{"r,~}}.
KEp

Clearly, II 7 is also a spanning mating for the matrix

M7= U {{K}}u{{.r~}}UCw, U(C~,\{~})UCw.
KEp

(b) There is a set of 5-clauses CD,, C CD, such that {~c~5,"/6} E CD,\CD,,
and the following two conditions hold.

(i) compl({~as}, Cw, CD,,) is true.
Observe that

p((cwuc,~,,)~, 0 < p((c,,,,, u c,~,)p).
Thus, we obtain by the induction hypothesis that there is a spanning mating
II~ for the matrix

Mc~ = { {~ozs} } U Cw U CD,,
and an enumeration (ci)i~i,, of ~(CD,,, 11c0 such that (Ms, 11~) is admis-
sible and incrementally compatible wrt I".

(ii) compl(Justif(D" U {5}), Cw U CD,, U {~a6, 76}, O) is false.
This implies that compl(o, M j, 0) is false for the matrix

M j = U {{K}}UCwUCD,,U{-,ol,~,"/5}.
KEJustif(D"U{5})

By [14] and the completeness of the connection method, this implies that
there is no spanning mating for Mj .
Since 11~ is a spanning mating for

Mo~ = { { ~ o ~ } } U Cw U CD,,
and (Mc~, 11~) is admissible wrt I", we have that all paths through ~c~5 or
-~a~ for i E 111 in Mj a r e complementary.
Therefore, there is no spanning mating for

MS=CwU U {{K}}u U {{K}}.
KCJustif(D"U{5}) K EConseq(D"U{ 5})

Now, (a) and (b) imply that I17 U 11~ is a spanning mating for the matrix

((cw, uc~,)ucw) ~
= U {{K}}u{{-~o~,-rs}}u((cw, uc~,)\{~})ucw.

KEp

Consider the enumeration (ci)i~I, obtained from appending the 5-clause {-~c~, 76}
to the enumeration (ci}icI,,. Clearly, (ci}icI, is an enumeration of r~(CD,, 117, 11a)
since 117 and II~ refer exclusively to 5-clauses in CD,, U {{~as,'Ys}}. Now, it
remains to be shown that (((Cw, U UD,) U Cw) p, 117 U 11~) is admissible and
incrementally compatible wrt I'.

For admissibility, observe that (UKcp{{K}} U C w U CD,,, II 7 U 11a) is admis-
sible wrt I". Also, we have shown that II 7 U 11~ is a spanning mating for

QUERY ANSWERING IN DEFAULT LOGICS 159

UKcp{{K}} U Cw U CD,, U {{=c~6}}. This implies that (((Cw, U CD,) U
Cw) p, II.y U II~) is admissible wrt 1 I.

For compatibility, observe that there is no spanning mating for the matrix

CwU U {{K}} u U {{K}}.
K E Justif (D"U{ 6 }) K cConseq(D"U{ 5 })

Since ec(CD,, n.y U rio) c_ CD,, U {{--,c~a, 7a}}, we obtain that (Cw U CD,, IL~ U
II~) is compatible. Consequently, we have that ((Cw, U CD,) U Cw, II.y U rio) is
compatible. Applying Theorem 6.2 to this along with (ci)iei, yields that ((Cw, U
CD,) U CN, rl.y u IIc~) is incrementally compatible wrt I'.

if part. We prove that if there is a spanning mating I1 for (Cw, U CD,) p such
that ((Cw, U CD,) p, I-i) is admissible and incrementally compatible wrt to some
index set I , then compl(p, Cw,, CD,) is true relative to Cw.

Base. Analogous to Proof 5.2.

Step. (Cw, U CD,) p ~= Zi or p((Cw, tOCD,) p) ¢ (0,0,0). Recall that

(cw, u c ,y = U{{L}}ucw, uc ,.
LEp

Let II be a spanning mating for (Cw, U CD,) p such that ((Cw, to CD,) p, II)
is admissible wrt I. Consider c C (Cw, tO CD,)P. We distinguish the following
three cases.

(1) c c_ p. Analogous to Proof 5.2.

(2) c E Cw,. Consider L E c. Clearly, II is also a spanning mating for the
matrix

= U { {K} } u { {L}} u uC ,)
KEp

such that (ML, rI) is admissible and incrementally compatible wrt I. That is,
each path through ML contains a connection from II. Then, one of the following
two cases holds.

(a) L is complementary to some literal of p.
(b) By rewriting ML, we have that II is a spanning mating for the matrix

((cw,\{c}) uc ,y
such that (((Cw, \{c})UCD,)pu{L}, II) is admissible and incrementally com-
patible wrt I. Observe that

p(((Cw,\{c}) U C~,yu{L 0 < p((CW, U CD, y).
Thus, we obtain by the induction hypothesis that compl(p U {L}, Cw,\{c},
CD,) is true.

160 T. SCHAUB

Since ((Cw, U Co,) p, H) is incrementally compatible wrt I, there is no span-
ning mating for

cw u U{/~,} u U{-r~,}.
i E I i E I

Since ((Cw, U Co,) p, H) is admissible wrt I, we obtain by Theorem 4.2, that
there is no spanning mating for the matrix

c~ u U{/~,} u U{ -~ , - r~ } .
i E I i E I

Let I ' = (i E I I (~o~6~, 3'6~ } E CD, } be set of indexes of all 5-clauses in CD,.
Clearly, there is also no spanning mating for the matrix

i E I I i E I

By [14] and the correctness of the connection method, this implies that

c o m p l (z , C w U U{fl6i} u U {-~0%,g,6,},~)is false.
i E I I iEU

This implies that

compl(U {136~},Cw u U {-,a6~,76~},~) is false.
i E I 1 i E l t

That is, compl(Justif(D') , Cw U CD,, ~) is false.
Since both cases of Condition 2, in Definition 5.1 are covered, we have that

compl(p, Cw,, CD,) is true.
(3) c E Co,. Without loss of generality, we assume that c is necessary for

the complementarity of (Cw, U CD,) p. That is, H is no spanning mating for
(Cw, u CD,)~\{~}.

To show that compl(p, Cw,, Co,) is true, we reduce this problem by apply-
ing Condition 2, in Definition 6.2 to all clauses c E Cw,. As a consequence,
compl(p, Cw,, CD,) is true iff compl(pUpw,, ~, CD,) is true for all noncomple-
mentary paths p tO Pw' where Pw, is a path through Cw,. That is, we have all
such paths p U Pw, and all 7r E I I that 7r M (p U Pw') = ;~.

Thus, in what follows, we show that compl(p U pw,, ;~, CD,) is true relative
to Cw for all noncomplementary path p U Pw'.

Consider c = {-~o~6~, 76~). We distinguish the following two cases.
(a) By assumption, II is a spanning mating for the matrix

{{'7~,}} u (Cw, u CD,\{~}) p

= U { { K } } U C ~ , U { b , ~ , } } u (C D , \ { ~ }) .
t£ Ep

QUERY ANSWERING IN DEFAULT LOGICS 161

Then, II is also a spanning mating for all matrices

U { { K } } u {{0,6~}} u (CD,\{c}),
[(E pUp w,

for all noncomplementary paths pUpw, (where Pw' is a path through Cw,).
Now, all paths through such a matrix are of the form

pUPw, U {p ip E {-,o~,'7} E CD,\{c}} U {'7,h}.
By assumption, some of these paths are not complementary without "Y6~.
Since 76i cannot be complementary to any literal in {#] # E {~c~,"/} E
CD,\{c}}, we have that 3'6i must be complementary to some negated literal
in p U Pw,.

(b) By assumption, 1-I is a spanning mating for the matrix {{~c~6~}} U (Cw, U
CD,\{C}) p. Also, ({{-'c~6~}} U (Cw, U CD,\{c})P, II) is admissible and
incrementally compatible wrt {j [j < i}. Let CD,, = {{-~o~j, 7~j } [J < i}.
By admissibility, II is thus a spanning mating for the matrix

(Cw U CD,,){~}.
In addition,

((Cw U C~,,){-~'~ } , r~)
is admissible and incrementally compatible wrt {j I J < i}. By the induction
hypothesis, this implies that compl({-~a6~}, Cw, CD,,) is true.
Since ((Cw, U CD,) p, II) is incrementally compatible wrt I and {j I J ~< i}
C_ I, there is no spanning mating for the matrix

Cw u U{,%} u
j<~ i j<~ i

Since ((Cw, U CD,\{c}) p, II) is admissible wrt I and {j I J < i} C I, we
obtain by Theorem 4.2, that there is no spanning mating for the matrix

cw u U } u U % }.
j<~i j 4 i

By [14] and the correctness of the connection method, this implies that

compl(¢g, Cw u U{fl% } u U{-,c~j, 76j},2 0 is false.
j<~i j 4 i

This implies that

compl (U{ /36 ,} ,Cw U U{~c~6j,,y6,},2~) is false.
--j<~i j<~i

That is, compl(Justif(D" U {6}), Cw U CD,, U {-,o~6, "y6}, 2~) is false.

We have shown in (a) that ~,~ is complementary to some literal in p U Pw,
(where Pw' is a path through CN,). For CD,, = {{-,o~j,3,% } I J < i}, we
have shown in (b) that compl({-~oz6~}, Cw, CD,,) is true and compl(Justif(D" U
{6}),Cw U CD,, U {-~o~6,~/6},~). Therefore, compl(p U pw,,2~,CD,) is true
for all noncomplementary paths p U Pw,. As shown above, this implies that
compl(p, Cw,, CD,) is tree.

162 ~ SCHAUB

Acknowledgements

I am indebted to Aaron Rothschild, who helped develop some of my initial ideas
for query answering in default logics. Also, he programmed and tested the exten-
sion of PPP. I thank Gerhard Brewka, James Delgrande, Michael Thielscher, and
in particular Stefan Brtining for many useful discussions and comments on earlier
drafts of this paper. Moreover, the comments of the anonymous referees helped
to improve the quality of the paper. This work was supported by the Commission
of the European Communities under grant no. ERB4001GT922433.

Notes

1 [11] essentially marries and extends the work found in [10] and [35]. Moreover, constrained
default logic, as introduced in [11], subsumes the variants introduced in [10] and [35].

2 The restriction to consistent set of facts is not really necessary, but it simplifies matters.
3 We discuss semi-monotonicity in detail in Section 3.
4 For a general and thorough account on the differences between Reiter's and constrained default

logic, we refer the reader to [11].
5 Observe that both conditions coincide for normal default rules, which (roughly) explains why

both approaches coincide in the case of normal default theories.
6 The notion of groundedness was first explicated for default logic in [41], although it was already

present in [30]. Groundedness was also studied in [20] in the case of autoepistemic logic.
7 These projections extend to sets of default rules in the obvious way.

See Theorem A. 1 for a formal formulation.
9 For simplicity, we introduce only two new propositional letters, since gl is a normal default

rule.
10 In fact, this has been shown in [33] for regular as well as constrained default logic.
11 In the sequel, we simply say literal instead of literal occurrences; the latter allow for distin-

guishing between identical literals in different clauses.
12 As pointed out by one the referees, an alternative approach is to view the connection method

as a meta-theoretic approach. To this end, one could incorporate default rules by means of so-
called theory connections, as used for instance in [3] for incorporating equality or induction. We
have not pursued this line of inquiry since it makes the use of existing automated theorem-proving
technology more difficult.

13 Without loss of generality, we deal with atomic queries only, since any query can be trans-
formed into 'atomic format' in the spirit of transformation r (cf. Section 2).

14 Recall that we deal with literal occurrences.
15 For illustration, we often explicate the respective &clauses rather than expressing things in

terms of indexes.
16 Observe that we omit in (4.9) the clauses {Ae 1 } and {Ca2} corresponding to C j , since 81 and

g2 are normal default rules.
17 Observe that we omit the clauses {Ae2} and {E~3} due to the fact that 82 and g3 are normal

default rules.
l~ See Definition A.1 for a formal definition.
19 This is so because there may be an exponential number of extensions in the worst case.
2o For simplicity, we assume in what follows that compl(p, M) is always relative to the original

set of w-clauses C w .
21 That is, for any non-empty path p and any (unit-)clause containing a single literal L we can

restrict ourselves either to testing (2a) or (2b). This however renders the choice in (2) a 'don't
know'-choice (see below).

QUERY ANSWERING IN DEFAULT LOGICS 163

22 Recall that we want to stick as close as possible to existing technologies, so that we refrain
from making additional changes.

23 Recall that WD, = {as --+ 78 [(c~6 : fl6)/"/6 C D'} for any subset D' of D.

24 As above, we assume in what follows that compl(p, Cw,, CD,) is relative to Cw.
25 Recall that we do not have to add the justification to the path in the case of normal default

rules.
26 Observe that this does not render Reiter's procedure incomplete, since neither A nor C should

be derivable in this case.
27 This is the compatible version of the 'knowledge base' s t u d e n t s .
28 Thanks to Richard O'Keefe, the author of the count program.
29 Let Form(~) be the asserted formula and Supp(~) the support of an assertion ~: if (1 , . . . , ~ E

T'h(S) and Form(~l), . . . , Form(~,~) b- a then (a, ~Ji~l supp(~i)) E T'h(S).

3o In what follows, we focus on the approach given for constrained default logic.
31 See Definition A.1 for a formal definition.
32 Recall that compl(p, M) is always relative to the original set of w-clauses Cw.
33 Reasoning by contraposition would be an alternative to prove the same result.
34 Reasoning by contraposition would be an alternative to prove the same result.

References

1. Baader, E and Hollunder, B.: Embedding defaults into terminological knowledge representation
formalisms, in B. Nebel, C. Rich, and W. Swartout (eds), Proc. 3rd Int. Conf. Principles of
Knowledge Representation and Reasoning, Cambridge, MA, pp. 306-317 October 1992.

2. Besnard, R, Quiniou, R. and Quinton, R: A theorem-prover for a decidable subset of default
logic, in Proc. AAAI Nat. Conf. Artificial Intelligence, 1983, pp. 27-30.

3. Bibel, W.: Automated Theorem Proving, 2nd edn, Vieweg, Braunschweig, 1987.
4. Brass, S.: Deduction with supemormal defaults, in R Schmitt, G. Brewka and K. Jantke (eds),

Nonmonotonic and Inductive Logic, Springer, Berlin, 1991, pp. 153-174.
5. Brewka, G.: Cumulative default logic: In defense of nonmonotonic inference rules, Artificial

Intelligence 50(2) (1991), 183-205.
6. Brewka, G.: Nonmonotonic Reasoning: Logical Foundations of Commonsense, Cambridge

University Press, Cambridge, 1991.
7. Brewka, G.: Adding priorities and specificity to default logic, in L. Pereira and D. Pearce (eds),

European Workshop on Logics in Artificial Intelligence (JELIA'94), Springer, Berlin, 1994.
8. Cadoli, M., Eiter, T. and Gottlob, G.: Default logic as a query language, in J. Doyle, R

Torasso and E. Sandewall (eds), Proc. 4th Int. Conf. Principles of Knowledge Representation
and Reasoning, 1994.

9. Cadoli, M. and Schaerf, M.: A survey on complexity results for non-monotonic logics, J. Logic
Programming 17 (1993).

10. Delgrande, J. and Jackson, W.: Default logic revisited, in J. Allen, R. Fikes and E. Sandewall
(eds), Proc. 2nd Int. Conf. Principles of Knowledge Representation and Reasoning, Morgan
Kaufmann, 1991, pp. 118-127.

11. Delgrande, J., Schaub, T. and Jackson, W.: Alternative approaches to default logic, Artificial
Intelligence 70 (1994), 167-237.

12. Dimopoulos, Y.: The computational value of joint consistency, in L. Pereira and D. Pearce
(eds), European Workshop on Logics in Artificial Intelligence, Springer, Berlin, 1994, pp. 50-
65.

13. Doyle, J.: A truth maintenance system, Artificial Intelligence 12 (1979), 231-272.
14. Eder, E.: Relative Complexities of First Order Calculi, Vieweg, Braunschweig, 1992.
15. Etherington, D.: Reasoning with Incomplete Information, Research Notes in Ai~ificial Intelli-

gence, Pitman/Morgan Kaufmann, London, 1988.
16. Etherington, D. and Reiter, R.: On inheritance hierarchies with exceptions, in Proc. AAAI Nat.

Conf. Artificial Intelligence, 1983, pp. 104-108.

164 ~ SCHAUB

17. Gelfond, M. and Lifschitz, V.: Logic programs with classical negation, in Proc. Int. Conf.
Logic Programming, 1990, pp. 579-597.

18. Gottlob, G.: Complexity results for nonmonotonic logics, J. Logic and Computation 2(3)
(1992), 397-425.

19. Junker, U. and Konolige, K.: Computing the extensions of autoepistemic and default logic
with a TMS, in Proc. AAAI Nat. Conf. Artificial Intelligence, 1990.

20. Konolige, K.: On the relation between default and autoepistemic logic, Artificial Intelligence
35(2) (1988), 343-382.

21. Letz, R., Bayed, S., Schumann, J. and Bibel, W. SETHEO: A high-performance theorem prover,
J. Automated Reasoning 8(2) (1992), 183-212.

22. Lukaszewicz, W.: Considerations on default logic-an alternative approach, Computational
Intelligence 4 (1988), 1-16.

23. Mercer, R.: Using default logic to derive natural language suppositions, in Proc. Canadian
Soc. Computational Studies of Intelligence Conference, 1988, pp. 14--21.

24. Moore, R.: Semantical considerations on nonmonotonic logics, Artificial Intelligence 25 (1985),
75-94.

25. Neugebauer, G.: From horn clauses to first order logic: A graceful ascent, Technical Report
AIDA-92-21, FG Intellektik, FB Informatik, TH Darmstadt, 1992.

26. Neugebauer, G. and Schaub, T.: A pool-based connection calculus, Technical Report AIDA-
91-2, FG Intellektik, FB Informatik, TH Darmstadt, AlexanderstraBe 10, D-64283 Darmstadt,
Germany, January 1991.

27. Niemel~i, I.: Decision procedure for autoepistemic logic, in Proc. Conf. Automated Deduction,
Argonne, 1988, pp. 675-684.

28. Niemelfi, I.: A decision method for nonmonotonic reasoning based on autoepistemic reasoning,
in J. Doyle, P. Torasso and E. Sandewall (eds), Proc. 4th Int. Conf. Principles of Knowledge
Representation and Reasoning, Morgan Kaufmann, 1994, pp. 473--484.

29. Poole, D., Goebel, R. and Aleliunas, R.: Theorist: A logical reasoning system for defaults
and diagnosis, in N. Cercone and G. McCalla (eds), The Knowledge Frontier: Essays in the
Representation of Knowledge, Chapter 13, Springer, New York, 1987, pp. 331-352.

30. Reiter, R.: A logic for default reasoning, Artificial Intelligence 13(1-2) (1980), 81-132.
31. Reiter, R.: A theory of diagnosis from first principles, Artificial Intelligence 32(1) (1987),

57-96.
32. Risch, V.: Les Tableaux Analytiques au Service des Logiques de Defauts, PhD Thesis, Uni-

versit6 Aix-Marseille II, G.I.A., Parc Scientifique et Technologique de Luminy, April 1993.
33. Rothschild, A.: Algorithmische Untersuchungen zu Defaultlogiken, Master Thesis, FG Intellek-

tik, FB Informatik, TH Darmstadt, AlexanderstraBe 10, D-64283 Darmstadt, 1993.
34. Schaub, T.: Assertional default theories: A semantical view, in J. Allen, R. Fikes and E.

Sandewall (eds), Proc. 2nd Int. Conf. Principles of Knowledge Representation and Reasoning,
Morgan Kaufmann, 1991, pp. 496-506.

35. Schaub, T.: On commitment and cumulativity in default logics, in R. Krnse and P. Siegel (eds),
Proc. European Conf. Symbolic and Quantitative Approaches to Uncertainty, Springer, Berlin,
1991, pp. 304-309.

36. Schaub, T.: Considerations on Default Logics, PhD Thesis, Technische Hochshule Darmstadt,
AlexanderstraBe 10, D-64283 Darmstadt, Germany, November 1992.

37. Schaub, T.: On constrained default theories, in B. Neumann (ed.), Proc. European Conf. on
Artificial Intelligence, Wiley, New York, 1992, pp. 304-308.

38. Schaub, T.: Variations of constrained default logic, in M. Clarke, R. Kruse and S. Moral (eds),
Proc. European Conf. Symbolic and Quantitative Approaches to Reasoning and Uncertainty,
Springer, Berlin, 1993, pp. 312-317.

39. Schaub, T.: Computing queries from prioritized default theories, in Z. Ras and M. Zemankova
(eds), 8th Int. Syrup. Methodologies for Intelligent Systems, Springer, Berlin, 1994, pp. 584-
593.

40. Schaub, T. and Thielscher, M.: A method for skeptical reasoning in constrained default logic,
Technical Report, FG Intellektik, FB Informatik, TH Darmstadt, 1994.

QUERY ANSWERING IN DEFAULT LOGICS 165

4.1. Schwind, C.: A tableaux-based theorem prover for a decidable subset of default logic, in M.
E. Stickel (ed.), CADE-IO, Springer, Berlin, 1990.

42. Schwind, C. and Risch, V.: A tableaux-based characterization for default logic, in R. Kruse
(ed.), Proc. European Conf. Symbolic and Quantitative Approaches to Uncertainty, Springer,
Berlin, 1991, pp. 310-317.

43. Slaney, J. SCOTT: A model-guided theorem prover, in Proc. Int. Joint Conf. on Artificial
Intelligence, 1993, pp. 109-114.

44. Stickel, M.: A Prolog technology theorem prover, New Generation Computing 2 (1984), 371-
383.

45. Thielscher, M. and Schaub, T.: Default reasoning by deductive planning, J. Automated Rea-
soning 15(1) (1995), 1-40.

46. Zhang, A. and Marek, W.: On the classification and existence of structures in default logic,
Fundamenta Informaticae 8(4) (1990), 485-499.

