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Abstract. We present a new approach to query answering in default logics. The basic idea is 
to treat default rules as classical implications along with some qualifying conditions restricting 
the use of such rules while query answering. We accomplish this by taking advantage of the 
conception of structure-oriented theorem proving provided by Bibel's connection method. We show 
that the structure-sensitive nature of the connection method allows for an elegant characterization 
of proofs in default logic. After introducing our basic method for query answering in default 
logics, we present a corresponding algorithm and describe its implementation. Both the algorithm 
and its implementation are obtained by slightly modifying an existing algorithm and an existing 
implementation of the standard connection method. In turn, we give a couple of refinements of 
the basic method that lead to conceptually different algorithms. The approach turns out to be 
extraordinarily qualified for implementations by means of existing automated theorem proving 
techniques. We substantiate this claim by presenting implementations of the various algorithms 
along with some experimental analysis. 
Even though our method has a general nature, we introduce it in the first part of this paper with the 
example of constrained default logic. This default logic is tantamount to a variant due to Brewka, 
and it coincides with Reiter's default logic and a variant due to Lukaszewicz on a large fragment 
of default logic. Accordingly, our exposition applies to these instances of default logic without any 
modifications. 
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1. I n t r o d u c t i o n  

Reasoning in the absence  of  comple te  information constitutes one of  the most  
important  facets o f  c o m m o n s e n s e  reasoning. This fo rm of  reasoning is frequently 

accompl i shed  by  making  default  assumptions or s imply by default reasoning. A 

versatile approach  to this is Rei ter ' s  default  logic [30]. Since its introduction, it 
has p roven  to be ext remely  valuable for formalizing default  reasoning in various 
domains.  A m o n g  others, it has been applied to diagnosis [31], natural language 
[23], inheri tance networks  [16], terminological  logics [1], and databases [8]. In 

particular, it provides semantics  for truth maintenance systems [6] and diverse 
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forms of logic programming [17]. Hence, default logic is very expressive and 
thus of theoretical importance. But expressiveness has its costs. Even though 
default logic captures many practical approaches, it is hardly implementable in 
full generality. The major cause for this is that regular default logic lacks several 
properties that are indispensable for reasonable proof procedures, as discussed in 
one of the following sections. 

So far, this difficulty has been addressed in two different ways. First, it has 
led to algorithmic approaches dealing with restricted subclasses of default logic, 
which enjoy desirable computational properties [30, 2, 41]. Yet there are only few 
computational approaches to full-fledged default logic [19, 42]. Second, it has 
led to variants of default logic overcoming several shortcomings encountered 
in the original approach [22, 5, 11]. Although these variants are more easily 
' implementable'  in full generality, this line has been rarely pursued [32]. 

In this paper, we address the aforementioned difficulty from a strictly different 
point of view, namely, the one given by existing automated theorem provers for 
classical logic. Our approach is driven by the desire to obtain a simple yet 
powerful method for default theorem proving that is easily adaptable by existing 
implementations of automated theorem provers. 

So, the key question is how classical theorem proving differs from default the- 
orem proving. In default logic, classical logic is augmented by so-called default 
rules. These rules can be seen as rules of conjecture whose role is to augment 
an underlying incomplete first-order theory. They differ from standard inference 
rules in sanctioning inferences that rely upon given as well as absent information. 
Hence, a default rule (c~ : /3)/3' has two types of antecedent: A prerequisite c~, 
which is established if ~ is derivable, and a justification/3, which is established 
if /3 is consistent in a certain way. If both conditions hold, the consequent ",/is 
concluded by default. A set of conclusions sanctioned by a given set of default 
rules and by means of classical logic is called an extension of an initial set of 
facts. 

Now, automated theorem provers handle classical logic extremely well. How- 
ever, there are no means for dealing with default rules. Thus, the difference 
between classical theorem proving and default theorem proving rests on the 
notion of a default role, like (c~ : /3)/-'/. In contrast to such rules, automated 
theorem provers deal with classical implications, like c~ --+ "~, or their clausal 
form. Accordingly, the previously raised question reduces to the one upon the 
difference between implications and default roles. Roughtly speaking, this dif- 
ference boils down to that between sentential operators and inference roles on 
the one hand, and an additional condition given by the consistency check on the 
other hand. The last two notions strongly affect the application and the use of 
default rules as opposed to classical implications. 

As an example, consider the default role (A : --,S)/E, saying that adults (A) 
are typically employed (E) unless they are students (S), along with its sentential 
counterpart A -+ E.  Of course, given an adult A (and nothing else), both rules 
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allow us to conclude E. However, given an unemployed person --,E, the implica- 
tion allows us to conclude --,A (by contraposition) while this is impossible with 
the default rule, since an inference rule cannot be applied in reverse order. Also, 
we can derive E from A and S with the implication A -+ E while this is not 
possible with the default rule, since its justification ~S  is inconsistent with the 
premises. 

The basic idea of our approach is the following one. To allow for default 
theorem proving based on classical automated theorem provers, we treat default 
rules as classical implications along with some qualifying conditions restricting 
the use of such rules. In concrete terms, this leads to two restrictions on classical 
proofs: First, we restrict admissible proofs to those that are structured in a certain 
way in order to account for the concept of an inference rule. Second, we impose 
a condition of proofs ensuring the compatible use of default rules preserving 
their consistency conditions. 

In what follows, we develop a new approach to theorem proving in default 
logics based on the connection method [3]. We have chosen this method because it 
relies on analyzing the structure of formulas and thus allows for structure-oriented 
theorem proving. Unlike resolution-based methods that decompose formulas in 
order to derive a contradiction, the connection method analyzes the structure of 
formulas for proving their unsatisfiability. This structure-sensitive nature allows 
for an elegant characterization of the two aforementioned restrictions on classical 
proofs. As a consequence, we obtain a homogeneous characterization of default 
proofs at the level of the calculus. 

In general, there are two approaches to query answering in default logics. In 
the credulous approach, we accept a query if it belongs to one extension of a 
considered default theory, whereas in the skeptical approach, we accept a query 
if it belongs to all extension of the default theory. In the sequel, we exclusively 
deal with the more basic approach, namely, credulous default reasoning. The 
given approach is extended to skeptical reasoning in [45, 40]. 

Even though our method has a general nature, we introduce it in this paper 
with the example of constrained default logic [10, 35, 11]. 1 Afterwards, we dis- 
cuss in turn how our approach applies to other variants of default logic. For a 
complement, we detail in [39] how our method applies to a prioritized version 
of default logic, recently proposed by Brewka in [7]. Our initial exemplar, con- 
strained default logic, enjoys several desirable computational properties needed 
for reasonable proof procedures. Moreover, it has recently been shown in [12] 
that in certain fragments of constrained default logic reasoning is significantly 
easier than in Reiter's default logic - even though general goal-directed reasoning 
remains exponential. All this renders our exemplar a prime candidate for com- 
putational purposes. In general, however, credulous reasoning is 22P-complete, 
while skeptical reasoning is liP-complete [18]. 

The paper is organized as follows. After some formal preliminaries accounting 
for default logics in Section 2, we smooth the way for our approach by providing 
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computational characterizations of extensions, queries, and default theories in 
Section 3. We introduce our basic method for query answering in default logics 
in Section 4. In the subsequent section, we present a corresponding algorithm and 
sketch an existing implementation obtained by carefully modifying an existing 
connection method theorem prover. This endeavor is driven by our initial desire 
to obtain a simple yet powerful method for default theorem proving which is 
easily adaptable by existing implementations of automated theorem provers. To 
this end, the latter implementation provides a case study in how far an existing 
theorem prover for the connection method has to be modified in order to allow 
for query answering in default logics. 

We introduce in Section 6 an equivalent but conceptually different approach to 
query answering in default logics. This results in an algorithm thatis  orthogonal 
to the one introduced in the first part of the paper. Section 7 gives an intermedi- 
ate summary and contrasts our approach with other computational approaches to 
default logic. We provide prototypical implementations of the different versions 
of our approach in Section 8. These prototypes provide us with some experimen- 
tal results as well as some implementation techniques needed for implementing 
our approach. Section 9 describes several enhancements and extensions of our 
approach. Among others, we show how our approach applies to other variants 
of default logic and how it can be enriched by lemma handling. The proofs of 
all subsequent theorems are given in the Appendix. 

2. Default Logics 

This section gives some basic definitions dealing with default logic. Since our 
approach is initially applied to constrained default logic, most of the formal pre- 
liminaries account for this variant of default logic. However, we will try to be 
as general as possible and indicate each special reference to this specific vari- 
ant. Nevertheless, constrained default logic coincides with other default logics, 
like Reiter's [30] and Lukaszewicz' [22], on the fragment of so-called normal 
default theories (see below). Also, it is tantamount to a variant due to Brewka [5] 
when neglecting representational issues (see [37, 11] for details). Consequently, 
the following exposition applies to these instances of default logic as well. We 
discuss the adaptation of our approach to the latter variants of default logic in 
Section 9. 

In what follows, we deal with a propositional language Z;r~ over a finite 
alphabet N. Arguably, the restriction to a decidable logic is a necessary one. 
Otherwise the resulting system would not even be semi-decidable, given the 
reference to consistency while deriving formulas in default logic (cf. [30]). 

As mentioned in the introduction, the central concepts in default logic are 
default rules along with their induced extensions of an initial set of facts. In 
default logics, knowledge is represented by default theories (D, W) consisting 
of a consistent 2 set of formulas W and a set of default rules D. A normal default 
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theory is restricted to normal default rules whose justification in equivalent to 
the consequent. In any default logic, default rules induce one or more extensions 
of an initial set of facts: Given a set of facts W and a set of default rules D, 
any such extension E is a deductively closed set of formulas containing W such 
that, for any (a" fl)/7 E D, if c~ E E and -7/3 ~ E, then 7 E E. 

Now, let us make all this more precise and look at our exemplary variant, 
constrained default logic [ 11 ]. This variant enjoys several desirable computational 
properties that are given only for restricted default theories in Reiter's default 
logic. One such desirable property is the existence of extensions. Another even 
more important property for query answering is that of semi-monotonicity, since 
it allows us to restrict our attention to default rules relevant for proving a query. 3 
Moreover, semi-monotonicity implies the existence of extensions. 

In constrained default logic, an extension, E,  comes with an underlying set 
of constraints, C, which is used for accumulating the set of justifications of the 
applied default rules. Formally, this amounts to the usual fixed-point definition 
given for extensions in default logics: 

DEFINITION 2.1. Let (D, W) be a default theory. For any set of formulas T 
let T ( T )  be the pair of smallest sets of formulas (S ~, T ~) such that 

(1) w c_ s '  C T', 
(2) S' = Th(S')  and T'  = Th(T') ,  
(3) For any (a  • /3) /7  E D, if a E S' and T U {/3} U {7} ~ 2_ then 7 E S' 

and ¢3 A 7 E T ~. 
A pair of sets of formulas (E, C) is a constrained extension of (D, W) iff 

T ( c )  = ( E , c ) .  

As an example, consider the statements 'students are typically adults', 'adults 
usually drive a car', and 'adults are typically employed unless they are students', 
along with a student S. The corresponding default theory is the following one. 

f S ! A  A . C  A: S 
L A '  c '  S' s J • (2.1) 

In both Reiter's and constrained default logic, this default theory yields a unique 
extension Th({S, A, C}) in which a student is an adult driving a car. In this 
simple example, the constraints in constrained default logic coincide with the 
actual extension. It is instructive to verify that the constraints differ from the 
extension obtained when substituting the fact S by A. In this case, we obtain 
in both default logics the extension Th({A, C, E}),  which is supplemented with 
constraints, Yh({A, C, E,  -~S}), in constrained default logic. Apart from supple- 
menting constraints, the difference between both approaches rests on the different 
interpretation of consistency. 4 In Reiter's approach, the consistency of a justifica- 
tion/3 is checked wrt the extension E by 7/3 ~ E, whereas in constrained default 
logic the same is done wrt the constraints C by --1(/3 A 7) ~ C (where 7 is the 
consequent of the considered default rule). 5 The former condition ensures that 
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each justification/3 is individually consistent with a final extension, while the 
latter enforces the joint consistency of all justifications (of all applying default 
rules) with a final extension. 

3. The Fundamental Basis 

In this section, we provide the fundamental basis for our approach to query 
answering in default logics. To this end, let us first tum to the two features 
distinguishing default rules from classical implications, namely, the character 
of an inference rule and the additional consistency check. While the latter is 
handled in the usual manner by testing satisfiability, the former needs a more 
subtle treatment. In fact, the character of an inference rule can be captured by 
the notion of groundedness. 6 This fundamental concept is common to all existing 
default logics. We call a set of default rules D grounded in a set of facts W iff 
there exists an enumeration ((~i)iEI of D such that for i C I,  

W U Conseq({80, . . . ,  ~i-1 }) ~- Prereq(~i). (3.2) 

For convenience, we denote the prerequisite of a default rule ~ by Prereq(~), its 
justification by Justif(~), and its consequent by Conseq(~). 7 

In particular, each set of default rules 'generating' an extension is grounded 
in the set of facts. 8 In the above example (2.1), the extension Th({S, A, C}) is 
generated by the first two default rules. This results in the enumeration ((S • 
A)/A,  (A • C) /C) ,  whose defaults are obviously grounded in {S}. In general, 
groundedness distinguishes default rules from classical implications. For instance, 
the above default rule (A • - , S ) / E  is (trivially) not grounded in the set of 
facts {--,E} so that reasoning by contraposition becomes impossible. That is, ~A 
is not derivable from -~E. Moreover, groundedness prevents circular chains of 
reasoning. Consider the default rules (A • C ) / C  and (C • A ) /A  and no facts. 
In this case, neither A nor C is derivable since there is no nonempty grounded 
sequence of default rules. 

So, from the perspective of the introductory section, groundedness and consis- 
tency constitute the two qualifying conditions for the application and the use of 
default rules. In particular, these two notions allow for characterizing extensions 
in a considerably simpler way. As a first result, we obtain a nonfixed point char- 
acterization of constrained extensions, which is indispensable for computational 
purposes: 

THEOREM 3.1. Let (D, W)  be a default theory, and let E and C be sets of  
formulas. Then, (E, C) is a constrained extension of  (D, W)  iff 

E = Th(W UConseq(D') ) ,  

C = Th(W U Justif(D') UConseq(D') )  

for a maximal D ~ C_ D such that D ~ is grounded in W and W U Justif(D ~) U 
Conseq(D ~) is consistent. 
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That is, an extension is characterized as the deductive closure of the set of facts 
and the consequents of a maximal set of default rules which is grounded and 
preserves consistency. Accordingly, the computation of a constrained extension 
boils down to classical deduction along with enforcement of groundedness and 
consistency. 

This suggests the following approach to query answering in default logics. To 
verify whether a formula ~ is in some extension E of a default theory (D, W), 
we have to find a subset of D that allows for deriving ~ and complies with the 
above requirements. As already noticed in [30], this can be accomplished in a 
reasonable way only if we can confine ourselves to default rules relevant for 
deriving ~p. The formal counterpart of this observation is given by the proper- 
ty of semi-monotonicity - on which also our approach relies. Formally, semi- 
monotonicity stipulates that if D' C_ D for two sets of default rules, then if E '  is 
an extension of (D', W), there is an extension E of (D, W) such that E '  C E. 
Given this property, it is sufficient to consider a relevant subset of default rules 
while answering a query, since applying other default rules would only enlarge 
or preserve the partial extension at hand. 

Semi-monotonicity holds only for restricted fragments of Reiter's default log- 
ic, whereas it is enjoyed by constrained default logic in its full generality. This 
is one of the reason we have chosen constrained default logic as an illustration 
of our method. 

Anyway, this property leads us to the following corollary to Theorem 3.1 
providing a formal characterization of query answering in constrained default 
logic. 

COROLLARY 3.2. Let (D, W) be a default theory. Then, ~ 6 t~, for some 
constrained extension (E, C) of (D, W) iff 

W U Conseq(D') R 

for some D' C_ D such that D' is grounded in W and W U Justif(D 9 U  
Conseq(D') is consistent. 

That is, for verifying whether ~ is in some extension of a default theory (D, W), 
it is enough to determine a grounded and consistent set of default roles D' C D 
that allows for proving ~ from the facts in W and all default rules in D'. 

Theorem 3.1 and Corollary 3.2 provide the fundamental basis for our approach 
to query answering in (constrained) default logic. They are strongly rooted in the 
basic concepts of groundedness and consistency. Observe that in both specifica- 
tions the latter concepts constitute rather separate constraints on the default rules 
under consideration. We will stepwisely refine this approach in the two following 
sections. In fact, Section 5 strongly relies on the possibility of separating these 
concepts for implementing our approach by using existing automated theorem 
provers. 
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Another salient feature of the previous specifications is the formation of 
sequences of default rules. This will come to the fore more and more in the 
subsequent sections, in particular, in Section 6, where we provide an alternative 
approach by meshing together the concepts of groundedness and consistency for 
forming sequences of default rules. Moreover, we have shown in [39] that such 
a combination is very useful for implementing priorities. 

We now turn to the issue of default theorem proving using conventional 
theorem provers. As argued in the introductory section, classical theorem provers 
cannot deal with default rules but conventional clauses only. As a first step, we 
thus shift information from the default part into the classical part of a default 
theory in order to facilitate the treatment of default theories. To this end, we 
transform default theories by substituting default rules by so-called atomic default 
rules consisting of new atomic propositions and by extending the facts with a 
set of implications relating these propositions to the constituents of the original 
default rules: For a default theory (D, W) in/22, let/2~, be the language obtained 
by adding the new propositions a6, t36,76 for each ~ C D. The function 7- maps 
a default theory (D, W) in /2z  into a default theory (D ~, W t) in/22, ,  where 

76 

W ' =  W U {Prereq(fi) --+ ar, fl6 --+ Justif(~), 76 --+ Conseq(d) [ ~ E D}. 

The resulting default theory (D ~, W ~) is called the atomic format of the original 
default theory (D, W). That is, (D', W ~) contains only atomic default rules. 

Consider the default rule (S : A) /A  (for short 31) in default theory (2.1). 
Applying 7. to this theory yields for 31 the default rule ($61 : Arl)/Ar~ (where 
5;6~ and A& are new propositional letters) 9 along with the implications S --+ $6~ 
and A61 -+ A. 

The transformation of default theories into their atomic format does not affect 
the computation of queries to the original default theory, as shown in [33]. l° 

THEOREM 3.3 (33). Let (D, W)  be a default theory in £~. Let E, C be sets of 
formulas in E2 and El, C be sets of formulas in 122, such that E = E ~ M E2 
and C = C' O/22. Then, (E, C) is a constrained extension of ( D, W)  iff (t?,', C') 
is a constrained extension of T.(D, W). 

The major advantage of atomic default rules over arbitrary ones is that the con- 
stituents of default rules are not spread over several clauses while transforming 
them into clausal format. Rather, each atomic default rule can be represented as 
a single binary clause, as we will see in the next section. Strictly speaking, this is 
not absolutely necessary but it simplifies matters dramatically. This concerns the 
formal presentation of the approach and moreover its implementation by existing 
automated theorem provers. With the above transformation, we can (and will) 
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therefore confine ourselves to default theories with atomic default rules only 
(without losing generality). 

4. A Method for Query Answering in Default Logics 

In this section, we develop a method for query answering in default logics based 
on the connection method [3]. The connection method allows for testing the 
unsatisfiability of formulas in conjunctive normal form (CNF). Unlike resolution- 
based methods that decompose formulas in order to derive a contradiction, the 
connection method analyzes the structure of formulas for proving their unsatis- 
fiability. This structure-sensitive nature allows for an elegant characterization of 
proofs in default logic, as we will see below. 

4.1. THE CONNECTION METHOD 

In the connection method, formulas in CNF are displayed two-dimensionally in 
the form of matrices. A matrix is a set of sets of literals (literal occurrences, to 
be precise). 11 Such a matrix is given in (4.3) below. Each column of a matrix 
represents a clause of the CNF of the formula. In order to show that a sentence 

is entailed by a sentence W, we prove that W A -,~ is unsatisfiable. In the con- 
nection method this is accomplished by path checking: A path through a matrix 
is a set of literals, one from each clause. A connection is an unordered pair of 
literals which are identical except for the negation sign (and possible indexes). A 
mating is a set of connections. A mating spans a matrix if each path through the 
matrix contains a connection from the mating. Finally, a formula, like W A - ~ ,  
is unsatisfiable iff there is a spanning mating for its matrix. 

Let us briefly illustrate this by verifying whether C is entailed by 

S A ( S - +  A) A (A -+ C). 

For this, we prove that conjoining the negated query ~C  to the latter formula 
yields an unsatisfiable formula. Transforming the resulting formula into its CNF 
yields 

S A (-~S V A) A (-.A V C) A -~C 

whose two-dimensional representation is the following one (by ignoring the 
arcs). 

S A C 
(4.3) 
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This matrix has a spanning mating whose connections are represented by arcs 
linking the respective literals. This is so because matrix (4.3) contains four paths, 
like {S, A, ~A, ~C}, all of which contain at least one connection, like {A, --,A}. 
In this way, we have shown that C is entailed by S A (S --+ A) A (A --+ C). 

In the sequel, we sometimes refer to certain submatrices or supermatrices 
of a given matrix. We call a matrix M'  a submatrix of a matrix M if M ~ is 
obtainable from M by deleting literals or even clauses in M. The definition of 
supermatrices is analogous. We say that a path is complementary or closed if it 
contains a connection from a given mating. Otherwise, we say that the path is 
noncomplementary or open. Finally, we call a matrix complementary if it has a 
spanning mating or, in other words, if each path through the matrix contains a 
connection from a mating at hand. 

4.2. COMPLEMENTARITY 

In this section, we describe how to turn default theories into matrices and how 
to verify the complementarity of the resulting matrices. 

Our approach relies on the idea that a default role can be decomposed into a 
classical implication along with two qualifying conditions, one accounting for the 
character of an inference role and another one enforcing the respective consisten- 
cy condition. 12 The computational counterparts of these qualifying conditions are 
given by the proof-oriented concepts of admissibility and compatibility, which 
we will introduce in the following two subsections. 

To find out whether a formula ~ is contained in some extension of a default 
theory (D, W), we proceed as follows. First, we transform the atomic default 
roles in D into their sentential counterparts. This yields a set of indexed impli- 
cations 

WD={C~6--+.y~ c ~ ' ~  ED}.  

In what follows, we adopt this notation and write WD, = {c~ -~ ",/~l(o~ : 
P~)/7~ E D'} for any subset D' of D. Second, we transform both W and WD 
into their clausal forms, Cw and CD. The clauses in CD, like {--,c~, 3'~}, are 
called g-clauses; all other clauses like those in Cw are refered to as co-clauses. 
Now, we are ready for query answering. That is, a query ~p is derivable from 
(D, W) iff there is a spanning mating for the matrix Cw U CD U {--,cp} agreeing 
with the concepts of admissibility and compatibility. 13 

Consider our student example. The encoding of the set of default rules yields 
the following set, WD, of implications: 

The indexes denote the respective default roles in default theory (2.1) from 
left to right. In order to verify that a student drives a car, C, we first have to 
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transform the fact S (in default theory (2.1)) and the implications in WD into 
their clausal form. The resulting clauses are given two-dimensionally as the first 
four columns of the matrix in (4.4). The full matrix is obtained by adding the 
clause containing the negated query, --,C. In fact, the matrix has a spanning 
mating, { {S, "nSSl }, {As~,-~Ah }, C h , - ,C} }. As above, we have indicated these 
connections in (4.4) as arcs linking the respective literals. 

S A~ 1 C6~ E ~  
(4.4) 

For simplicity, we have refrained from transforming default theory (2.1) into 
atomic format because it already consists of atomic formulas. In such a case, 
let us rather adopt the following two conventions. First, let us agree on simply 
labeling components of a default rule and allowing for connections between com- 
plementary literals having different indexes (if any at all). Second, let us assume 
that we can always distinguish between the prerequisite and the consequent in 
a G-clause. Observe that both conventions are obsolete as soon as we enforce 
default theories in atomic format by transformation 7- (cf. Section 2). First, we 
obtain in atomic format two standard connections, rather than a 'mixed' con- 
nection between an indexed and unindexed literal. For instance, instead of two 
clauses {S} and {-~Ssl, Asl } (from S, (S : A ) / A )  along with the 'mixed' connec- 
tion {S, ~Ssl }, we would obtain three clauses {S}, {~S, $6~ }, and {--nSSl , A61 } 
(from S, S -+ Ss, , ( Ss, : As, ) /A~ 1) along with two standard connections {S,-~S} 
and {Ssl,-~Ss~ }. The same applies to the remaining clauses in matrix (4.4). Sec- 
ond, observe that in atomic format the distinction between prerequisites and 
consequents of &clause is trivial. This is so because the prerequisite is given 
by the negative literal in the G-clause and the consequent by the positive liter- 
al. We support this in two-dimensional notation by stacking prerequisites over 
consequents. 

The above matrix illustrates yet another point: Not all of the clauses are nec- 
essarily involved in providing a spanning mating for a matrix. A useful concept 
is then that of a core of a matrix M wrt a mating II, which allows for isolating 
the clauses relevant to the underlying proof. We define the core of M wrt Yl as 
follows. 14 

DEFINITION 4.1. Let 13 be a mating for the matrix M. Then, we define the 
core of M wrt II as 
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For instance, the core of the preceding matrix relative to the drawn mating is 
given by the first three and the last clauses. 

So far, it might seem that classical theorem proving with co- and &clauses 
suffices for querying default theories. To see that this is not enough, consider 
again the default rule (A : ~S)/E along with the fact -~E. In default logics, 
there is no way to derive --A. However, the resulting matrix, given in (4.5), has 
a spanning mating, which amounts to deriving -~A by contraposition. 

-'A63 A 

-~E E ~  
(4.5) 

This example shows that pure deduction with 5-clauses cannot account for 
the inference rule character of the original default rules. 

4.3. ADMISSIBILITY 

In default logics, the nature of an inference rule is reflected by the property 
of groundedness, which relies on forming sequences of default rules. In fact, 
the connection method allows for imposing a similar restriction on the clausal 
counterparts of default rules. This leads us to our first qualifying condition on 
proofs given by the concept of admissibility. 

DEFINITION 4.2 (Admissibility). Let Cw be a set of co-clauses and CD be a 
set of &clauses, and let H be a mating for Cw U CD. Then, (Cw U CD, I-i) is 
admissible iff there is an enumeration ({--,a6~, 3'6~})ieI of n(CD, II) such that for 
i E I ,  H is a spanning mating for 

Cw U (?o{{~c~,~j, 7,~j U {{-~a,h}}. (4.6) 

Note that normally not all connections in II are needed for showing the unsat- 
isfiability of the submatrices in (4.6). We say that (Cw U CD, H) is admissible at 
i in an index set I if (4.6) holds for i C I.  Moreover, we say that (Cw U CD, II) 
is admissible wrt I if it is admissible at all i E I.  

The previous definition may be nicely illustrated by the proof in our student 
example given in (4.4). There, we obtain the enumeration 

<{~Sa,, A~, }, {~Aa2, Ca2 }), 

which in turn leads to the following matrices, each representing a set of clauses 
as specified in (4.6): 
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S S A~t 
(4.7) 

Observe that the preceding matrices are in fact submatrices of matrix (4.4). 
Clearly, each of these submatrices has a spanning mating, so that the origi- 
nal matrix along with its mating, given in (4.4), constitute an admissible proof. 
Observe that the proof in the example involving contraposition violates admissi- 
bility. This is so because there is no spanning mating for the submatrix {{-~E}, 
{-nAG3}} of matrix (4.5). 

In the remainder of this subsection, we provide an incremental approach to 
admissibility. This is made precise in the following theorem. 

THEOREM 4.1. Let Cw be a set of co-clauses and CD be a set of &clauses. 
Let II be a mating for CN U Cz) such that (Cw U CD, II) is admissible wrt I. 
Let {-~oz~,'y~} be a (Lclause. Then, (Cw U CD U {{-~a~,3,~}}, II) is admissible 
iff II is a spanning mating for Cw U Ui6i{{~/~-i}} U {{-~o~6}}. 

Informally, this theorem allows us to discard paths through 'prerequisites of 
admissible &clauses' while verifying admissibility. Hence, for verifying the 
admissibility of the proof given in (4.4), we can proceed as follows. For illus- 
tration, consider also the two submatrices in (4.7). We start with the set of open 
paths through all co-clauses. There is only one such path in our example, {S}. 
For verifying the admissibility of 15 {~$61, A61 }, we have to check whether all 
such open paths contain a literal complementary to ~$6~. Since this is the case, 
we can proceed by verifying the admissibility of {-~A62, C62}. For this, we can 
discard all paths through --,$6l. Thus, we can restrict ourselves to all open paths 
obtained by adding A61 to all open paths through all co-clauses. There is only 
one such path in our example, {S, A6l}. As above, this path has to contain a 
literal complementary to -~A~2 for confirming the admissibility of the second 
~-clause. Clearly, the path {S, A~ } O {~A~2} is closed, so that admissibility is 
confirmed. 

Moreover, the theorem shows that admissibility is in fact the proof-theoretic 
counterpart of groundedness. That is, if C'w is the clausal representation of W, 
then there is a spanning mating for Cw U Uin_=_0{{7a~}} u {{-~oz~}} iff W u 
Conseq({30,... ,#n}) F- Prereq(3), where 3'~, = Conseq(3i). Observe that the 
latter corresponds to the condition given for groundedness in (3.2). 
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4.4. COMPATIBILITY 

The second qualifying condition for proofs is given by the concept of com- 
patibility; it relies on the notion of consistency specific to constrained default 
logic. 

DEFINITION 4.3 (Compatibility). Let Cw be a set of co-clauses and CD be a set 
of g-clauses, and let 1I be a mating for Cw U CD. Then, (Cw U CD, 11) is com- 
patible iff there is no spanning mating for Cw U C j, where C j  = {{/3~}, {76} I 
{--nO~3,"yr} E t~(CD, 11),/~3 = Justif(~)}. 

Notably, this is the first place where we refer to a notion specific to constrained 
default logic; the entire preceding exposition involving the concept of admissi- 
bility applies to any (semi-monotonic) default logic. 

Consider again our student example. For compatibility, we have to verify that 
the matrix {{S}} U {{Arl }, {C62 }} or two-dimensionally 

IS  A61 C62 ] (4.8) 

has no spanning mating. This matrix is formed by the facts {S} and the justifi- 
cations Arx and C62 of the first two default rules in (2.1). Obviously, matrix (4.8) 
has no spanning mating, since it has a noncomplementary path, {S, A~2, E33 }. 
We thus obtain an admissible and compatible proof for the original query, S, 
asking whether a student drives a car. Note that an open path gives a model of 
the considered formula. 

In order to give an example for an incompatible proof, we consider the 
matrix 

{{S}} U {{A}, {-,S}, {E}} 

whose compatibility is verified while answering the query E from the fact S and 
the default rules (S : A)/A and (A : ~S)/I~,. This matrix has a spanning mating 
{{S,-~S}} indicating an incompatible use of default rules. 

In principle, compatibility is separate from admissibility. However, the next 
theorem shows that compatibility can be verified on (almost) the same matrices 
as used for verifying complementarity and admissibility. 

THEOREM 4.2. Let Cw be a set of co-clauses and CD be a set of&clauses. Let 
II be a mating for Cw U CD such that (Cw U CD, H) is admissible. Then, 11 is 
a spanning mating for Cw © CD U {{/~6} I {-n°~6,"/6} C CD,fl6 = Justif(g)} iff 
11 is a spanning mating for Cw U C j, where Cj = {{/36}, {76} I {-~o~6, 3'6} E 
CD,/36 = Justif(~) }. 

This theorem offers the computational advantage of structure and information 
sharing while query answering. Observe that a simpler formulation is obtained 
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for normal default theories. Then, II is a spanning mating for Cw U CD iff H is 
a spanning mating for Cw U {{"/6} I {-~c~6, "/6} E CD}. 

Above, we have verified the compatibility of the proof obtained in our student 
example by regarding the matrix given in (4.8). Theorem 4.2 tells us that this 
is equivalent to checking whether the following admissible supermatrix of (4.8) 
has no spanning mating. 16 

S A~I C62 
(4.9) 

Even though the latter matrix is larger than the one in (4.8), it shares the structure 
of the matrices used for verifying complementarity and admissibility. In fact, 
it is at the same time a supermatrix of the largest matrix used for checking 
admissibility in (4.7) and a submatrix of the actual matrix used for proving the 
query C in (4.4). That is, matrix (4.9) is obtained by adding C62 to the rightmost 
clause of the right matrix in (4.7). Analogously, we obtain the proof for C in 
(4.4) by adding the query clause {~C} to matrix (4.9). We will take up these 
ideas in Section 6. 

4.5. CHARACTERIZING DEFAULT PROOFS 

In Section 3, we have decomposed default theorem proving in default logic into 
classical deduction along with the concepts of groundedness and consistency. 
In the preceding subsections, we have carefully mapped these notions onto the 
connection method. We have accomplished this by identifying the concepts com- 
plementarity, admissibility, and compatibility as the proof-theoretic counterparts 
of classical deduction, groundedness, and consistency, respectively. 

As a result, we obtain the following theorem showing that our method is 
correct and complete for constrained default logic: 

THEOREM 4.3. Let (D, W) be a default theory in atomic format and ~ an 
atomic formula. Then, 9~ C E for some constrained extension ( E, C) of ( D, W) 
iff there is a ~panning mating II for the matrix M of W U WD U {-~9~} such that 
( M, II) is admissible and compatible. 

As agreed upon above, we have that WD = {c~6 -+ "/6 I (c~6 : /36)/"/6 E D}. 
Finally, let us summarize our approach in the remainder of this section by 

means of a coherent example. Consider the statements 'students are typically not 
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employed' ,  'students are typically adults', and 'adults are typically employed' ,  
along with the corresponding default theory dealing with a student. 

--,E ' A ' E , { S  . (4.10) 

The encoding of the set of default rules yields the following set of implica- 
tions. 

W D  = {S6 ~ ~E31 , S,~ 2 --~ Ah,  Aa2 -+ Ea3 }. 

As before, the indexes denote the respective default roles in default theory (4.10) 
from left to right. Let us consider the query E, asking whether a student is 
employed. Transforming the fact S, the implications in W D ,  and the negated 
query -~E into clausal form yields the matrix in (4.11). 

S -'Eh A~2 E~a 
(4.11) 

In fact, the matrix has a spanning mating, {{S,-~$62} , {Aa2, ~Aa3}, {/~3' ~E}}, 
whose connections are indicated as arcs linking the respective literals. This 
default proof yields the following enumeration 

({~Sa2, Aa2}, {-~Aa3, E~2}) 

For admissibility, we have to consider the following submatrices of matrix 
(4.11) 

~ 62 

S S A~= 
(4.12) 

Observe that each of these submatrices has a spanning mating, so that the original 
matrix and its mating, given in (4.11), constitute an admissible proof. 

For compatibility, we have to verify that the following matrix has no spanning 
mating. 17 

Obviously this is the case because there is a noncomplementary path, {S, Aa2, 
Ea3 }. We thus obtain an admissible and compatible proof for the original query, 
E,  asking whether a student is employed. Note that we used Theorem 4.2 for 
verifying compatibility. 



QUERY ANSWERING IN DEFAULT LOGICS 1 1 1 

S A~ E~ 3 

Observe that there is yet another spanning mating for the matrix in (4.11), 
namely, 

{{S, "nS~l }, {~.~, "-nS~2 }, {-aE~l , E~3}, {A~ 2 , ~A~3 }). (4.13) 

This mating discards the negated query ~E.  The cause for this is that we deal with 
conflicting defaults. That is, from S we can derive --,E by the first default role in 
default theory (4.11) as well as E by the second and third default role. Although 
the resulting proof can be shown to be admissible, it is not compatible. 

S -~E~ A62 Er~ 

This matrix has the spanning mating given in (4.13), too. This shows that the 
corresponding proof is not compatible. 

The last part of the example stresses the importance of the concept of com- 
patibility. In particular, it seems advantageous to prone incompatible proofs as 
early as possible, since defaults might conflict with each other. 

5. Implementing the Approach by Existing Automated Theorem 
Provers 

In this section, we pursue our initial goal of providing a simple method for query 
answering in default logics that needs few modifications to existing implemen- 
tations of automated theorem provers. 

There are several ways of implementing our approach by using existing auto- 
mated theorem provers. An extreme way would be to prove each query conven- 
tionally and to leave the verification of admissibility and compatibility to special- 
purpose algorithms. This is rather expensive, since one might have to generate 
numerous proofs before our qualifying conditions are confirmed or even denied. 
The opposite approach would be to modify an existing automated theorem prover 
in order to incorporate the verification of admissibility and compatibility. To this 
end, however, one has to put consistency checks into the 'inner loop' of a theorem 
prover, which is a difficult and (sometimes) expensive undertaking, too. 
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5.1. AN ALGORITHM 

In all, both aforementioned approaches do not concur with our initial desire for a 
simple and feasible approach to default theorem proving that is easily adaptable 
by existing implementations of the connection method, like SETHEO [21] or PPP 
[26]. We address this problem in this section by separating the verification of 
compatibility (or consistency) from that of complementarity and admissibility. 
This is motivated by the incongruity between the 'global' notion of consistency 
employed in default logics (by referring to the final extension or constraints) 
and the stepwise execution of inference steps encountered in existing theorem 
provers. In order to avoid the resulting difficulties, we rather pursue an 'off-line' 
approach by compiling compatibility, thereby taking advantage of the compliant 
conception of consistency in constrained default logic. This approach is justified 
by the following corollary to Theorem 3.1. 

COROLLARY 5.1. Let (D, W) be a default theory, and let E and C be sets 
of formulas. Then, (E, C) is a constrained extension of (D, W) iff (E, C) is 
a constrained extension of (D t, W) for a maximal D t c_ D such that W U 
Justif(D') tO Conseq(D') is consistent. 

We say that a default theory (D, W) is compatible iff WU Justif(D)UConseq(D) 
is consistent. Accordingly, we compile a given default theory (D, W) into several 
compatible default theories (D', W). Compiling a default theory (D, W) amounts 
to computing the generating default rules 18 D t of each extension of the default 
theory 

({ flA"y:flA"f o~ " E D } , W ) . 

Observe that any compatible default theory has a unique constrained exten- 
sion. 

For example, we can turn default theory (2.1) into a single compatible default 
theory by removing the last default rule, (A : -~S)/E. This usually costly com- 
putation should be done 'off-line' by special-purpose algorithms, as described in 
[1] or even [43]. Once this has been done, we can verify whether a query is in the 
unique extension of a compatible default theory without any consistency checks. 
An effective way of querying multiple compatible default theories is described 
in [33]. The precomputation of compatible default theories has the advantage 
that we are able to prune computations with incompatible defaults in advance. 
Thus, for instance, the approach avoids the difficulties with incompatible default 
theories sketched at the end of Section 4. 

On the other hand, the approach is problematic if there is a large number 
of compatible default theories. In fact, there may be an exponential number 
of such theories in the worst case. 19 In general, such a compilation is favorable 
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whenever its computational cost can be amortized over the total set of subsequent 
queries. 

The purpose of this compilation approach is to minimize modifications to 
existing automated theorem provers. In fact, it turns out that admissibility is 
more integrative than compatibility as regards such modifications. We discuss 
alternative approaches in brief at the end of this section and in more detail in 
Section 6. 

Let us now turn to the verification of admissibility and complementarity. In 
fact, we confirm admissibility while systematically checking the complementarity 
of each path through a matrix, Following [14], we use compl(p, M)  for defining 
a declarative algorithm for deciding whether a matrix is complementary and 
admissible. With it, Eder shows in [14] that a matrix M consisting of co-clauses 
only is complementary iff compl(~, M)  is true wrt the first two conditions of 
the following definition. 

DEFINITION 5.1. Let Cw be a set of co-clauses and CD be a set of &clauses. 
Let p be a set of literals and let M = Cw, U Cz), for Cw, c_ Cw and CD, C_ CD. 
Then, we define compl(p, M)  relative to Cw as follows. 2° 

1. If M = ~, then compl(p, M)  is false. 
2. If M ¢ 2~ and c E M is an co-clause, then compl(p, M)  is true iff for all 

L E c at least one of the following two conditions holds. 
(a) L is complementary to some literal of p. 
(b) compl(p U {L}, M\{c})  is true. 

3. If M ¢ ~ and c C M is a &clause, then compl(p, M)  is true iff the following 
two conditions hold, where c = {--,c~6,-y~}. 
(a) ~y~ is complementary to some literal of p. 
(b) compl({-~c~}, (M\{c})  U Cw) is true. 

As mentioned above, the first two conditions provide a sound and complete algo- 
rithmic characterization of the standard connection method (see [14] for details). 
In fact, the original characterization given in [14] differs only in two extreme- 
ly minor points from the one obtained by deleting Condition (3) above. First, 
there is no case analysis in Condition (2) for distinguishing co- from ~-clauses. 
Second, compl(p, M)  is independent of Uw in [14]. The latter set represents 
in Definition 5.1 the original set of co-clauses, whereas Gw, and C D, function 
as parameters. This distinction is necessary because Condition (3b) makes refer- 
ence to the original set of co-clauses, given by Cw. We will come back to this 
below. 

Now, let us discuss Definition 5.1 in some detail. Condition (1) accounts for 
the limiting case where the matrix is empty. Condition (2) deals with co-clauses. 
Each literal L in the co-clause at hand either has to be complementary to some 
]literal on the active path p or all paths through p extended by L and the remaining 
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clauses have to be complementary. The choice of the w-clause from M is a don't 
care-choice. That is, the result is independent of what w-clause is taken. 

Condition (3) deals with &clauses. Condition (3a) corresponds to Condi- 
tion (2a) and says that the consequent of a default rule -y6 can be used for 
query answering as any other proposition - provided Condition (3b) is satisfied. 
In fact, (3b) ' implements'  Statement (4.6) in Definition 4.2 and ensures that the 
prerequisite o~a of a default role is derivable in a noncircular way. Observe that 
we do not provide two alternatives for resolving 7a in (3b), as done in (2). In 
fact, we can restrict ourselves to one of the alternatives in (2a) and (2b) for 
solving a single literal. 21 The purpose of resolving -ya in analogy to (2a) rather 
than (2b) is to minimize the 'application of default mles'  in the course of a proof 
search. This minimization is advantageous because the choice of &clauses in 
(3) is a don't know choice. That is, one has to find the right one, which means 
that - in the worst case - all possibilities have to be tested. The choice is don't 
know because a selected ~-clause may not lead to an admissible proof so that 
Condition (3b) will be falsified. 

Another interesting point in Condition (3b) is the addition of the initial set 
of w-clauses Cw to (M\{c}) .  The need for this is obvious because admissi- 
bility has to be verified wrt the given set of facts represented by Cw. Some 
of these w-clauses, however, might have been 'consumed' at an earlier stage. 
This is so because Eder's formulation deletes in Condition (2b) w-clauses after 
their 'usage' .22 So on the one hand, our approach avoids verifying admissibility 
by ever-increasing submatrices, as stipulated in Definition 4.2. In this way, it 
compromises the query-oriented and thus ' top-down' search for a proof with the 
'bottom-up' verification of admissibility. On the other hand, an w-clause may 
contribute to the derivation of several 'prerequisites'. Thus, in the worst case, 
this yields a proof length bounded by O([Cw[ x ([CD] q-- 1)), where IMI stands 
for the number of clauses in a matrix M.  

We observe how easily complementarity and admissibility can be verified 
simultaneously by adding a single condition to the original definition of 
compl(p, M)  in [14] - provided that M represents a compatible default theory. 
Let us illustrate this along with our algorithm by investigating the 'compatible' 
matrix 

{{S}, {-"$61, Aal }, {-~Aa2, C62}, {-,C}} 

obtained by removing clause {-~Aa3, Ea3 } from matrix (4.4). To proceed in a 
query-oriented way, we 'push' the negated query ~T on the initial path, and use 
the w- and &clauses, Cw U CD representing the underlying default theory as 
the initial matrix. That is, we verify whether compl({=T}, Cw U CD) is true. 
Selecting the query clause {-~C} makes us confirm 

compl({--,C}, {{S}, {--,Sa,, Aa, }, {mAa 2 , C6z}}). (5.14) 

This can be done by choosing clause {--'Aa2, C62 } in Condition (3). This choice is 
not arbitrary; rather, it reflects the connection-driven search used in the connection 
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method. That is, C62 is complementary to -~C so that (3a) is satisfied. In addition, 
we have to establish 

compl((-~A62 }, {{S}, {-~$6,, Ar~ }}) (5.15) 

according to (3b). It is instructive to verify that the latter corresponds to invoking 
our algorithm on the second (sub)matrix in (4.7), after applying Condition (2b) 
to the clause {-~A h }. 

Applying Condition (3) to the goal in (5.15) yields 

compl({-~Sr~ ), {(S)) )  (5.16) 

which is true by (2a). Accordingly, the query C is provable from the compatible 
equivalent of default theory (2.1) by means of default rules (S : A)/A and 
( A : C ) / C .  

For a complement, let us consider the proof in (4.5) involving reasoning by 
contraposition. This proof is not admissible. We start with 

compl({A}, {{--,E}, {~A h , E~ 3 }}). 

We choose {-~A83 , E83 } in Condition (3). Since ~A53 is complementary to A, 
we have to confirm 

compl({-~A63 }, {{~E}}). 

Clearly, this is false because there are no complementary literals left. The same 
result is obtained by initially choosing {~E}. Hence, our initial goal is not 
confirmed, thus showing that the proof in (4.5) is not admissible. 

The general relation between query answering in constrained default logic 
and the above algorithm is made precise in the following theorem. 23 

THEOREM 5.2. Let (D, W) be a default theory in atomic format, and let 
be an atomic formula. Then, qo E E for some constrained extension (E, C) of 
(D, W) iff compl({--,~}, M) is true for the matrix M of W U WD, for some 
WD, C_ WD such that W U Justif(D') tg Conseq(D ~) is consistent. 

Observe that merely the choice of the compatible set of default rules D ~ is 
specific to constrained default logic. Hence this result and with it the underlying 
algorithm apply to 'compatible' default theories in any (semi-monotonic) default 
logic - provided that an appropriate notion of compatibility is provided (cf. 
Section 9). 

The previous exposition is dominated by the view that the integration of 
consistency into existing implementations of automated theorem provers is dif- 
ficult. In particular, we have argued in favor of special-purpose algorithms for 
compilation into compatible default theories. Without question, these algorithms 
show a better performance than a theorem prover whose failure indicates that the 



116 I". SCHAUB 

underlying formula is satisfiable. For coherence, actually, notice that we can also 
compile default theories into compatible ones by means of compl(p, M) .  That 
is, a default theory (D, W) is compatible iff compl(p, M) is false for the matrix 
of W U Justif(D) U Conseq(D). 

Also, recall that the compilation of default theories leads to difficulties when- 
ever there are a large number of compatible default theories. Then, an 'on-line' 
approach is definitely preferable over an 'off-line' approach. In fact, this can also 
be accomplished by means of what we have developed so far. Let (CD) ~° be the 
set of w-clauses obtained by turning each 3-clause in CD into an w-clause. This 
leads us to the following corollary to Theorem 5.2, which allows us to reason 
from arbitrary and thus also noncompatible default theories. 

COROLLARY 5.3. Let (D, W) be a default theory in atomic format, and let qo 
be an atomic formula. Then, qa C E for some constrained extension (E, C) of 
(D, W) i f f compl ({ -~} ,  M) is true, and compl(Justif(D'),  M ~) is false for the 
matrix M of W U WD, for some WD, C_ WD. 

Observe that this corollary relies on Theorem 4.2, which shows that compatibility 
is verifiable on the same matrix M as used in compl({--,~}, M).  Also, we used 
the fact that for any (unit-)clanse {L} containing a single literal L, we have that 
compl(p, M U {{L}}) is true iff compl(p U { L } , M )  is true. Hence, we shifted 
all justifications on the initial path. In this way, the actual matrix M remained 
the same in compl({-~p}, M)  and compl(Justif(D'),  M~°). 

5.2. A CASE STUDY 

Aaron Rothschild has implemented the approach in [33] by slightly extending 
PPP, a PROLOG implementation of a (first-order) theorem prover carrying out the 
pool-based connection calculus [26]. The purpose of this implementation was 
to provide an initial case study in how far an existing theorem prover for the 
connection method has to be modified for incorporating admissibility. 

We briefly describe the main idea underlying the implementation while assum- 
ing some basic familiarity with the connection method: We prove in a goal- 
oriented fashion, starting from the goal and attempting to find complementary 
paths through the matrix. As soon as a path cannot be complemented by using 
facts only, we call in &clauses to achieve complementarity. As in Definition 5.1, 
we do not attempt to use ever-increasing submatrices, as stipulated in Defini- 
tion 4.2 for verifying admissibility. Rather, we enforce the admissible applica- 
tion of defaults by two extra conditions resembling the ones in Condition (3) 
in Definition 5.1: The first condition (corresponding to (3a)) says that only con- 
nections 'into' -y~-literals of &clauses {--,o~, 3'~} are permissible in the course of 
the backward chained search. In this way, a subgoal is never resolvable by the 
prerequisite c~ of a default rule. Once an inference step with a &clause is per- 
formed, the second condition restricts the resolution of subgoals with literals of 
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the current path to literals that entered the path after the aforementioned 'default 
step'. This amounts to discarding the literals of the path p in (3b) in order to 
avoid circular chains of inference. 

Importantly, these two conditions are implemented by simply adding another 
PROLOG clause (along with some case-analysis distinguishing 5- and co-clauses) 
to the PROLOG implementation of PPP. That is, apart from a single PROLOG clause 
the rest of our implementation corresponds to the original implementation given 
in [26]. Hence, it was possible to minimize modifications by utilizing as much 
of the original implementation as possible. 

In practice, however, the length of the proofs had to be limited by a parameter 
in the size of O([CwI x (ICDI + 1)) in order to guarantee completeness in the 
propositional case. Otherwise the implementation ran into infinite branches since 
PPP is a first-order theorem prover that deals with clause instances. A simpler 
PROLOG implementation that relies on the characterization in Definition 5.1 is 
given in Section 8. 

Finally, the question arises how our method can be transposed onto a high- 
performance theorem-prover like SETHEO [21]. In fact, this should not be that dif- 
ficult provided that we keep separating the verification of compatibility. SETHEO 

is a PROLOG-technology theorem prover written in the programming language C. 
It is built on top of the SETHEO-abstract machine that works with PROLOa-like 
roles. To this end, each clause, like {A V B}, is transformed into its contrapos- 
itives, ~A -+ B and ~ B  --+ A. Roughly speaking, this suggests the following 
two changes for dealing with G-clauses - apart from some case analysis. First, 
&clauses like {~ozr,'y~} are transformed in a single contrapositive c~6 --+ ~/6. 
Second, the head of such a '~-contrapositive' has to be proven by deleting all 
literals on the active path. Observe that these two restrictions correspond to 
Conditions (3a) and (3b) in Definition 5.1. A detailed study of modifying the 
treatment of contrapositives is given in [44, 25]. 

6. An Alternative Approach 

In the preceding section, we developed an algorithm for our method while aim- 
ing at implementing the approach by using existing automated theorem provers. 
For this purpose, we concentrated on minimizing the modifications to existing 
implementations. This has led to a pragmatic solution separating the verification 
of compatibility (or consistency) from that of complementarity and admissibil- 
ity. In this section, we investigate an alternative approach that requires more 
modifications to an automated theorem prover but that allows for integrating the 
verification of compatibility. 
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6.1. AN ALTERNATIVE CHARACTERIZATION OF EXTENSIONS 

The fundamental basis for the approach developed in the preceding sections 
was provided by Theorem 3.1. In particular, we have stressed the fact that semi- 
monotonicity allows for focusing on the default rules needed for proving a query, 
while developing the corresponding characterization of query answering in Corol- 
lary 3.2. 

In fact, semi-monotonicity offers yet another but conceptually different char- 
acterization of extensions. Observe that the specification given in Theorem 3.1 
employs a rather 'global' notion of consistency. Now, semi-monotonicity implies 
that extensions are constructible in a truly iterative way by applying one appli- 
cable default rule after another. This involves an incremental and thus rather 
local notion of consistency. To this end, semi-monotonicity leads us to the fol- 
lowing corollary to Theorem 3.1 that provides an alternative characterization of 
constrained extensions: 

COROLLARY 6.1. Let (D, W) be a default theory, and let E and C be sets of 
formulas. Then, ( E, C) is a constrained extension of ( D, W) iff 

E = Th(W U Conseq(D')) and 

C = Th(W U Justif(D') tO Conseq(D')) 

for a maximal D ~ C_ D such that there exists an enumeration (~i)ieI of D~, where 
for i C I we have that 

(1) W to Conseq({~0,. . . ,  ~i-1 )) F- Prereq(~i), and 
(2) W tO Conseq({30, . . . ,3i_l)  U Justif({30, . . . ,3i_l))  ~z ~Justif(~i)V 

~Conseq(3i). 

This specification explicates the formation of sequences of default rules that 
remained implicit in Theorem 3.1. In fact, Condition (1) spells out that D ~ has 
to be grounded in W. So the conceptional difference between the two alterna- 
tive characterizations rests on the second condition. Condition (2) expresses the 
aforementioned notion of incremental consistency. Here, the 'consistent' appli- 
cation of a default rule is checked at each step, whereas this is done jointly for 
all default rules in D ~ in Theorem 3.1. 

Corollary 6.1 provides the fundamental basis for the approach to query answer- 
ing, which we develop in this section. The characterization of query answering 
is analogous to the one given in Corollary 3.2. Observe that in Theorem 3.1 
groundedness and consistency constitute rather separate constraints on the 'gen- 
erating default rules' in D ~. We strongly relied on the possibility of separating 
these concepts in Section 5. In contrast to this, the concepts of groundedness and 
consistency are meshed together in Corollary 6.1. Hence, both concepts jointly 
direct the formation of sequences of default rules. This is the salient feature of 
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the approach developed in the sequel. Moreover, we can see in [39] that the 
combination of both concepts is very useful for implementing priorities. 

6.2. INCREMENTAL COMPATIBILITY 

Clearly, the 'global' notion of compatibility given in Definition 4.3 is inappro- 
priate in order to account for the above characterization. Rather Condition (2) in 
Corollary 6.1 requires an incremental approach in which compatibility is grad- 
ually verified each time a ~-clause is considered. This motivates the following 
definition. 

DEFINITION 6.1 (Incremental compatibility). Let Cw be a set of a>clauses and 
CD be a set of 6-clauses, and let II be a mating for Cw U CD. Let ({c~,  76~ }}i~I 
be an enumeration of t~(CD, II). Then, (Cw U CD, II) is incrementally compat- 
ible wrt I iff for all i C I,  there is no spanning mating for 

" ) u u (6.17) 

where/36i = Justif(~i). 

We say that (Cw U CD, i-I) is compatible at i in an index set I if (6.17) holds 
for i C I.  Moreover, we say that (Cw U CD, I-I) is incrementally compatible wrt 
an index set I if it is compatible at all i E I. 

The next theorem tells us that 'global' and incremental compatibility are in 
fact equivalent. 

THEOREM 6.2. Let Cw be a set of w-clauses and CD be a set of &clauses, 
and let II be a mating for Cw U C D. Let ({~o~6i , ")/di})iEI be an enumeration of 
~c( Cd, l-I). Then, ( Cw U CD, II) is compatible iff ( Cw U CD, II) is incrementally 
compatible wrt I. 

Consider our initial student example. Instead of checking whether the matrix in 
(4.8) has no spanning mating, we can stepwisely verify whether this holds for 
the following matrices. 

[S  As,] IS  A3l C~2 ] (6.18) 

In this way, we check first the compatibility of the facts {S} and the consequent 
of 61. Then, the same test is performed on the matrix extended by the consequent 
of 62. Note that at each step it is sufficient to consider only the noncomplementary 
paths obtained in the previous step. 

We obtain the following corollary to Theorem 4.3 and Theorem 6.2. This result 
shows that our incremental method is correct and complete for query answering 
in constrained default logic. 
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COROLLARY 6.3. Let (D, W) be a default theory in atomic format and ~ an 
atomic formula. Then, ~ E E for some constrained extension (E, C) of (D, W) 
iff there is a spanning mating II for the matrix M = Cw U CD U {{~qo}} of 
W U WD U {~qo} and an enumeration (ci)icI of tC(CD, H) such that (M, II) is 
admissible wrt I and incrementally compatible wrt I. 

Now, recall that by Theorem 4.2 compatibility and hence also incremental com- 
patibility can be verified by using 5-clauses, like {~o~,76 }, instead of clauses 
containing merely the consequent of a default, like {7~}, in the case of 'admissi- 
ble matrices'. Consequently, incremental compatibility can be equivalently veri- 
fied by replacing the matrices in (6.17) by matrices of the following form: 

) ( ;0)  
This offers the computational advantage that we can verify incremental compat- 
ibility on (almost) the same matrices as used for verifying admissibility. In fact, 
admissibility is checked on matrices of the form (cf. Equation (4.6)) 

,_l ) 

For admissibility, all paths through the latter matrix have to be complementary. 
For compatibility, there has to emerge an open path if we replace the clause 
{{~o~6~}} by the clause {{-~o~6~,76~}}, simply by adding the consequent of the 
default 5i. In addition, each such open path must not contain a literal complemen- 
tary to any justification in i-1 (Uj=0{{/3~j }}) u {{/3~ }}. This additional requirement 
is obsolete in the case of normal default theories. On the whole, Theorem 4.2 
provides a valuable refinement that allows for structure and information sharing 
while jointly verifying admissibility and compatibility. 

To illustrate this, let us look at our initial default proof in (4.4). For verifying 
its admissibility, we used the submatrices in (4.12). These are repeated as M1 and 
M3 below. In fact, we can share the use of these matrices for testing compatibility. 
This amounts to considering in turn the following submatrices of (4.4): 

MI : ~ 1  M~ : 
S 

m 3 
S Ah 

M4 

S A~t 

S A6~ Cs 2 
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We start by verifying whether all paths through matrix M1 are complementary. 
Since this is the case, M1 is admissible. For checking the compatibility of M2, 
we merely have to look for a noncomplementary path through the facts, here 
{{S}} and the consequent of 31,A&. All other paths are complementary by 
admissibility. In fact, the path {S, A~ 1 } is not complementary and so the matrix 
M2 is compatible. 

For verifying admissibility in the case of matrix M3, we can make use of 
the information gathered on Me. In this example, it is enough to check whether 
adding the negated prerequisite of ~2, ~A~2 closes all open path in matrix M2. 
In fact, this is the case since {S, A~I } in the only open path in the matrix M2 
and {,_q, Ar~ } U {-~A62} is complementary. The compatibility of matrix M4 is 
established in analogy to that of M2; again by reusing the information gathered 
while verifying admissibility for M3. The final proof of the query C in (4.4) is 
obtained by adding the query clause {~C} to matrix M4. Clearly, the resulting 
matrix is complementary so that the proof is completed. 

6.3. AN ALTERNATIVE ALGORITHM 

The general idea of our algorithmic approach is to proceed in a query-oriented 
manner. We extend the definition of compl(p, M)  as given in Definition 5.1 in 
the following way. We use a predicate compl(p, Cw, CD) for defining a declara- 
tive algorithm for deciding whether a matrix is complementary, admissible, and 
compatible. The first argument is a set of literals describing a partial path, the 
second argument represents a set of w-clauses, and the last argument accounts 
for 3-clauses. 

DEFINITION 6.2. Let Cw be a set of w-clauses and CD be a set of 6-clauses. 
Let p be a set of literals, and let Cw, C_ Cw and CD, C_ CD. Then we define 
compl(p, Cw,, CD, ) relative to Cw as follows. 24 

1. If Cw, U CD, = CD, L , 0, then compl(p, Cw,, CD,) is false. 
2. If Cw, ¢ o and c E Cw,, then compl(p, Cw,, CD,) is true iff the following 

two conditions hold for c = Cl U c2. 
(a) for all L E cl, L is complementary to some literal of p. 
(b) for all L E c2, there is a set of ~-clauses CD, L C_ CD, such that following 

two conditions hold. 
(i) compt(p U {L}, Cw,\{c}, CD,L) is true. 

(ii) compl(Justif(ULcc2 D~), C w  U ULcc2 C'D' L, ;g) is false. 
3. If CD, 7 ~ 25 and c E CD,, then compl(p, Cw,,UD,) is true iff the following 

two conditions hold for c = {~oz6, 3'6}. 
(a) ?6 is complementary to some literal of p. 
(b) There is a set of ~-clauses CD,, C_ CD, such that {--,c~6,3'6} C CD,\CD,, 

and the following two conditions hold. 
(i) compl({~oz6}, Cw, CD,,) is true. 
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(ii) compl(Justif(Dn U {6}), Cw V CD,, U {{-~ar, 76}}, O) is false. 

As in Definition 5.1, Cw and CD represent the original set of co- and &clauses, 
whereas Cw, and CD, function as parameters. Conditions (1) and (2) corre- 
spond to the ones in Definition 5.1. There are two differences. First, we have 
separated co- and &clauses. This separation allows for an easier formulation of 
Condition (3). Second, we have added Condition (2bii) in order to guarantee 
the compatibility of multiple subproofs found in (2bi). We explain the treatment 
of compatibility in (2bii) in the context of Condition (3bii) below. Anyway, we 
have that a matrix M (representing a satisfiable formula) consisting of co-clauses 
only is complementary iff compl(~,  M, 25) is true wrt the first two conditions of 
Definition 6.2. 

As in Definition 5.1, Condition (3a) corresponds to Condition (2a) and allows 
for solving subgoals on the actual path by the consequent of a default rule 
3'6 - provided Condition (3b) is satisfied. Condition (3b) combines the verifi- 
cation of admissibility with that of incremental compatibility. For that, a set 
of g-clauses CD,, is selected from the available set of &clauses CD,. CD,, is 
meant to represent a compatible subset of g-clauses that allows for deriving 
the 'prerequisite' o~6. In this way, CD,, can be seen as the 'default proof'  of 
ozr. Condition (3bi) corresponds to Condition (3b) in Definition 5.1; here it is 
restricted to the &clauses in CD,,. Condition (3bii) ' implements'  incremental 
compatibility. For coherence, the compatibility of &clauses in CD,, is verified 
by the part of compl(p, Cw, CD) accounting for co-clauses only. For this, we 
tum all &clauses in CD,, U {{--,o~6, 76}} into co-clauses and add the latter ones to 
the original set of co-clauses in Cw. In this way, we make use of Theorem 4.2 
and pass the matrix Cw U CD,, U {{--,o~6}} - whose admissibility is verified in 
Condition (3bi) - to the compatibility check in (3bii). There, the clause {--,c~6} 
is extended by 3'6. Moreover, we push the justifications of the default rules in 
D" along with the justification of the considered default rule 3 on the path. 
This additional requirement is obsolete in the case of normal default theories. 
The failure of compl(Jus t i f (D"U {~}), Cw U CD,, U { {-,ar, 76 } }, ~) indicates 
that W U Conseq(Dn U {8}) U Justif(D" U {8}) is consistent (by completeness 
of the standard connection method). A minimal condition that is equivalent to 
Condition (3bii) is the following one: 

(ii') compl(Conseq(Dn U { d}) U Justif(D") U {8}), Cw, e) is false. 

The incoherence of this condition to Condition (3bi), however, is not favorable 
for an efficient algorithm meshing conditions (3bi) and (3bii). However, in the 
above algorithm, neither condition benefits from the information gathered in the 
other one, since both are verified separately for the sake of simplicity. 

To illustrate the definition of compl(p, Cw, CD), let us reconsider the deriva- 
tion given in (5.14) to (5.16). There, we have shown that C is a default conclusion 
of our initial default theory (2.1). For this, we have shown that compl({-~C}, M) 
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is true for the 'compatible' matrix M = {{S}, {--n~q3t, A31}~ {--lAd 2, C~2} }. Now, 
the restriction to 'compatible' matrices is obsolete. Rather we show that 

compl({-,C}, {{S}}, {{-~Sri, Ac~l}, {~A~2,C62}, {'-'A53, E53 }}) is true. 

Observe that together, the query clause {--,C}, the co-clause in {{S}}, and 
the 5-clauses in {{--S~1, A61}, {-'A62, C~2}, {~A63,/?763}} form the matrix giv- 
en in (4.4). 

As in Section 5, we select clauses in a connection-driven way. Thus, we 
select the clause {-~A62, C62} since C62 is complementary to the literal -~C on 
the active path. This establishes Condition (3a). Next, we have to verify Condi- 
tion (3b). For this, we have to find a subset CD,, of the remaining &clauses in 
{{-'1S61 , Arl }, {-hA63, E6 3 }} that satisfies Conditions (3bi) and (3bii). For illustra- 
tion, we direct our subsequent choises along the line sketched by the derivation 
in (5.14) to (5.16). Accordingly, we choose CD,, = {{-~$6~, Arl}}. This choice 
along with the previously chosen &clause c = {--'A62, C62} yields in turn the 
following evaluations. 25 

1. compl({~A62 }, {{S}}, {{~$6~, Ar~ }}) is true, since by Condition (3), where 
c = {~Sri, Arl } and CD,, = 2s, 
(a) compl({--S~ }, {{S}}, ~) is true by (2a). 
(b) compl(e, {{S}, {-~$6~, Arx }}, ~) is false by (2b) and (1). 

2. compl({C62 }, {{S}}, {~S,A}, {~A, C}}, ~ ) i s  false, since by repeated appli- 
cations of (2) 
compl({C62},S,A, C},2~,~) is false. 

Items (1) and (2) confirm Condition (3bi) and (3bii) so that our proof of C is 
completed. 

Observe that choosing CD,, = {{-nSrl, Arl}, {~A63, E63} } yields the same 
result, while the choices CD,, = Z or CD,, = {{--'A63, E63 }} lead to a failure. 
One possibility for choosing UD,, is to consider ever-increasing subsets of the 
given set of &clauses CD,. Another, more promising-possibility is to leave the 
choice of CD,, to the admissibility check in (3bi). In concrete terms, this can be 
accomplished by passing all &clauses in CD, to Condition (3bi) and adding an 
additional argument to compl(p, Cw, Co) in order to account for the &rules that 
are actually used for establishing admissibility in (3bi). Then, the returned set of 
6-clauses is checked for compatibility in (3bii). Such an approach is described 
in Section 8. 

For a complement, consider the default rules (S : A)/A and (A : --,S)/E 
along with the fact S. For answering the query E, we have to check whether 

compl({-~E}, {{S}}, {{--1S61 , Ar~ }, {-hA53 , E63 }}) is true. 

For solving the negated query --,E, we have to select clause {-hA53 , E53 } in 
Condition (3). This, however, requires by Condition (3bii), where the active path 
{-~S} is formed by the justification of the default rule (A : -~S)/E, that 

compl({=S}, {{S} U CD,, U {{~A63, E~3}}}, Z) is false 
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Algor i thm Method  Prun ing  by ] 
admissibili ty compat ibi l i ty  I 

A M incremental  compila t ion ] 
A' M incremental  addit ional  test I 
A i M i incremental  incremental  ] 

Fig. 1. A summary of the algorithmic approaches. 

for some 5-clauses CD,,. This is impossible, however, since any path through the 
underlying matrix contains the connection {S, ~S}.  That is, the justification ~ S  
is inconsistent with the set of facts {S}. 

Finally, we obtain the following result showing that our incremental algorithm 
is correct and complete for query answering in constrained default logic: 

THEOREM 6.4. Let (D, W) be a default theory in atomic format, and let 
be an atomic formula. Then, qo E E for some constrained extension (E, C) of 
(D, W) iff compl({~qo}, Cw, CD) is true, where Cw is the matrix of W and 
CD is the matrix of WD. 

7. Discussion and Related Work 

In this section, we summarize the different versions of our approach developed 
in the preceding sections. Afterwards, we compare our approach with other pro- 
posals found in the literature. 

Our approach integrates the distinguishing features of default logics into a 
classical deduction method. This allows for a homogeneous characterization and 
treatment of default proofs at the level of the calculus. In this way, there are no 
limits for interactions between the three notions of complementary, admissibili- 
ty, and compatibility - corresponding to classical deduction and the concepts of 
groundedness and consistency in default logic. Our basic method, say M, relies on 
Theorem 3.1 and provides with admissibility and compatibility two independent 
concepts restricting default proofs to classical proofs confirming the two previous 
properties. To a turn, we refined our approach by meshing together the concepts 
of admissibility and (incremental) compatibility. While the resulting method, say 
M i, leaves admissibility unaffected, it offers an incremental approach to compat- 
ibility in which the consistent usage of 6-clauses is gradually verified. Hence, the 
conceptional difference between the two methods M and M i rests on the treat- 
ment of consistency. While M relies on a rather global notion of consistency, M i 
employs an incremental and thus rather local notion of consistency. 

Apart from the encoding of default rules as implication, a distinguishing fea- 
ture of our approach is the formation of sequences of 5-clauses. In M, this 
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formation is mainly affected by the notion of gmundedness, while consistency 
plays more or less the role of a global constraint. In contrast to this, ground- 
edness and consistency are meshed together in M i and hence jointly direct the 
formation of sequences of &clauses. In both versions, groundedness and consis- 
tency are integrated into the underlying logical calculus. This is another feature 
distinguishing our methods from others found in the literature. 

We have seen that both methods result in algorithms supporting an easy con- 
current verification of complementarity and admissibility. In other words, ground- 
edness is enforced while query answering. The concurrent verification of con- 
sistency is added to the algorithm derived from M i. Moreover, we have shown 
in Section 6 that M i allows for structure and information sharing while joint- 
ly verifying admissibility and (incremental) compatibility. All of the presented 
algorithms are query oriented. This reflects the idea that the theorem prover is in 
charge of finding a proof that is gradually confirmed by the concepts of admissi- 
bility and compatibility in the course of the proof search. In this way, the proof 
search is directed by the notions of groundedness and consistency. A summary 
of the derived algorithms along with their features is given in Figure 1. 

We have proposed an 'off-line' integration of compatibility in order to min- 
imize modifications while using existing automated theorem provers for imple- 
menting our method. This has resulted in the algorithm given in Definition 5.1, 
say A, which allows for simultaneously verifying complementary and admissibil- 
ity. This approach is derived from our basic method M that allows for separating 
the concepts of admissibility and compatibility. Algorithm A expects matrices 
stemming from compatible default theories. In this way, it never runs into redun- 
dant computations with incompatible defaults. This approach is advantageous 
over all others whenever there are few compatible default theories. In such a 
case, the derivation of a query is not 'distracted' by any consistency checking, 
since all conflicts have been 'compiled away'. In fact, we can verify whether 
a query is in the unique extension of a compatible default theory without any 
consistency checks. In the worst case, however, there may be an exponential 
number of compatible default theories. 

A simple alternative to compiling default theories is described in Corollary 5.3. 
This variant, say N, uses algorithm A but refrains from compiling consisten- 
cy and rather verifies compatibility for each completed, admissible proof. This 
approach shares with A the advantage of minimizing changes to existing automat- 
ed theorem provers. Also, it avoids representing a possibly exponential number 
of compatible default theories. However, it is a 'generate and test' approach in 
principle, in which we generate admissible proofs and verify their compatibili- 
ty afterwards. In the worst case, however, this belated compatibility check may 
have to be performed exponentially many times. Consequently, A ~ may cause a 
lot of redundancy, since incompatible proofs are not avoided in the course of the 
proof. 
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Algorithm A i is derived from M i and hence integrates the verification of 
compatibility (cf. Definition 6.2). As A I, this approach is not restricted to matrices 
stemming from compatible default theories. Rather each g-clause has to confirm 
admissibility and compatibility when entering a proof. In this way, redundant 
computations with incompatible defaults are avoided. In general, this approach 
is advantageous over the other ones whenever a default theory contains many 
conflicting default rules. Then, the additional costs of repeated consistency checks 
can be amortized by pruning many incompatible subproofs. The disadvantage 
of this approach is, however, that it requires more modifications to existing 
automated theorem provers. This renders algorithm A i orthogonal to A (and N). 
Also, the successive consistency checks may slow down the performance of 
the prover. This applies in particular to domains where proofs are usually built 
from compatible default rules only. A promising way of avoiding this is to use 
model-checking techniques as described in [43] (see also Section 9). 

In all, we argue that the concurrent verification of admissibility while query 
answering is indispensable. In particular, we have demonstrated that this can 
be done with few modifications to an automated theorem prover. The treatment 
of compatibility is more subtle. Here, a lot depends on the underlying theory. 
That is, if a default theory comprises a feasible number of compatible default 
theories, then a precompilation of compatibility is favorable. Otherwise, that is, if 
a default theory comprises too many compatible default theories, an integration 
of compatibility is preferable, as done in A i. This has been confirmed by our 
experimental studies (see Section 8). On the whole, the common general idea of 
all versions of our approach is to employ a goal-directed search for a proof while 
minimizing redundancy. We will see below that other approaches exhibit a much 
stronger separation of the notions of derivability, groundedness, and consistency, 
which often causes much more redundancy. 

A related approach is given in [30] for normal default theories. The first con- 
ceptual difference is given by the encoding of default rules. While we convert 
default rules into standard implications (along with some qualifying conditions), 
Reiter considers initially only their consequents. The latter requires a separate 
verification of the prerequisites, which finally leads to an iterative format of 
default proofs: Given a default theory (D, W) along with a query ~, the idea 
is to determine a subset Do of D such that W U Conseq(D0) k qa. Next, the 
problem is to determine a set D1 C_ D such that W U Conseq(D1) ~- Prereq(D0). 
This process is iterated until Dk = o for some k. In a final step, it is checked 

k whether W U Ui=0 Conseq(Di) is consistent. In this way, a default proof consists 
of numerous successive proofs depending on the number of iterations required 
for verifying the respective prerequisite. This leads to meta-theoretic charac- 
terization of defaults proofs, since the approach steps outside the underlying 
calculus, namely, linear resolution. This is due to the iterative format of default 
proofs and the separation of consistency checking. In addition, this is a very 
rigid way of query answering. This is so because each derivation of the form 
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W U Conseq(Di) ~- Prereq(Di_l)  has to be completed before one can carry on 
with the next step. In contrast, our approach integrates groundedness and con- 
sistency into the underlying calculus by taking advantage of structure-oriented 
theorem proving. This allows for compacting the aforementioned iterations into 
a single default proof. In this way, our approach imposes no format on the way 
we proceed for answering a given query. In all, the notion of a default proof 
manifests a second conceptional difference to Reiter's approach. 

From an algorithmic perspective, we observe that Reiter's procedure is also 
query oriented and in favor of a separate confirmation of consistency, as algo- 
rithm N.  That is, consistency is verified after a proof has been completed. As 
argued above, this causes a lot of redundancy in the presence of many proofs built 
upon incompatible defaults. In particular, one might have to generate numerous 
proofs before consistency is confirmed or even denied. Also, in the top-down 
resolution procedure of [30] groundedness is not explicitly taken into account, 
so that the proof procedure may exhibit a nonterminating behavior when faced 
with cyclic default rules, like (A • C ) / C  and (C • A ) / A  (and nothing else). 26 
Such cyclic inferences are not possible within our algorithm, since groundedness 
is explicitly checked. 

Camilla Schwind introduced in [41] a tableau-based method for computing 
extensions of normal default theories. This work has been extended in [42] 
to general default theories. Vincent Risch has adapted the approach in [32] to 
Lukaszewicz's variant of default logic [22]. 

In [42] a tableau-based theorem prover is used to construct a set of gener- 
ating defaults D t C_ D of an extension of a default theory (D, W) in Reiter's 
default logic. The idea is to start from a tableau, or simply a matrix in our jar- 
gon, representing the set of facts, W, and the consequences of all default rules 
in the original set of default rules, D. Then, consequents of default rules are 
successively removed until there is an open path through the resulting matrix of 
W U Conseq(D t) (where all defaults in D \ D  ~ have been removed). This indi- 
cates that W U Conseq(D ~) is consistent. Observe that this procedure amounts 
to computing compatible default theories (cf. Section 5). Accordingly, we may 
obtain exponentially many tableaux, each representing a compatible default the- 
ory. Next, each default in D t and D \ D  ~ is inspected. For each d C D ~, it is 
checked that its prerequisite is derivable from the matrix of W U Conseq(D ~) 
and that its justification is consistent wrt to the same matrix. For each ~ E D \ D  ~, 
one of the two previous conditions must fail. The inspection of the default rules 
in D \ D  t is obsolete for normal default rules. In such a case, also the consistency 
of the justification of the default rules in D t is guaranteed since then we are 
reasoning from a 'compatible' set of default rules. In a final step, groundedness 
is verified for the default rules in D ~. This is done in separation from the previous 
steps. 

The logical basis of Schwind's approach is a (fixed-point) criterion resem 
bling the one given in Theorem 3.1. However, this characterization requires the 
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inspection of all default roles in D due to the lack of semi-monotonicity in regu- 
lar default logic. The conceptional differences to our approach are the following. 
First, default rules are represented by their consequents, which leads necessarily 
to a separate derivation of their prerequisites. Although our algorithms show a 
similar treatment of prerequisites, this is not stipulated by their underlying meth- 
ods. Second, the proof procedure in [42] is merely consistency-driven, i.e., only 
those steps are performed that ensure the consistency of the formulas under con- 
sideration. No query is taken into account because entire extensions are computed. 
Third, groundedness of D ~ is checked separately at the end of the computation 
and thus leads to additional computational costs of the algorithm. As argued in 
the case of separating consistency, such a 'generate and test' approach may cause 
a lot of redundancy, since nongrounded proofs are not avoided in the course of 
the procedure. The same consideration apply to the approach described in [32]. 
This renders both approaches orthogonal to ours. 

In [19] a default theory is transformed into a TMS network [13]. The nodes 
of the TMS reflect any possible dependency between the formulas of the default 
theory; thereby the derivability relation is 'coded' into the network. Finally, 
there exists a one-to-one correspondence between an admissible labeling of such 
a TMS network and the set of generating defaults of an extension of the default 
theory. However, this encoding requires the computation of a tremendous amount 
of derivational dependencies which might not even contribute to the formation 
of an extension. 

In the two last approaches, entire extensions are computed. While the tableau 
approach is close to classical theorem proving, the TMS approach is complete- 
ly abstracted from derivability in the base language. Once all extensions are 
computed using any of the two approaches, query answering may be performed 
using a small number of steps (within the respective framework). In the worst 
case, however, all - and there may be exponentially many - extensions have 
to be considered for query answering. Other approaches for computing entire 
extensions of default theories in Reiter's default logic are described in [15, 46]. 
Both approaches use approximation techniques for finding a set of generating 
default rules while abstracting from the underlying theorem prover. In [9], it 
is shown that this leads to an exponential amount of space in order to avoid 
non-termination. 

With our method no such precomputation of all extensions in their entirety is 
needed (even though it is possible [33]). On the other hand, algorithm A may be 
seen as compromising the 'off-line' computation of compatible sets of defaults 
with 'on-line' query answering. So our general idea is to employ a goal-directed 
search for a proof while minimizing redundancy. 

A number of other algorithms have been conceived for restricted classes of 
defaults. In particular, prerequisite-free normal default theories are attractive can- 
didates for implementations, since they do not exhibit dependencies between the 
prerequisites of defaults. Thus, there is no need to enforce groundedness. Query 
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answering in our approach then reduces to query answering in classical logic 
with an additional consistency check. Other implementations for this fragment 
of default logic exist [2, 29, 4]. 

Niemelfi provides in [27, 28] different methods for nonmonotonic reasoning 
based on autoepistemic reasoning. This and other approaches to autoepistemic 
logic [24] are in principle adaptable to default logics via certain transformations 
between default and autoepistemic logic. The discussion of these approaches is, 
however, beyond the scope of this paper. 

8. Experiments 

In this section, we present prototypical implementations of the algorithms describ- 
ed in the previous sections. The purpose of this is twofold. First, we wish to show 
how these approaches can be implemented. Second, we wish to provide some 
experimental analysis. 

We have seen how easily admissibility and compatibility are simultaneously 
verifiable. Hence, it will be interesting to investigate whether this is a feasi- 
ble process. Moreover, we explore the issue of compatibility by comparing the 
results obtained in the diverse approaches. In all, we wish to know which mod- 
ifications to an existing automated theorem provers are worthwhile under which 
circumstances. 

We have refrained from using any advanced implementation techniques in 
order to keep the exposition transparent. Thus, the prototypes are intended to 
provide transparent case studies for certain default reasoning architectures rather 
than efficient implementations. For instance, none of the given programs makes 
use of structure sharing, as suggested in Section 6. Moreover, such enhancements 
would influence the different settings in different ways so that the corresponding 
results would be hardly comparable. Rather we use in each implementation the 
same classical inference mechanism and the same way of consistency checking. 
This allows for a simple common implementation platform. For simplicity, we 
restrict ourselves to normal default theories. 

8.1. A STRAIGHTFORWARD IMPLEMENTATION 

We start by giving an extremely simple and straightforward PROLOG implementa- 
tion of Eder's algorithm for the standard connection method [14]. This implemen- 
tation serves two purposes. First, it provides the basic theorem proving techniques 
that we will use for our prototypical implementations. Second, it supplies us with 
a simple way for consistency checking. 

The implementation given in Figure 2 corresponds to the first two conditions 
given in Definition 5.1. Matrices are represented by lists of lists of literals. A 
literal is the form a or - a .  The first program clause of compl/2 implements 
Condition (1) in Definition 5.1, while the second one selects clauses out of the 
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compl(_Path, [] ) :- !,fail. 
compl( Path, Matrix ) :- 

select(Clause,Matrix,MatrixRest),!, 
complC(Path,Clause,MatrixRest). 

complC(_Path, [] ,_Matrix ) . 
compIC( Path, [LiterallClauseRest], Matrix ) :- 

complL(Path,Literal),!, 
complC(Path,ClauseRest,Matrix). 

complC( Path, [Literal[ClauseRest], Matrix ) :- 
compl([niteral[Path],Natrix), 
complC(Path,ClauseRest,Matrix). 

compiL( Path, Literal ) :- 
neg(Literal,NegLiteral),), 
member(NegLiteral,Path). 

Fig. 2. An implementation of Eder's algorithm. 

matrix M and initiates their treatment in complC(Path, Clause,MatrixRest) 
according to Condition (2) in Definition 5.1. complC/3 verifies that each literal 
in a considered clause satisfies either Condition (2a) or (2b). That is, while 
the first program clause of complC/3 captures the limiting case, the second one 
accounts for Condition (2a) and the third one accounts for Condition (2b). Finally, 
complL/2  checks whether the negation of the literal L i t e r a l  is a member of 
the path Pa th .  Auxiliary program clauses, like neg /2 ,  are given in Figure 3. The 
predicates member/2,  s e l e c t / 3 ,  etc. have their obvious meaning and belong to 
the underlying PROLOG system. 

As mentioned above, we refrain from using any advanced implementation 
techniques in order to provide a simple common implementation platform. For 
this purpose, we verify the compatibility of a set of 6-clauses relative to a set of 
co-clauses by appeal to compl /2 .  This results in the predicate c o m p a t i b l e / 2  giv- 
en in Figure 4. c o m p a t i b l e / 2  takes a list of w-clauses CW and a list of &clauses 
CD, unions CW with the consequents of the 6-clauses in CD, and checks whether 
the result satisfies not(compl([] ,M)).  This amounts to a classical satisfiability 
test. 

8.2. IMPLEMENTATIONS SEPARATING COMPATIBILITY 

In this section, we give implementations that simultaneously verify admissibility 
and complementarity but separate the verification of compatibility. That is, we 
discuss implementations of the algorithm given in Definition 5.1. 

For illustration, let us start by introducing the underlying representation. Con- 
sider the default theory 

({S'A S'-~E A:C A'E} }) 
A ' ~ E  ' C ' E , {S  . 
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neg( -Literal, Literal ) "- ! .  

neg( Literal, -Literal ) 

split( [], [], [] 
split( [ClauselMatrixRest], CW , [ClauselCD] 

d_clause(Clause),!, 
split(MatrixRest,CW,CD). 

split( [ClauseIMatrixRest], [Clause)OWl, CD 
w_clause(Clause),!, 
split(MatrixRest,CW,CD). 

d_clause( [ _AlphaLiteral > _GammaLiteral ] ). 
w_clause( Clause ) :- 

not(d_clause(Clause)). 

omega( [] , [] ) . 
omega( [[_Alpha>Gamma]~CDRest], [[Samana]ICWRest] ) :- 

omega(CDRest,CWRest). 

, 
) : -  

) : -  

Fig. 3. Auxiliary program clauses. 

compatible( CW, CD ) :- 
omega(CD,CDOmega), 
union(CW,CDOmega,M), 
n o t ( c o m p l ( [ ] , M ) ) .  

Fig. 4. A simple way of checking compatibility. 

The representation of this default theory is given in the left column of Fig- 
ure 5. As mentioned above, co-clauses are lists of literals. &clauses like {-~S, A} 
are represented as Is > a]. This allows for an easy distinction between co- and 
d-clauses and moreover between 'prerequisites' and 'consequents' of &clauses. 
The compatible counterpart of the default theory is given in the right column 
of Figure 5. For transparency, we have chosen this naive representation rather 

sample (students, [ 
[s], 
[ s > a ]  , 
IS> -e], 
[a>e], 
[a>e] 
]). 

sample (student sC, [ 
Is], 
[s>aj , 
Is> -el, 
[a>c] 
]). 

sample (studentsC, [ 
Is], 
Is>a], 
[a>e], 
[a>e] 
]). 

Fig. 5. The representation of our example. 
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compl( Path, M, Proof ) :- 
split(M,CW,CD), 
compl(Path,CW,CD,CW,Proof). 

compl(_Path, [], [] .... Proof ) :- !,fail. 
compl( Path, CW, CD, M, Proof ) :- 

select(OmegaClause,CW,CWRest), 
select(Literal,OmegaClause,OmegaClauseRest), 
complL(Path,Literal); 
compIW(Path,OmegaClauseRest,CWRest,CD,M,Proof). 

compl( Path, CW, CD, M, Proof ) :- 
select([Alpha>Gamma],CD,CDRest), 
complL(Path,Gamma),!, 
complD(Path,[Alpha>Samma],CW,CDRest,M,Proof). 

complW(_Path, [3 ,_CW,_CD,_M, [] ) . 
complW( Path, [LiterallClauseRest], CW, CD, M, Proof ) :- 

complL(Path,Literal), 
complW(Path,ClauseRest,CW,CD,M,Proof). 

complW( Path, [LiterallClauseRest], CW, CD, M, Proof ) :- 
compl([LiterallPath],CW,CD,M,Proofl), 
complW(Path,ClauseKest,CW,CD,M,Proof2), 
append(Proofl,Proof2,Proof). 

complD(_Path, [Alpha>Gamma],_CW, CD, M, [[Alpha>Gamma]lProof] 
neg(Alpha,NegAipha), 
compl([NegAlpha],M,CD,M,Proof). 

) : -  

Fig. 6. h An implementation of Algorithm A. 

than a more efficient one where each 6-clause in represented only once. Such a 
representation is used in [33]. 

The implementation, I say, of the algorithm in Definition 5.1 is given in Fig- 
ure 6. As in Definition 6.2, we have separated co- and &clauses. Moreover, we 
have extended each predicate by two additional arguments: one containing the 
original set of co-clauses, and another one accumulating the proof of the query. 
Observe that the counterpart of compl/2 in Figure 2 is given by compl/5. 
The principal difference is that compl/5 selects co- as well as &clauses in a 
connection-driven way. That is, a clause is selected only if one of its literals is 
complementary to a literal on the active path. The counterpart of complC/3 in 
Figure 2 is given by complW/6 and complD/6, complW/6 treats co-clauses and is 
identical to complC/3 in Figure 2. &clauses are processed by complD/6. Since 
the complementarity of the consequent Gsrnrna to one of the literals on the active 
path is checked in compl/5, merely Condition (3b) in Definition 5.1 remains to 
be verified by complD/6. This is done by compl([NegAlpha],M, CD, M, Proof) .  
Observe that this is the point where the original set of co-clauses M 'reenters' 
the proof. This is necessary for checking admissibility. If the last subgoal in 
complD/6 succeeds, the 6-clause [Alpha > Gamma] is added to the proof in 
Proof .  
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A query like e is posed to the 'knowledge base' s t u d e n t s C  27 in Figure 5 by 
evaluating the following PROLOG query: 

'~ -- sample(s tudentsC,M),  compl([--e], M, P). 
This yields the answer: 
p : > e], [s > a]]. 
We have tested the implementation on numerous examples. First of all, how- 

ever, let us consider the results on the s t uden t sC  example given in Figure 5. All 
results on this example are summarized in Figure 7. The left column of tables 
given there shows the results on querying - e ;  the right one does the same for 
the query e. The tables have the following format2S: 

calleeName/calleeArity callerName/callerArity count 

The number given in count expresses the number of calls of ealleeName from 
cal lerName.  Note that we keep track only of callers inside the considered imple- 
mentation. In this way, we discard for instance all calls from predicates in the 
program given in Figure 2. 

The first line of tables in Figure 7 gives the results of implementation I. It 
is worth noticing that compl/5 has been called two times from compl/3 on the 
query e. This expresses the problem with our naive representation of compatible 
default theories. In fact, the program tries to prove e first from the first compatible 
default theory in Figure 5, which is impossible. Afterwards, it finds a proof by 
looking at the second compatible default theory. Usually, connection method 
theorem provers employ so-called connection graphs that indicate the location of 
clauses containing complementary literals. Clearly, such a data structure would 
avoid this problem in our example. 

For comparison, we have also implemented algorithm A'. Its implementation, 
say 1', is obtained by replacing the definition of compl/3 in Figure 6 by the one 
given in Figure 8. The results on the students example are given in the second 
line of tables in Figure 7. Observe that c o m p a t i b l e / 2  is called only once. This 
indicates that both proofs were initially found. That is, each of them was formed 
by a set of compatible default rules. We will take up this algorithmic variant of 
A in the next subsection. 

The major question addressed in this subsection is whether the integration of 
admissibility slows the underlying theorem prover. To answer this question, let us 
consider the exemplary (compatible) matrices az and pyramid along with their 
classical counterparts azW and pyramidW obtained by replacing each ~-clause like 
[a > b] by a Hornclause like [ -a ,  b]. The corresponding 'knowledge bases' are 
listed in Figure 9. In turn, we query both the 'default knowledge bases' and their 
classical counterparts with the same query. The results given in Figure 10 speak 
for themselves. In fact, we observe that the 'default proofs' (in the left column 
of Figure 10) need in all respects less counts than their classical counterparts (in 
the right column). This is a strong argument in favor of our approach to 'on-line' 
admissibility (or groundedness) checking. 
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8.3. IMPLEMENTATIONS INTEGRATING COMPATIBILITY 

This section gives implementations that integrate the verification of compati- 
bility. Figure 11 contains an implementation of algorithm A i, as described in 
Definition 6.2. This implementation is obtained from the one given in Figure 6 
by modifying the definitions of complW/6 and complD/6. As stipulated in Con- 
dition (2bii) in Definition 6.2, we extended complW/6 in order to check the 
compatibility of all accomplished subproofs. This modification is given by the 
last two lines of complW/6 in Figure 11. Analogously, we have added a single 
line of code to complD/6 in order to check the compatibility of the considered 
&clause with the accomplished subproof. The results obtained in our simple 
students example are the same as for the previous implementations with the 
exception that c o m p a t i b l e / 2  is called twice in the case of the query e. This 
reflects the fact that two &clauses are used for deriving e. See the tables in the 
third line of Figure 7. 

It is interesting to observe that the implementation avoids the selection of the 
sets of &clauses CD, n and CD,, in conditions (2bii) and (3bii), respectively. As 
suggested in Section 6, we leave the selection of these sets to the theorem prover 
along with the admissibility check by taking the &clauses obtained from the 
subproof in Proof  in complW/6 and complD/6. In this way, compatibility acts 
as a local constraint on subproofs. In fact, we often observed that default proofs 
in non-artificial examples were quite rarely corrected by the compatibility check. 
Hence, the resulting default proofs contained only few occasions for distracting 
the theorem prover by choosing incompatible &clauses. 

For comparison, we have also implemented a 'generate-and-test' version, 
called I~, in which arbitrary subsets are generated and afterwards treated by 
admissibility and compatibility. This has been done by replacing the definition of 
complD/6 in Figure 11 by the one given in Figure 12. The predicate subseq0/2  
is provided by the underlying PROLOG system and is used to generate subsets 
(or better subsequences) of the 8-clauses at hand. Even in our simple students 
example this yields a drastic increase of calls to the respective predicates. This 
can be verified by looking at the tables in the last line of Figure 7 and comparing 
them with the ones given for I i. 

In the remainder of this section, we analyze the influence of the compatibility 
check. For this purpose, we have slightly extended example az, given Figure 9. 
We have added the ~-clauses 

I-c,-hi, [z,-c], [z,-g], [z,-o], [z,-s], [z,-w] 

to az. We call the resulting example azno. The purpose of the six a;-clauses 
containing the literal z is to provide several ways of proving z. However, all of 
them are denied because c and b are inconsistent by I-c,--b].  Hence, there is 
no proof for z. The left column of Figure 13 summarizes the results obtained in 
the various implementations. It is interesting to observe that our implementation 
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I szudentsC/-e 
compl/5 compl/3 
compl/S complD/6 
compiD/6 compl/S 
complL/2 compl/S 
complW/6 comp1/5 
neg/2 complD/6 
neg/2 complL/2 

I' s tudents / -e  
compatible/2 comp1/3 
compl/5 comp1/3 
compl/5 complD/6 
complD/6 compl/5 
compIL/2 compl/S 
complW/6 compl/5 
neg/2 complD/6 
neg/2 compiL/2 

J* students/-e 
compatible/2 complD/6 
compl/5 compl/3 
compl/5 complD/6 
complD/6 compl/5 
compiL/2 compl/5 
complW/6 compl/5 
neg/2 complD/6 
neg/2 complL/2 

I~ s~udents/-e 
compatible/2 compiD/6 
compl/S compl/3 
compl/5 complD/6 
complD/6 compl/5 
complL/2 compl/S 
complW/6 compl/5 
neg/2 compiD/6 
neg/2 complL/2 

4 
1 
4 
1 
7 
4 
1 
21 

I 
comp1/5 
compl/5 
complD/6 
complL/2 
complW/6 
neg/2 
neg/2 

studentsC/e 
compl/3 
compID/6 
compl/5 
compl/5 
compl/S 
complD/6 
compiL/2 

2 
2 
2 
ii 
1 
2 
II 

J' students/e 
compatible/2 compl/3 
compl/5 comp1/3 
compl/S complD/6 
complD/6 compl/5 
complL/2 compl/5 
compIW/6 compl/5 
neg/2 complD/6 
neg/2 complL/2 

I 
1 
2 
2 
8 
1 
2 
II 

[~ students/e 
compaZible/2 complD/6 
compl/5 compl/3 
compl/5 complD/6 
compID/6 compl/5 
complL/2 compl/5 
complW/6 compl/5 
neg/2 compiD/6 
neg/2 complL/2 

2 
1 
2 
2 
8 
1 
2 
13 

~ s tudents /e  
compatible/2 comp1D/6 
compl/S compl/3 
compl/5 compID/6 
complD/6 compl/5 
complL/2 compl/5 
compIW/6 compl/5 
neg/2 complD/6 
neg/2 complL/2 

4 
1 
8 
3 
19 
2 
3 
34 

Fig. 7. Results in the student example. 

compl( Path, M, Proof ) :- 
split(M,CW,CD), 
compl(Path,CW,CD,CW,Proof), 
compatible(CW,Proof). 

Fig. 8. I': The change for algorithm A'. 

I i (integrating compatibility) invokes fewer times the predicate neg/2 than I' 
(which separates compatibility) - even though I i performs almost twice as much 
compatibility checks, namely, 3914, as I', which performs 1957 compatibility 
checks. This is remarkable since neg /2  is one of the innermost predicates of the 
'theorem-proving loop'. In this way, the incremental compatibility check pays 
off. The least number of calls to neg /2  is done by program I that deals with 
'compatible matrices'. 
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sample (az, [ 
Ca],. 
[a>bJ 
[b>c] 
[c>d] 
[d>e] 
[e>f] 
If>g] 
[g>h] 

l h>i] i>j] 
[j>k] 
[k>l] 
[l>m] 
[re>n] 
In>o] 
[o>p] 
[p>q] 
[q>r] 
[r>s] 

I s>t], t>u], 
[u>v], 
Iv>w], 
Iv>x], 
[x>y], 
[y>z] 
]). 

sample (azW, [ 
[a], 
[-a,b] 
[-b,cJ 
C-c,dJ 
[-d,e] 
[-e, L ] 
[-f,gJ 
[-g,h], 
[-h,i], 
[-i,j], 
[-j,k], 
[-k,1], 
[-1,m], 
[-m, n]. 
[-n,o], 
[-o,p], 
[-p, q], 
[-q,r], 
[-r,s], 
[ - s , t ] ,  
C-t,u], 
[-u,vj, 
[ -v ,wj ,  
[-w,xJ, 
[-x,y], 
[-y,z] 
]). 

sample(pyramid,[ sample(pyramidW,[ 
[at], [al] ' 
[a2], [a2] : 
[a3], [a3], 
[a4], [a4], 
[aS], [aS], 
[a6], [a6], 
[a7], [aT], 
[~81, [aS], 
[al>bl], [-al,bl], 
[a2>b2], [-a2,b2] 
[ -bl , -b2,c12],  [-b1,-b2,c12], 
[c12>d12], [-c12,d12], 
[a3>b3], [-a3 b3], 
Ea4>b4], [-a4:b4], 
[-b3,-b4,c34], [-b3,-b4,c34], 
[c34>d34], [-c34,d34], 
[-d12,-d34,e1234], [-d12,-d34,e1234], 
[-e1234,ft234], [-e1234,f1234], 
[aS>b5], [-aS,b5], 
[a6>b6], [-a6,b6], 
[-bS,-b6~c56]. [-bS,-b6,c56], 
[c56>d56], [-c56,d56], 
[a7>b7], [-a7,b7], 
Ca8>b8], [-a8,bSJ, 
[-b7,-bS,c78], [-b7,-bS,c78], 
[c78>d78], [-¢78,d78], 
[-d56,-d78,e5678], [-d56,-d78,e5678], 
[-e5678,f5678], [-e5678,fSS78], 
[-f1234,-f5678,g] [-f1234,-f5678,g] 
]). ]). 

Fig. 9. The az and the pyramid example. 

I 
compl/5 
compl/5 
complD/6 
complL/2 
complW/6 
neg/2 
neg/2 

az/z 
compl/3 
comp1D/6 
compl/5 
comp1/S 
comp1/5 
comp1D/6 
comp1L/2 

1 
25 
25 
351 
1 
25 
351 

I 
compl/5 
compl/5 
compl/5 
compID/6 
complL/2 
compIL/2 
compiW/6 
complW/6 
neg/2 
neg/2 

py ~mid/g 
comp1/3 
comp1D/6 
compIW/6 
comp1/5 
compl/5 
complW/6 
compl/S 
complW/6 
complD/6 
comp1L/2 

1 
12 
16 
12 
653 
16 
17 
16 
12 
669 

I 
compl/5 
compl/S 
compIL/2 
compiL/2 
complW/6 
compiW/6 
neg/2 

azw/z 
compl/3 
comp1W/6 
compl/5 
comp1W/6 
compl/5 
complW/6 
comp1L/2 

1 
25 
676 
25 
26 
25 
701 

l pyramidW/g 
¢ompl/5 compl/3 
compl/S complW/6 
compIL/2 compl/5 
complL/2 compiW/6 
complW/6 compl/5 
complW/6 complW/6 
neg/2 complL/2 

1 
28 
731 
28 
29 
28 
759 

Fig. 10. Results in the az and pyramid example. 

Observe that in this example the conflict given by the clause [ - c , - b ]  is 
located at the 'bottom' of the sequence of 6-clauses given in example az. For a 
complement, let us thus consider the example obtained by adding the clauses 

[-<-j], [z,-k], [z,-o], [z,-s], [z,-w] 
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compl( Path, M, Proof ) :- 
spIit(M,CW,CD), 
compl(Path,CW,CD,CW,Proof). 

compl(_Path, [], [] .... Proof ) :- !,fail. 
compl( Path, CW, CD, M, Proof ) :- 

select(OmegaClause,CW,CWRest), 
select(Literal,OmegaClause,OmegaClauseRest), 
complL(Path,Literal), 
complW(Path,OmegaClauseRest,CWRest,CD,M,Proof). 

compl( Path, CW, CD, M, Proof ) :- 
select([Alpha>Gamma],CD,CDRest), 
complL(Path,Gamma),!, 
complD(Path,[Alpha>Gamma],CW,CDRest,M,Proof). 

complW(_Path, [] ,_CW,_CD,_M, [] ) . 
complW( Path, [LiterallClauseRest], CW, CD, M, Proof ) :- 

complL(Path,Literal), 
complW(Path,ClauseRest,CW,CD,M,Proof). 

complW( Path, [LiterallClauseRest], CW, CD, M, Proof ) :- 
¢ompl([LiterallPath],CW,CD,M,Proofl), 
complW(Path,ClauseRest,CW,CD,M,Proof2), 
append(Proofl,Proof2,Proof), 
compatible(M,Proof). 

complD(_Path, [Alpha>Gamma],_CW, CD, M, [[Alpha>Gamma]NProof] 
neg(Alpha,NegAlpha), 
compl([NegAlpha],M,CD,M,Proof), 
compatible(M,[[Alpha>Gamma]IProof]). 

) : -  

Fig. 11. l i: An implementation of algorithm A i. 

¢omplD(_Path, [Alpha>Gamma],_CW, CD, M, [[Alpha>Gamma]lProof] 
neg(Alpha,NegAlpha), 
subseqO(CD,CD1), 
compl([NegAIpha],M,CDi,M,Proof), 
compatible(M,[[Alpha>Gamma][CD1]). 

) : -  

Fig. 12. The change for implementation I~. 

to az. In this way, we moved the conflict - now given by the clause [ - ± , - j ]  
- upwards in the sequence of &clauses (cf. Figure 9). We call the resulting 
example aznon. The right column of Figure 13 summarizes the obtained results. 
We observe that the number of compatibility checks in I i is now nine times larger 
than in 1'. This has to be contrasted with the number of calls to neg /2  that is in 
I i only 1.2 times larger than in 1 '. As above, the least number of calls to neg /2  
is obtained in program I. 

We observe that program I performs best on the given examples because of 
the lack of consistency checking. However, we have already discussed that this 
approach has its difficulties in the presence of many conflicting default rules. In 
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such a case, our experiments suggest that it is worthwhile to integrate compati- 
bility checks in order to prune redundant incompatible subproofs, rather than to 
check compatibility separated from the actual proof procedure. The first of the 
two examples extending az gives an impression of situations where incremental 
compatibility checking pays off. 

9. Extensions 

This section provides some enhancements and extensions of our approach. A 
major extension, namely, the incorporation of priorities, is described in [39]. 
Another major extension is the treatment of skeptical reasoning. This is discussed 
in a forthcoming paper [40]. 

9.1. OTHER VARIANTS OF DEFAULT LOGIC 

As discussed in Section 2, constrained default logic coincides with other default 
logics, like Reiter's [30] and Lukaszewicz's [22], on the fragment of normal 
default theories. As a consequence, our approach can also be used for query 
answering from normal default theories in these variants. 

A closely related approach is cumulative default logic [5] where assertions, 
that is, formulas labeled with the justifications and consequents of applied default 
rules (e.g., (o~, {c~1,. . . ,  an})),  are used. An assertional default theory is a pair 
(D, ~/V), where D is a set of default rules and W is a set of assertions. Informally, 
an assertional extension of (D, VV) is the smallest set of assertions E being 
deductively closed under an extended 29 theory operator ~ and containing 
such that for any (o~ :/3)/ '7 E D, if (c~, Supp(c~)) E C and Form(E)USupp(E)U 
{/3,~,} t z _1_, then (-y, Supp(o~) U {/3,'y}) C E. 

The following theorem shows that constrained and cumulative default logic 
are in fact equivalent for assertional default theories (D, W) having nonsupported 
facts, i.e., Supp(l,V) = 2~. 

THEOREM 9.1 ([371). Let (D, W)  be a default theory and (D, l/V) be the asser- 
tional default theory, where V~ = {(~, ~) I c~ C W}. Then, if (E, C) is a con- 
strained extension of (D, W), there is an assertional extension E of (D, I/V) such 
that E = Form(E) and C = Th(Form(E)USupp(C)) ;  and, conversely if E is an 
assertional extension of ( D, V~), then (Form(E), Th(Form(E) t5 Supp(E))) is a 
constrained extension of ( D, W). 

This result has been extended in [38] to arbitrary assertional default theories and 
default theories supplied with an initial set of constraints in constrained default 
logic. 

As a consequence, we can use our approach for query answering from asser- 
tional default theories with nonsupported facts without any modifications. For 
arbitrary assertional default theories, we merely have to add the formulas in 
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I 
compl/5 
compl/5 
compl/5 
complD/6 
compIL/2 
complL/2 
comp1W/5 
neg/2 
neg/2 

aznoC/z 
compl/3 
compiD/6 
compiW/6 
compl/5 
compl/5 
compiW/6 
comp1/5 
compID/6 
compIL/2 

2 
13098 
3912 
13098 
348304 
3912 
3912 
13098 
352216 

I' aZno/z 
compatible/2 compl/3 
compl/5 compl/3 
compl/5 complD/6 
compl/5 complW/6 
complD/6 comp1/S 
complL/2 compl/5 
complL/2 complW/6 
complW/6 comp1/5 
compIW/6 comp1W/6 
neg/2 comp1D/6 
neg/2 complL/2 

1957 
1 
5573 
1956 
5573 
152045 
1956 
3913 
9786 
5573 
1053720 

[I azno/z 
compatible/2 complD/6 
compl/5 compl/3 
compl/5 complD/6 
compl/5 comp1W/6 
complD/6 compl/5 
complL/2 compl/5 
compiL/2 complW/6 
complW/6 compl/5 
neg/2 comp1D/6 
neg/2 comp1L/2 

3914 
1 
5573 
1956 
5573 
152045 
1956 
3913 
5573 
983769 

I 
comp1/5 
comp1/5 
comp1/5 
compID/6 
complL/2 
comp1L/2 
complW/6 
neg/2 
neg/2 

aznonC/z 
compl/3 
complD/6 
complW/6 
compl/5 
compl/5 
complW/6 
compl/$ 
complD/6 
coEplL/2 

2 
385 
128 
385 
11848 
128 
128 
385 
11976 

] t aZ~On/Z 
compatible/2 compl/3 
compl/5 compl/3 
compl/5 complD/6 
comp1/5 complW/6 
compiD/6 compl/5 
complL/2 compl/5 
complL/2 complW/6 
complW/6 compl/5 
complW/6 complW/6 
neg/2 complD/6 
neg/2 complL/2 

65 
1 
745 
64 
745 
14339 
64 
129 
196 
745 
23222 

]l aZ~OD./Z 
compat ible/2 complD/6 
compl/5 compl/3 
¢ompl/5 comp10/6 
compl/5 compiW/6 
complD/6 compl/5 
complL/2 comp1/5 
complL/2 complW/6 
complW/6 compl/5 
neg/2 complD/6 
neg/2 complL/2 

585 
1 
745 
64 
745 
14339 
64 
129 
745 
28573 

Fig. 13. Further results in the az example. 

Supp(142) for verifying compatibility. The same applies to our algorithms, where 
clauses representing Supp(14~) have to be added while checking consistency. The 
formal underpinnings for this approach are given in [38]. 

To capture query answering in Lukaszewicz's variant of default logic, we 
have to adjust the concept of compatibility. All other notions remain the same 
because this variant enjoys semi-monotonicity. 

9.2. INTEGRATION OF LEMMA HANDLING 

The integration of lemma handling is of great practical relevance in automated 
theorem proving. This is so because the use of lemmas is often needed for 
reducing computational efforts. Since computation in default logics involves not 
only deduction but also consistency checks, the need to incorporate lemmas is 
even greater in default theorem proving than in standard theorem proving. 

In [37], we introduced an approach to lemma handling in Reiter's and con- 
strained default logic. 3° Inspired by default logic's natural distinction between 
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facts and defaults, default lemmas are regarded as abbreviations for the corre- 
sponding default proofs. This results in the concept of a lemma default rule: 

DEFINITION 9.1 ([37]). Let (D, W) be a default theory, and let (E, C) be a 
constrained extension of (D, W). Let 7) E E and D~, be a default proof of 7) in 
(E, C) from (D, W). We define a lemma default rule @ for 7) as 

: A Justif(g)A A Conseq(g) 
gcp = 6ED~o 6ED~o 

7) 
A default proof D~o of 7) in (E, C) from (D, W) is a subset of the set of 
generating default rules 31 of (E, C) such that W U Conseq(D~) F 7). 

At the methodical level, we can generate lemma default rules or 'lemma 
g-clauses' for any proven query 7). In such a case, we have spanning mating 
II for the matrix M of W U WD U {-~7)} such that (M, II) is admissible and 
compatible. The default proof is then given by 

= {gl  c r i f t .  

At the algorithmic level, we can generate lemma default roles for each obtained 
subproof as follows. Consider Condition (3b) in Definition 6.2. A 'lemma &clause' 
for 3'6 can be generated from the default proof 

= {g I cD,,}. 

For general formulas 7), it is sufficient to find a subset D~o of D such that 
compl({--,7)}, C w ,  CD~,) is true. Similar considerations apply to the implemen- 
tations in Section 8. 

The usage of such lemma default roles is obvious at the methodical level, 
since they constitute ordinary albeit prerequisite-free default roles. The distinction 
between lemma default rules and standard default rules is more interesting at 
the algorithmic and implementation level. For using 'lemma &clauses', we can 
simplify Condition (3) in Definition 6.2 as follows: 

(4) If  CD, 7 ~ 2~ and c E CD' is a lemma g-clause, then compl(p, Cw,,  CD') 
is true iff 76 is complementary to some literal o f  p for c = {-,o~,76}. 

This drastic simplification is possible because neither admissibility nor com- 
patibility has to be verified for 'lemma &clauses'. The former is obsolete because 
lemma default roles are prerequisite-free default rules, while the latter is redun- 
dant because the compatibility with C w  has been checked while generating the 
lemma. The compatibility with the remaining &clauses in the proof is checked 
at a higher level of the recursion. Similar considerations apply to the implemen- 
tations in Section 8. 

9.3. OTHER EXTENSIONS 

This section sketches some extensions and fruitful topics for further research. 
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Computing Extensions. Although we have presented the approach so far in a 
query-oriented setting, it can also be used for computing entire extensions by 
proceeding 'bottom up'.  This can be accomplished by starting from the clausal 
representation of the initial set of facts and by successively extending this matrix 
by &clauses preserving admissibility and compatibility. In this way, we obtain 
a matrix representing the facts along with the set of generating default rules of 
an extension. Then, a formula belongs to this extension if the matrix is rendered 
complementary by adding the clausal representation of the negated formula. 

Model Checking. A promising avenue for future research seems to replace con- 
sistency checking by model checking. The idea is to start with a model of the 
underlying facts. A default applies if it is compatible with the current model or if 
a new model can be constructed from the facts and all defaults contributing to the 
current proof. In this way, a model may be reused for several consistency checks 
in the course of the proof search. This is motivated by two observations. First, 
some experiments on 'meaningful'  (i.e., nonartificial) examples have shown that 
a 'model '  is changed quite rarely in the course of the proof search. That is, on 
some examples, we observed that the resulting default proofs contained only few 
occasions for distracting the theorem prover by choosing incompatible ~-clauses. 
This is an argument in favor of integrating a compatibility check that allows for 
using information gathered on compatibility checks in the subproofs. Second, 
the semantics of constrained default logic [34, 11] stipulates the existence of a 
single so-called 'focused model '  which jointly satisfies the facts along with all 
generating default rules of an extension. 

Other Execution Models. So far, we have pursued only a single execution model. 
However, our underlying methods leave room for a variety of procedures for 
query answering. One of them has already been sketched in Section 6, where 
we discussed an approach to structure sharing while verifying admissibility and 
compatibility. Also, there are parallel execution models of our algorithms. For 
instance, observe that all algorithms are nondeterministic and inherently parallel, 
although parallel processes sometimes have to be combined after their execu- 
tion as a result of compatibility checks, as in Condition (2bii) in Definition 6.2. 
Another possibility is to design a 'daemon-driven' compatibility check by using 
a 'daemon process' to keep a watch on the compatibility of the respective sub- 
proofs. All these issues seem to be fruitful avenues for further research. 

10. Conclusion 

We have presented a new approach to query answering in default logics by treat- 
ing default rules as classical implications along with some qualifying conditions 
restricting the use of such roles in the course of the proof search. This has 
resulted in a novel methodology taking advantage of the conception of structure- 
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oriented theorem proving provided by the connection method. To this end, we 
have decomposed default theorem proving (in the connection method) into the 
verification of Complementarity, admissibility, and compatibility - correspond- 
ing to classical deduction and the concepts of groundedness and consistency in 
default logic. 

We introduced in Section 4 our basic method that provides with admissibility 
and compatibility two independent concepts restricting default proofs to classical 
proofs confirming the two previous properties. To a turn, we refined our approach 
in Section 6 by meshing together the concepts of admissibility and (incremental) 
compatibility. While the former approach relies on a rather global notion of 
consistency, the latter employs an incremental and thus rather local notion of 
consistency. 

Apart from the enconding of default rules as implications, a distinguishing 
feature of our approach is the formation of sequences of default rules or ~-clauses, 
respectively. In our basic method, this formation is primarily directed by the 
notion of groundedness, while consistency plays more or less the role of a global 
constraint. In contrast to this, groundedness and consistency jointly direct the 
formation of sequences of 8-clanses in our refined method. 

We have discussed in detail the different versions of our approach and their 
differences to other approaches found in the literature in Section 7. To summarize, 
the distinguishing methodical features of our approach are 

• the treatment of default rules as classical implications, 
• the formation of sequences of default rules or ~-clauses, respectively, and 
• the integration of the concepts of groundedness and consistency into a 

classical deduction method. 
These qualities allow for a homogeneous characterization and treatment of 

default proofs at the level of the logical calculus. This makes our approach espe- 
cially qualified for implementations by means of existing automated theorem- 
proving techniques. We have substantiated this claim by implementing the result- 
ing algorithms in diverse settings. 

At first, we derived in Section 5 from our basic method an algorithm that 
supports the joint verification of complementarity and admissibility in a very 
natural way. Notably, the algorithm is obtained by slightly extending an existing 
algorithm for the standard connection method due to [14]. However, we have 
proposed an 'off-line' integration of compatibility by compiling default theories 
into compatible default theories. This separation is supported by the indepen- 
dence of admissibility and compatibility in our basic method. The advantages 
of this approach are the following. First, the algorithm never runs into redun- 
dant computations with incompatible defaults. Second, it is implementable with 
very few modifications to an existing automated theorem prover. This is under- 
pinned by a case study due to Aaron Rothschild [33]. In fact, Rothschild was 
able to implement our algorithm by slightly extending an existing (simple yet 
full-fledged) automated theorem prover for the connection method. The disad- 
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vantage, however, is that one might obtain an exponential number of compatible 
default theories in the worst case. So in general, such an approach is favorable 
whenever the computational cost of the compilation can be amortized over the 
total set of subsequent queries. 

Second, we have presented an alternative algorithm based on the refinement 
of our basic method. This algorithm fully integrates the concepts of comple- 
mentarity, admissibility, and compatibility and accordingly supports their joint 
verification. Hence, it works with arbitrary default theories and thus avoids the 
pre-compilation of default theories into compatible fragments. At the same time, 
it also avoids redundant computations with incompatible defaults. On the other 
hand, this approach requires more changes to existing automated theorem provers. 
Also, successive consistency checking may slow the performance of the prover. 
A promising way of avoiding this seems to use model-checking techniques, as 
sketched in Section 9. 

However, our experiments in Section 8 have shown that the latter approach is 
still favorable over a belated consistency check that verifies the compatibility of 
completed, admissible proofs. Moreover, our experiments have demonstrated that 
enforcing groundedness while query answering poses no additional burden on the 
theorem prover. Hence, we argue that the concurrent verification of admissibility 
and complementarity is indispensable for query answering in default logic. As 
discussed in Section 7, the treatment of compatibility is more subtle. Here, a lot 
depends on the underlying theory. That is, if a default theory comprises a feasible 
number of compatible default theories, then our former approach along with 
its precompilation of compatibility is favorable. Otherwise, that is, if a default 
theory comprises many conflicting defaults, an integration of compatibility as 
accomplished in our latter approach is preferable. 

All of the presented algorithms along with their implementations are query 
oriented. This reflects the idea that the theorem prover is in charge of finding 
a proof while being directed by the concepts of admissibility and compatibility. 
On the other hand, our method leaves plenty of room for other algorithmic 
approaches, which have not yet been pursued. For instance, Section 6 provides 
another valuable refinement that allows for structure and information sharing 
while jointly verifying admissibility and compatibility. 

Even though our approach has been presented from the perspective of con- 
strained default logic, it has a general nature that principally allows for query 
answering in any (semi-monotonic) default logic. To this end, one merely has to 
adjust the concept of compatibility in order to account for the respective notion 
of consistency. In particular, we have shown in Section 9 that our approach car- 
ties over to cumulative default logic [5] without any substantial modifications. 
In the same section, we have described how lemma handling can be added to 
our approach. 

For a complement, we have applied our approach in [39] to a prioritized ver- 
sion of default logic, recently introduced by Brewka in [7]. This has been accom- 
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plished by stepwisely refining the concepts developed for prioritized default logic 
and by mapping them in turn onto the techniques developed in the preceding sec- 
tions. This extension of our method has served two purposes. First, it has shown 
that our method is flexible enough to be adapted to other conceptions of default 
logic. Second, it has shown how priorities can be integrated. 

In all, our approach bridges the gap between default logics and classical 
theorem proving by providing a simple yet powerful method for default theo- 
rem proving that is easily adaptable by existing implementations of automated 
theorem provers. In particular, the approach should be easily extensible to a 
(decidable) first-order language because it relies on standard theorem-proving 
techniques. 

Appendix. Proofs of Theorems 

In the sequel, we will refer to some definitions and results on which we draw on 
in the following chapters. We give these results for the reader's convenience. 

DEFINITION A.1. [36] Let (D, W) he a default theory and S and T sets of 
formulas. The set of generating default rules for (S, T) wrt D is defined as 

G D (DS'T) = { a " fl E D e~ E S, TU{~}U{'y}JZ_l_}. 
-y 

THEOREM A.1. [36] Let (E, C) be a constrained extension of a default theory 
(D, W). We have 

E=Th(WUConseq(GD(DE'C))) ,  

C = Th(W U Conseq(GD(DE'C))) U Justif(GD(DE'C))). 

THEOREM A.2. [36] Let (E, C) be a constrained extension of (D, W). Then, 
there exists an enumeration (~i)icI of GD(D E'C) such that for i E I 

W tO Conseq({3o, • • •, 3i-1 }) [- Prereq(ai). 

THEOREM A.3 [36] Let (D, W) be a default theory, and let E and C be sets 
of formulas. Define Eo = W and Co = W and for i >1 0 

{ a ' / 3 E D ,  a c E i ,  CU{/3}U{3'}IX-l-}, Ei+l = Th(Ei) U 3' 9/ 

{ I cu{;}uer}v±} U /3£7 7 
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cx) eo C (E, C) is a constrained extension of (D, W) iff (E, C) = (Ui=0 Ei, Ui=0 i). 

Proof3.1. Recall that we have restricted ourselves early in the paper to con- 
sistent sets of facts. That is, for a default theory (D, W) we stipulate that W is 
consistent. 

only-if part. Let (E, C) be a constrained extension of (D, W). 

We define D' = GD(D E'c) according to Definition A.1. 
By Theorem A.1, we have 

E = Th(W U Conseq(D1)), 

C = Th(W U Justif(D') U Conseq(D')). 

By Theorem A.2, we have that D' is grounded in W. 
According to [36, Corollary 4.3.3], we have that W is consistent iff C is 

consistent. By definition, W is consistent; hence C is consistent. By Theorem A. l, 
we obtain that W U Justif(D') U Conseq(D') is consistent. 

Now, assume D', and so GD(D E'c), is not a maximal subset of D satisfy- 
ing the above requirements. Then, there is a set of default roles D" such that 

GD(D E'c) c D" C_ D, D" is grounded in W and W U Justif(D") U Conseq(D '1) 

is consistent. Consequently, there is a default rule 6" E (D"\GD(D E'c)) such that 
W U Conseq(D') ~- Prereq(6"). This is so because, by assumption, D' and D H 
are grounded in W. The last derivability relation implies that 

Prereq(6/') E E, 

since E = Th(W U Conseq(D')) by Theorem A.1. 
By monotonocity, we have that W U Justif(D' U {6"}) U Conseq(D' U {6"}) 

is consistent, since W U Justif(D") U Conseq(D") is consistent. Hence, we have 
that 

C U Justif(6") U Conseq(6") Y ±, 

since C = Th(W U Justif(D') U Conseq(D')) by Theorem A.1. 

By Definition A. 1, (A. 19) and (A.20) imply 6" E GD (E'c), a contradiction. 

if part. Let 

E = Th(W U Conseq(D1)), 

C = Th(W U Justif(D') U Justif(D')) 

for a maximal D'  C_ D such that D' is grounded in W and W U Justif(D ~) U 
Conseq(D') is consistent. 
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According to Theorem A.3, (E, G) is a constrained extension iff (E, C) = 
(Ui=o Ei, ~ = = oc Ui=o Ci) such that Eo W and Co W, and for i i> 0 

{ I Ei+l = Th(Ei)  O "7 7 

o<./3 E D ,  ,~ e E~, cu { /3 }u {0 , }u  i } .  ci+l = Th(Ci) U /3 A "y 3' 

We will show that (E, C) = (Ui~0 Ei, Ui~=o Ci). Therefore, we consider the 
following two cases. 

oo oc C (1) Ui=0 Ei c_ E, U~=o ~ c_ C. 
We show by induction that Ei C_ E and Ci C C for i /> 0. 

Base. By definition, W C_ E. Since E0 = W, we have E0 C E. 
Analogously, we obtain Co c_ C. 

Step. Let Ei C E and Ci c_ C. Consider r]E Ei+l U Ci+l. 
(a) If ~7 E Th(Ei),  then, by the induction hypothesis and the fact that E is 

deductively closed, we obtain ~7 E E. 
(b) Similarly, if ~? E Th(Ci), we obtain B E C. 
(c) Otherwise, ~ E {/3, 7} such that there is a default rule (a  • /3)/3' E D, 

where o< E E i  and C U {/3} U {7} tz _1_. 
By the induction hypothesis c~ E E. Hence, there is an i E I such that 

W U Conseq({50 , . . . ,  6i-1}) )- c~, 

where {go , . . - , 6 i -1}  C__ D'. Thus, D' U {(o< • /3)/3'} is grounded in W. Also, 
by definition of C, we have that W U Justif(D') U {/3} U Conseq(D') U {3'} is 
consistent. By maximality of D',  this implies that (c~ •/3)/7 E D'. Consequently, 
3' E E and/3 A 7 E C and both cases for r] are covered. 

From the three cases, we obtain Ei+l c_ E and Ci+l C_ C. 

(2) E c_ U~o E~, C < U~=o G. 
Since O'  is grounded in W, there is an enumeration (6i)iel of D'  such that 

W U Conseq({60 , . . . ,  6i-1}) t- Prereq(6i) 

((Ei, C~)hez as follows: for i E I.  With this, we define a sequence ' ' 

(E6, c~) : (w, w) 

! ! 

(Ei+I ,  el+l) = (Th(E~ U {7i}), Th(C~ U {fli A 7i})), 

o o  ! o o  / 
= " = = U i = o  c ' ~ .  where 6i (c~i flO/"/i. Clearly, E Ui=o E~ and C 

Hence, we show inductively that E~ C_ Ui~=o Ei and G~ C_ U ~ 0  Ci for 
i~>O. 
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Base. Since E L = C~ = W and E0 = Co = W, the result is obvious. 

Step. According to the induction hypothesis, E~ C_ Ui°°=0 Ei and C~ c_ Ui~o Ci. 
Because W U Conseq({50, . . . ,5 i_l})  k- Prereq(Si) we have ai E E~ and 

(E~+I, C~+l) = (Th(E~ U {3'i}), Th(C~ U {/3/A "Yi})), where 5i = (ai: /3i)/ 'yi .  
By the induction hypothesis, we obtain a E Ui°°__o El. By compactness and 

monotonicity, there exists a k such that c~i E Ek. By definition of C and the fact 
that W U Justif(D') U Conseq(D') is consistent, we obtain that C U {/3/} U {qq} 
I .  Then, EL ~ c~i and CU{fii}O{"/i} ~z Z, implies 7 / E  Ek+l and 7iA/3i 6 Ck+l. 
Hence, 7i E Ui~o Ei and 7i A fli E Ui~0 Ci. 

By the definition of ~ ' ~o Ui=o Ei and Oi=0 Ci are E~+ 1 and C~+ 1 and the fact that oo 
! oo / oo 

- Ui=0 Ei and C~+ 1 c_ Ui=0 C/. deductively closed, we obtain Ei+ 1 C 

Proof 4.1 Let Cw be a set of co-clauses and CD be a set of 5-clauses. Let II 
be a mating for Cw U CD such that (Cw U CD,II)  is admissible wrt I. 

only-if part. Let (Cw U CD U { { ~ o ~ 6 , ' T 6 } } , I ~ I )  be admissible for some 5- 
clause {--,c*6, 36}- Therefore, II is a spanning mating for 

\ i E I  

Then, II is also a spanning mating for the submatrix 

\ i E I  

This is so because all paths through the latter matrix are also paths through the 
former matrix. 

if part. Let gi be a spanning mating for Cw U Uicr{{ff6~}} u {{~o~}}, for 
some &clause {~c~a, 76}. By assumption, (Cw U CD, FI) is admissible wrt I.  
That is, 1-I is a spanning mating for 

}}) Cw U (j__Uo{ {-~o~6,, -y6 , u {{--,o~a~}} for i E I. 

Since H is 
furthermore 

G'w U 

a spanning mating for Cw tO Uiei{{~/6~}} tO {{~c~a}}, we obtain 
that II is a spanning mating for 

This implies that (Cw tO Up tO {{-~c~6, "Y6}}, II) is admissible. 

Proof4.2 Let Cw be a set of co-clauses and CD be a set of &clauses. Let H 
be a mating for Cw U CD such that (Cw U CD, i-i) is admissible. 
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only-if part. Let II be a spanning mating for 

Cw U CD U {{/36} [ {~a6,'Y6} E CD, /36 = Justif(6)}. 

Then, I-i is also a spanning mating for the submatrix 

c w  u {{~6} I {~6, 'y6} ~ cz)} 
U {{/36} [ {-nO~6,'Y6} E CD, /36 = Justif(6)}. 

This is so because all paths through the latter matrix are also paths through the 
former matrix. 

if part. Let II be a spanning mating for 

U {{/36} ] {-~c~6,3'6} 6 CD, /36 = Justif(6)}. 

By assumption, (Cw U CD, I]) is admissible wrt some index set I.  That is, II is 
a spanning mating for 

i-1 ) 
Cwu(jUo{{~6~,~6j} } u {{-~c~6{}} for i E I. 

Consequently, II is a spanning mating for 

Cw tO CD U {{--'a6}} for all {-~c~6, 76} C CD. 

Consider the matrix 

M = c w  u {{-~a6,'~6} ~ o n }  
u {{fie) I {~6 ,76}  E CD, /36 = Justif(6)}. 

By (A.21), all paths through M containing a literal "Y6 are complementary. By 
(A.22), all paths through M containing a literal -~a6 are complementary. Hence, 
all paths through M are complementary. Consequently, II is a spanning mating 
for 

M = G'w U CD U {{f16} I {-'o~6, 76} E G'D, /36 = Justif(6)}. 

Proof 4.3 Let (D, W) be a default theory in atomic format, and let Wo = 
{a6 --~ 76 [ (oz6 :/36)/3'6 E D} and ~p an atomic formula. 

only-if part. Let (E, C) be a constrained extension of (D, W), and let ~ C E. 
Then, there is a set of default rules D~ C_ D such that 

(1) W U Conseq(D~,) ~- ~, 
(2) D~ is grounded in W, 
(3) W U Justif(D~) U Conseq(D~) is consistent. 
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By assumption, W tO Justif(D~o) tO Conseq(D~) is consistent. By completeness 
of the connection method [3], this implies that the matrix of W U Justif(D~,) tO 
Conseq(Dv) has no spanning mating. That is, there is no spanning mating for 
Cw U Cj where Cw is the matrix of W and Co, = {{Justif(6) I a E D~} U 
Conseq(5) I 5 E D~}}. Thus, (M, I-I) is compatible for the matrix M of W tO 
WD tO {-~qo} and any mating II, if the core of M is given by the &clauses in 
{{-~aa,O'a} I 5 E D~}. 

We prove the rest of the theorem by induction on the cardinality of D~. 

Base. D~, = ~. In this case, we have 

W~-~.  

Then, by completeness of the connection method [3], there is a spanning mating 
II for the matrix M of W U {~p}. Clearly, (M, rI) is admissible. 

Step. D~ 5¢ ;g. By compactness and the fact that W tO Conseq(D~o) k- qo, there 
is a set {5o,. . . ,5i} C D~ such that 

I/V U Conseq({5o,..., 5i}) k- qo. 

Consider 6j. Clearly, Prereq(Sj) E E. Then, by the induction hypothesis, there 
is a spanning mating lid for the matrix Mj of W U WD~,\{aa} U {~Prereq(Sj)} 
such that (Mj, IId) is admissible. 

Hence each path in Mj contains a connection from IIj. Observe that each 
such path in Mj contains the literal -~Prereq(6j). 

Consider the matrix M of 

i 

W U U (WD~,\{a,} U {-~Prereq(Sj),Conseq(Sj)}) U {~qo}. 
j=o 

Observe that each path in M containing a literal -~Prereq(Sj) contains a connec- 
tion from li d for some j C {0, . . . , i} .  Hence all paths in M not containing a 
literal -~Prereq(6j) contain the set of literals 

{Conseq(5o),..., Conseq(6i)} tO { ~ } .  

By completeness of the connection method [3] and the fact that W ~0 Conseq(D~) 
{-- ~p, there is a spanning mating II 1 for the matrix M t of W U Conseq(D~) tO 

Consequently, we have that II = FI t O U}--0 IIj is a spanning mating for the 
matrix M. 

Now, it remains to be shown that (M, I-I) is admissible. 
By the induction hypothesis, we have that (Mj, IIj) is admissible for all j E 

{0, . . . , i} .  Clearly, U}=oMj c M and U}=oUj c 1-I implies the admissibility 
of (M, 11). 
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if part. Let II be a spanning mating for the matrix M of W U WD tO {--n~)} 
such that (M, II) is admissible and compatible. Let CD be the set of 6-clauses 
in M, and let Cw be the set of w-clauses in M. 

We define 

D~ = {6 [ {-~oz~,"y,s} E ~(CD, I I ) } .  

Clearly, (M, II) is complementary, admissible, and compatible if the matrix M~ 
of W to WD~, tO {-~} along with II fulfills these conditions. 

In what follows, we prove that 
(1) W U Conseq(D~) F- ~, 
(2) D~ is grounded in W, 
(3) W U Justif(D~) U Conseq(D~o) is consistent. 

By semi-monotonicity, the latter conditions imply that there is a constrained 
extension (E, C) of (D, W) such that ~ E E. 

First, we prove Condition 3. Since (M~, II) is compatible, there is no spanning 
mating for Cw U {{/3a}, {3'a} I {-'c~6,0'6} E t~(CD,II), f16 ----  Justif(6)}. Since 
this is the matrix of W U Justif(D~,) U Conseq(D~o), we obtain, by completeness 
of the connection method [3], that WUJustif(D~)Ueonseq(D~) is consistent. 

Since (M~,II) is admissible, there is an enumeration ({--,o~6{,76{})iEI of 
t~(Cm, II) such that for i E I, II is a spanning mating for 

i-1 ) 
~wU(Uo{{-noz6j,'Y6j} } U {{-nc~6, }}. 

By compactness, I is finite. That is, I = {0, . . .  ,hi/i}, where 111 stands for the 
cardinality of I.  

We define I '  = {0, . . .  ,nlZl,nM+l } and o~%/1+ 1 := ~. By assumption, II is a 
spanning mating for M~, namely, 

/hill ) 

We prove that W U {010,... ,0//-1} F- c~i for i E I'. Clearly, this implies Condi- 
tions 1 and 2. 

By assumption, II is a spanning mating for the matrix Mi of 

) 
for i E I' .  Consider the matrix M', 

i - 1  }}) 
c w  u .= u 
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Assume that H is not a spanning mating for M~. Then, there is a path Pv¢ through 
Cw such that the path 

i - 1  

pw u U u 
)=0 

is not complementary. However, this path is also a path through Mi, contradicting 
our initial assumption. Therefore, II is also a spanning mating for M~. By correct- 
ness of the connection method [3], this implies that W U  {7o, . . .  ,3 ' i- l} ~ ai. 

Proof 5.2 Let (D, W) be a default theory in atomic format, and let WD = 
{c~ --+ 3'~ [ ~ E D} and ~ an atomic formula. 

Without loss of generality, we assume that W U Justif(D) U Conseq(D) is 
consistent. Then, compl({~qo}, M) is true 32 for the matrix M of W U WD iff 

E E for the unique constrained extension (E, C) of (D, W). 
According to Theorem 4.3, this is equivalent to the following proposition: 

c o m p l ( { ~ } , M )  is true iff there is a spanning mating ri for M U { - ~ }  such 
that (M U { ~ } ,  II) is admissible. 

Observe that for any clause {L} containing a single literal L, we have that 
compl(p, M U {{L}}) is tree iff compl(p U {L}, M) is true. 

In fact, we prove below a slightly stronger statement: For a set of literals p 
and a matrix M,  let M p be the matrix UL~p{{L}} U M. Then, compl(p, M)  is 
true iff there is a spanning mating II for M p such that (M p, I-I) is admissible. 

Given a set of literals p and a matrix M = Cw U CD consisting of co- and 
&clauses, we define the rank of the matrix M p = ULEp{{L}} U CW U CD as 

 (MP) = (ICDI, ICwl, I;I), 

where IS[ stands for the number of elements in the set S. 
We prove the latter statement by induction on the lexicographic order < on 

the rank of M p. 

only-if part. Let p be a set of literals and let Cw, C Cw and CD, C_ CD. We 
prove for M = Cw, U CD, that if compl(p, M)  is true relative to Cv¢, then there 
is a spanning mating I-i for ( M U C w )  p such that ( ( M U C w )  p, I-I) is admissible. 
Clearly, this implies that if compl(p, Cw UCD) is true relative to Cw, then there 
is a spanning mating II for (Cw UCD) p anch ((Cw UCD) p, I-I) is admissible. 

Base. MP = z or p(M p) = (0, 0, 0). Trivial, since compl(z ,  z )  is false 
according to Condition 1 in Definition 5.1. 3s 

Step. M p ¢ ¢g or p(MP) ¢ (0, 0, 0). Recall that 

(Cw, U {{z,}} uc'w, uc ,. 
L6p 

Assume compl(p, M)  is true relative to CN. Consider c E M p. We distinguish 
the following three cases. 
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(1) c E Cw,. Consider L E c. Since c E Cw,, we have according to Condi- 
tion 2 in Definition 5.1 that one of the following two cases holds. 

(a) L is complementary to some literal of p. 

Consequently, there is spanning mating IlL for the matrix 

M L =  U {{_n}} U { {Z } }u  (M\{c}) 

(b) compl(p U {r} ,  M\{c})  is true. 
First, observe, that 

p((M\{c}) pu{L}) < p(MP). 

Thus, we obtain by the induction hypothesis that there is spanning mating IlL 
for the matrix 

ML= U {{K}}U{{L}}U(M\{c}) 
KEp 

such that (ML, IlL) is admissible. 

By (a) and (b), we therefore obtain for all L E c a spanning mating IlL for 
the matrix Mr,. Clearly, this implies that 

U IlL 
LEc 

is a spanning mating for the matrix 

MP = U { {K } }  u { {L I L E c}} U (M\{c}). 
KEp 

Moreover, (M p, ULEc IlL) is admissible because c is an w-clause and (ML, IlL) 
is admissible for some L E c. This is so because admissibility is verified wrt to 
the original set of w-clauses Cw and all 8-clauses in CD,. 

The fact that ULec IlL is a spanning mating for the matrix m p such that 
( Mp, UcEc IlL) is admissible implies that the same holds for the matrix (M U 

CwF. 
(2) c E CD,. That is, c = {~c~,'76}. 
According to Condition 3, in Definition 5.1, we consider the following two 

cases. 

(a) "7~ is complementary to some literal of p. 
Consequently, there is spanning mating II.y for the matrix 

= U { { K } }  u u 
KEp 

Clearly, II~, is also a spanning mating for the matrix M-~ U Cw. 
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(b) compl({-~o~6}, ( M \ { c } ) U C w )  is true. 
First, observe, that 

p(((M\{c}) u C,,)~s~) < p(M;). 
Thus, we obtain by the induction hypothesis that there is spanning mating 
IIs  for the matrix 

Ms = { { ~ } }  u (M\{~}) uCw 
such that (Ms, IIs) is admissible. 

Now, (a) and (b) imply that II.y U IIs is a spanning mating for the matrix 

(MUCw)p = U {{K}}  u { {~ , - r~ } }  u (M\{c}) uCw. 
KCp 

It remains to be shown that ( (M U Cw) p, II- r U IIs)  is admissible. From what 
we have shown, we obtain that (UK@{{K}}  U Cw U (CD,\{c}), IIz U IIs)  
is admissible. Also, we have shown that II.~ U IIs is a spanning mating for 
U~:@{{K}}UCwU(CD,\{c})U{{-~c~}}.  This implies that ( (MUCw)P,  IITU 
IIs)  is admissible. 

(3) c C_ p. This case is subsumed by the previous two cases. 

if part. We prove for M = Cv¢, U CD, that if there is a spanning mating 1ii 
for M p such that (M p, II) is admissible, then compl(p, M) is true relative to 
Cw.  

Base. M p = e or p(M p) = (0, 0, 0). There is only one path through U p, 
namely, the empty path ~. Clearly, this path is not complementary, since it 
contains no connection. Therefore, there is no spanning mating for M p. This 
trivially verifies the c la im)  4 

Step. M p 7~ ~ or p(M p) ¢ (0, 0, 0). Recall that 

M~= (cw, ucz),)p= U{{r}}uCw, UC~,. 
LCp 

Let II be a spanning mating for M p such that (M p, 171) is admissible. Consider 
c E M p. We distinguish the following three cases. 

(1) c E Cw,. Consider L C c. Clearly, II is also a spanning mating for the 
matrix 

M L =  U { {K } }  U{ {L } }  U (M\{c}) 
KEp 

such that (ML, II) is admissible. That is, each path through ML contains a 
connection from II. Then, one of the following two cases holds. 

(a) L is complementary to some literal of p. 
(b) By rewriting ML, we have that II is a spanning mating for matrix 
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such that ( (M\{c})  pU{L), H) is admissible. Observe that 
p((M\{c})  pU{L}) < p(MP). 

Thus, we obtain by the induction hypothesis that compl(p U {L}, M\{c})  
is true. 

Since both cases of Condition 2 in Definition 5.1 are covered, we have that 
compl(p, M) is tree. 

(2) c E C9,. Without loss of generality, we assume that c is necessary for the 
complementarity of M p. That is, II is no spanning mating for MP\{c}. 

To show that compl(p, M) is tree, we reduce this problem by applying Con- 
dition 2 in Definition 5.1 to all clauses c E Cw,. As a consequence, compl(p, M) 
is true iff compl(p U Pw,, CD,) is true for all noncomplementary paths p U Pw, 
where Pw, is a path through Cw,. That is, we have for all such paths p U Pw, 
and all 7r E I I  that 7r n (p u pw, ) = ~. 

Thus, in what follows, we show that compl(p U Pw,, CD,) is true relative to 
Cw for all noncomplementary paths p t0 Pw'. 

Consider c = {~oz6i, "Y6i }. We distinguish the following two cases. 

(a) By assumption, H is a spanning mating for the matrix 

{ { ~ } }  U ( M \ { 4 F  = U { {K } }  UCw, u { {7~ } }u (C~ , \ {4 ) .  
K E p  

Then, II is also a spanning mating for all matrices 

U { {K} }  U {{76,}} U (C~,\{4), 
[45 C pUPw t 

for all noncomplementary paths pUpw, (where Pw, is a path through Cw,). 
Now, all paths through such a matrix are of the form 

pUpw,  u {~ l f f  e {-,o~,,~} • CD,\ {4}  U {'W}. 
By assumption, some of these paths are not complementary without "Y6~. 
Since 761 cannot be complementary to any literal in {# I # C {~c~, 7} E 
CD, \{c}}, we have that ~6~ must be complementary to some negated literal 
in p U Pw,. 

(b) By assumption, II is a spanning mating for the matrix {{~o~6~}}U 
(M\{c})  p. Also, ({{~a6~}} U (M\{c})P,H) is admissible wrt {j [ j  < i}. 
By admissibility, H is thus a spanning mating for the matrix 

(Cw u {{-'%,s',~j} I J < i}){~%}. 
In addition, 

( ( Cw u { {-~%, % } I J < i }) ~>'~ }, n) 
is admissible wrt {j [ j  < i}. Accordingly, 

compl({~a6i}, {{~a~j,76j} ] j  < i} U Cw) 
is true by the induction hypothesis. This implies that compl({-~a6~ }, M\{c} 
U Cw) is tree, since adding redundant 5-clanses does not change the satis- 
fiability of the former condition. 
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We have shown in (a) that 76i is complementary to some literal in p U Pw' 
(where Pw' is a path through Cw,). In (b), we have shown that compl({-~c~,h}, 
M\{c} U Cw) is true. Therefore, compl(p Upw,, CD,) is true for all noncom- 
plementary paths p U Pw,. As shown above, this implies that compl(p, M) is 
true. 

(3) c c_ p. This case is subsumed by the first cases. 

Proof6.2 Let II be a mating for Cw U CD, where Cw and CD are sets of co-- 
and 5-clauses. Let ({--,o~6~, "Y6~})iEx be an enumeration of ~(CD, II). 

only-if part. Assume that (Cw U CD, II) is compatible. Then, there is no 
spanning mating for 

c w  u 

iEI  

Hence there is an open path 

p = ; w  u 
iE1 

through the latter matrix for some path Pw through Cw. This implies that for 
all i E I, 

= p w  u 
j s i  

is not complementary. Accordingly, there is no spanning mating for 

j~<i 

for i E I. This demonstrates that (Cw U CD, 1~) is incrementally compatible 
wrt I.  

if part. Trivial. This is so because checking incremental compatibility for that 
last &clause in the sequence ({--,ah, "/~i})iEI is equivalent to checking compat- 
ibility. 

Proof 6.4 Let (D, W) be a default theory in atomic format, and let WD = 
{c~ --+ 76 [ 5 E D} and ~ an atomic formula. 

We show that ~ E E for some constrained extension (E, C) of (D, W) iff 
c o m p l ( { ~ } ,  Cw, CD) is true, where Cw is the matrix of W and CD is the 
matrix of WD. 

According to Corollary 6.3, this is equivalent to the following proposition: 
compl({~qo}, Cw,  CD) is true iff there is a spanning mating II for the matrix 
M = C W U C D U {{--n~}} and an enumeration (ci)iEX of t~(CD, I~) such that 
(M, H) is admissible wrt I and incrementally compatible wrt I.  
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As in Proof 5.2, we prove below a slightly stronger statement: For a set 
of literals p and a matrix M,  let M p be the matrix UL@{{L}} U M. Then, 
the theorem reduces to this: compl(p, Cw, CD) is true iff there is a spanning 
mating II for (Cw U CD) p and an enumeration (ci)iei of t~(CD, II) such that 
((Cw U CD) p, 17) is admissible and incrementally compatible wrt I. 

As in Proof 5.2, we define the rank of matrix Cw U CD along with a set of 
literals p, (Cw U CD) p = UL@{{L}} U Cw U CD a s  

p((cw u F) = (ICDI, ICwI, IPl), 

where ISJ stands for the number of elements in the set S. 
In analogy to Proof 5.2, we prove the latter statement by induction on the 

lexicographic order < on the rank of (Cw U CD) p. 

only-if part. Let p be a set of literals and let Cw, c_ Cw and CD, C_ CD. 
We prove that if compl(p, Cw,, CD,) is tree relative to Cw, then there is a 
spanning mating 17 for ((Cw, U CD, ) U CW) p and an enumeration (ci)ici, of 
n( CD, , II) such that ( ( ( Cw, U CD, ) U Cw ) p, 1I) is admissible and incrementally 
compatible wrt I ' .  Clearly, this implies that if compl(p, Cw, CD) is true relative 
to Cw, then there is a spanning mating II for (Cw U CD) p and an enumeration 
(ci)iei of n(CD, I-i) such that ((Cw U CD) p, I-i) is admissible and incrementally 
compatible wrt I. 

Base. Analogous to Proof 5.2. 

Step. (Cw, UCD,) p ¢ 2; or p((Cw, UCD,) p) ¢ (0,0,0).  Recall that 

(Cw, UCD,) p= U{{L}}UCw, UCD,. 
L6p 

Assume compl(p, Cw, , CD' ) is tree relative to Cw. Consider C E ( Cw, U CD' ) p. 
We distinguish the following three cases. 

(1) c C_ p. Analogous to Proof 5.2. 
(2) c C Cw,. Consider L E c. Since c E Cw,, we have according to Con- 

dition 2 in Definition 5.1 that one of the following two cases holds, where 

C = C l  Me2 . 
(a) L E Cl and L is complementary to some literal of p. 

Consequently, there is spanning mating IIL for the matrix 

ML = U { {K } }  u { {L}} .  
K6p 

(b) L E C2 and there is a set of &clauses CD£ C C D, such that compl(p U 

(L},  Cw,\{c}, CD,L) is tree. 
First, observe, that 

p(, u < u 
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Thus, we obtain by the induction hypothesis that there is spanning mating 
IlL for the matrix 

ME= U {{K}}U{{L}}U((Cw'\{c})UCD's) 
KEp 

and an enumeration (Ci)iCIL of E(CDL , IlL) such that (ML, IlL) is admis-- 
, . L ,  

sible and incrementally compatible wrt IL. 
By (a) and (b), we therefore obtain for all L E c a spanning mating IlL for 

the matrix ML. Clearly, this implies that 

U nL 
LEc 

is a spanning mating for the matrix 

(Cw, UCo, F =  U { {K}}U{{L I L E c}}U((Cw,\tc})UCm,). 
KCp 

Consider the enumeration (ci}ieI obtained by meshing together the enumerations 
(ci)i~Ir of t~(CD,L, IlL) for each L E c2 such that (ci)icI respects the order of 8- 
clauses in each (ci)i~IL. Clearly, (c/)iex is an enumeration of n(CD,, Uc~c IlL). 
Also it is easy to see that ((Cw, U CD,) p, UcecilL) is admissible wrt I ,  since 
(ML, IlL) is admissible for all L E c2. 

Moreover, we have that compl(Justif(ULec2 D~L), Cw to (-JL~c2 CD'c, ;a) is 
false. This implies that compl(~,  M j ,  2J) is false for the matrix 

Mj= U {{K}}UCwU U c,,. 

By [14] and the completeness of the connection method, this implies that there is 
no spanning mating for Mj. Since ((Cw, U ULc¢2 CD'r) p, ULc¢2 IlL) is admis- 
sible wrt I ,  we obtain by Theorem 4.2 that there is no spanning mating for 

M' =CwU U {{K}}u U {{K}}. 
K Co,,seq(U    

Accordingly, we have that ((Cw, U ULEc2 CDtL)P, ULcczIiL) is compatible. 
Applying Theorem 6.2 to this along with (ci)i~i yields that ((Cw, U CD,) p, 
[-JLcc2 IlL) is incrementally compatible wrt I. 

The fact that ULe¢ IlL is a spanning mating for the matrix (Cw, U CD,) p and 
that (ci)i~I is an enumeration of t~(CD,, ULcc IlL) such that ((Cw, U CD,) p, 
ULcc IlL) is admissible and incrementally compatible wrt I implies that the same 
holds for the matrix ( (Cw, tO CD, ) tO Cw) p. 

(3) c E CD,. That is, c = {~as ,  3'~}. 
According to Condition 3, in Definition 5.1, we consider the following two 

cases. 



158 T. SCHAUB 

(a) "76 is complementary to some literal of p. 
Consequently, there is spanning mating 117 for the matrix 

M7 = U {{K}} u {{"r,~}}. 
KEp 

Clearly, II 7 is also a spanning mating for the matrix 

M7= U {{K}}u{{.r~}}UCw, U(C~,\{~})UCw. 
KEp 

(b) There is a set of 5-clauses CD,, C CD, such that {~c~5,"/6} E CD,\CD,, 
and the following two conditions hold. 

(i) compl({~as}, Cw, CD,,) is true. 
Observe that 

p((cwuc,~,,)~, 0 < p((c,,,,, u c,~,)p). 
Thus, we obtain by the induction hypothesis that there is a spanning mating 
II~ for the matrix 

Mc~ = { {~ozs} }  U Cw U CD,, 
and an enumeration (ci)i~i,, of ~(CD,,, 11c0 such that (Ms, 11~) is admis- 
sible and incrementally compatible wrt I". 

(ii) compl(Justif(D" U {5}), Cw U CD,, U {~a6, 76}, O) is false. 
This implies that compl(o, M j, 0) is false for the matrix 

M j =  U {{K}}UCwUCD,,U{-,ol,~,"/5}. 
KEJustif(D"U{5}) 

By [14] and the completeness of the connection method, this implies that 
there is no spanning mating for Mj .  
Since 11~ is a spanning mating for 

Mo~ = { { ~ o ~ } }  U Cw U CD,, 
and (Mc~, 11~) is admissible wrt I", we have that all paths through ~c~5 or 
-~a~ for i E 111 in Mj a r e  complementary. 
Therefore, there is no spanning mating for 

MS=CwU U {{K}}u U {{K}}. 
KCJustif(D"U{5}) K EConseq( D"U{ 5} ) 

Now, (a) and (b) imply that I17 U 11~ is a spanning mating for the matrix 

((cw, uc~,)ucw) ~ 
= U {{K}}u{{-~o~,-rs}}u((cw, uc~,)\{~})ucw. 

KEp 

Consider the enumeration (ci)i~I, obtained from appending the 5-clause {-~c~, 76} 
to the enumeration (ci}icI,,. Clearly, (ci}icI, is an enumeration of r~(CD,, 117, 11a) 
since 117 and II~ refer exclusively to 5-clauses in CD,, U {{~as,'Ys}}. Now, it 
remains to be shown that (((Cw, U UD,) U Cw) p, 117 U 11~) is admissible and 
incrementally compatible wrt I'. 

For admissibility, observe that (UKcp{{K}}  U C w  U CD,,, II 7 U 11a) is admis- 
sible wrt I". Also, we have shown that II 7 U 11~ is a spanning mating for 
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UKcp{{K}} U Cw U CD,, U {{=c~6}}. This implies that (((Cw, U CD,) U 
Cw) p, II.y U II~) is admissible wrt 1 I. 

For compatibility, observe that there is no spanning mating for the matrix 

CwU U {{K}} u U {{K}}. 
K E Justif ( D"U{ 6 } ) K cConseq( D"U{ 5 } ) 

Since ec(CD,, n.y U rio) c_ CD,, U {{--,c~a, 7a}}, we obtain that (Cw U CD,, IL~ U 
II~) is compatible. Consequently, we have that ((Cw, U CD,) U Cw, II.y U rio) is 
compatible. Applying Theorem 6.2 to this along with (ci)iei, yields that ((Cw, U 
CD,) U CN, rl.y u IIc~) is incrementally compatible wrt I'. 

if part. We prove that if there is a spanning mating I1 for (Cw, U CD,) p such 
that ((Cw, U CD,) p, I-i) is admissible and incrementally compatible wrt to some 
index set I ,  then compl(p, Cw,, CD,) is true relative to Cw. 

Base. Analogous to Proof 5.2. 

Step. (Cw, U CD,) p ~= Zi or p((Cw, tOCD,) p) ¢ (0,0,0).  Recall that 

(cw, u c ,y = U{{L}}ucw, uc ,. 
LEp 

Let II be a spanning mating for (Cw, U CD,) p such that ((Cw, to CD,) p, II) 
is admissible wrt I.  Consider c C (Cw, tO CD,)P. We distinguish the following 
three cases. 

(1) c c_ p. Analogous to Proof 5.2. 

(2) c E Cw,. Consider L E c. Clearly, II is also a spanning mating for the 
matrix 

= U { {K} }  u { {L}}  u uC ,) 
KEp 

such that (ML, rI) is admissible and incrementally compatible wrt I. That is, 
each path through ML contains a connection from II. Then, one of the following 
two cases holds. 

(a) L is complementary to some literal of p. 
(b) By rewriting ML, we have that II is a spanning mating for the matrix 

((cw,\{c}) uc ,y 
such that (((Cw, \{c})UCD,)pu{L}, II) is admissible and incrementally com- 
patible wrt I. Observe that 

p(((Cw,\{c}) U C~,yu{L 0 < p((CW, U CD, y). 
Thus, we obtain by the induction hypothesis that compl(p U {L}, Cw,\{c}, 
CD,) is true. 
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Since ((Cw, U Co,) p, H) is incrementally compatible wrt I,  there is no span- 
ning mating for 

cw u U{/~,} u U{-r~,}. 
i E I  i E I  

Since ((Cw, U Co,) p, H) is admissible wrt I,  we obtain by Theorem 4.2, that 
there is no spanning mating for the matrix 

c~ u U{/~,} u U{ -~ , - r~ } .  
i E I  i E I  

Let I '  = (i  E I I (~o~6~, 3'6~ } E CD, } be set of indexes of all 5-clauses in CD,. 
Clearly, there is also no spanning mating for the matrix 

i E I  I i E I  

By [14] and the correctness of the connection method, this implies that 

c o m p l ( z ,  C w  U U{fl6i} u U {-~0%,g,6,},~)is false. 
i E I  I iEU  

This implies that 

compl( U {136~},Cw u U {-,a6~,76~},~) is false. 
i E I  1 i E l  t 

That is, compl(Justif(D') ,  Cw U CD,, ~) is false. 
Since both cases of Condition 2, in Definition 5.1 are covered, we have that 

compl(p, Cw,, CD,) is true. 
(3) c E Co,. Without loss of generality, we assume that c is necessary for 

the complementarity of (Cw, U CD,) p. That is, H is no spanning mating for 
(Cw, u CD,)~\{~}. 

To show that compl(p, Cw,, Co,) is true, we reduce this problem by apply- 
ing Condition 2, in Definition 6.2 to all clauses c E Cw,. As a consequence, 
compl(p, Cw,, CD,) is true iff compl(pUpw,, ~, CD,) is true for all noncomple- 
mentary paths p tO Pw' where Pw, is a path through Cw,. That is, we have all 
such paths p U Pw, and all 7r E I I  that 7r M (p U Pw') = ;~. 

Thus, in what follows, we show that compl(p U pw,, ;~, CD,) is true relative 
to Cw for all noncomplementary path p U Pw'. 

Consider c = {-~o~6~, 76~ ). We distinguish the following two cases. 
(a) By assumption, II is a spanning mating for the matrix 

{{'7~,}} u (Cw, u CD,\{~}) p 

= U { { K } } U C ~ , U { b , ~ , } } u ( C D , \ { ~ } ) .  
t£ Ep 
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Then, II is also a spanning mating for all matrices 

U { { K } }  u {{0,6~}} u (CD,\{c}), 
[ (  E pUp w,  

for all noncomplementary paths pUpw, (where Pw' is a path through Cw,). 
Now, all paths through such a matrix are of the form 

pUPw, U {p ip  E {-,o~,'7} E CD,\{c}} U {'7,h}. 
By assumption, some of these paths are not complementary without "Y6~. 
Since 76i cannot be complementary to any literal in {# ] # E {~c~,"/} E 
CD,\{c}}, we have that 3'6i must be complementary to some negated literal 
in p U Pw,. 

(b) By assumption, 1-I is a spanning mating for the matrix {{~c~6~}} U (Cw, U 
CD,\{C}) p. Also, ({{-'c~6~}} U (Cw, U CD,\{c})P, II) is admissible and 
incrementally compatible wrt {j [ j < i}. Let CD,, = {{-~o~j, 7~j } [ J < i}. 
By admissibility, II is thus a spanning mating for the matrix 

(Cw U CD,,){~}. 
In addition, 

((Cw U C~,,){-~'~ } , r~) 
is admissible and incrementally compatible wrt {j I J < i}. By the induction 
hypothesis, this implies that compl({-~a6~}, Cw, CD,,) is true. 
Since ((Cw, U CD,) p, II) is incrementally compatible wrt I and {j I J ~< i} 
C_ I, there is no spanning mating for the matrix 

Cw u U{,%} u 
j<~ i j<~ i 

Since ((Cw, U CD,\{c}) p, II) is admissible wrt I and {j I J < i} C I, we 
obtain by Theorem 4.2, that there is no spanning mating for the matrix 

cw u U } u U % }. 
j<~i j 4 i  

By [14] and the correctness of the connection method, this implies that 

compl(¢g, Cw u U{fl% } u U{-,c~j, 76j},2 0 is false. 
j<~i j 4 i  

This implies that 

compl (U{ /36 ,} ,Cw U U{~c~6j,,y6,},2~ ) is false. 
--j<~i j<~i 

That is, compl(Justif(D" U {6}), Cw U CD,, U {-,o~6, "y6}, 2~) is false. 

We have shown in (a) that ~,~ is complementary to some literal in p U Pw, 
(where Pw' is a path through CN,). For CD,, = {{-,o~j,3,% } I J < i}, we 
have shown in (b) that compl({-~oz6~}, Cw, CD,,) is true and compl(Justif(D" U 
{6}),Cw U CD,, U {-~o~6,~/6},~). Therefore, compl(p U pw,,2~,CD,) is true 
for all noncomplementary paths p U Pw,. As shown above, this implies that 
compl(p, Cw,, CD,) is tree. 
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Notes 

1 [11] essentially marries and extends the work found in [10] and [35]. Moreover, constrained 
default logic, as introduced in [11], subsumes the variants introduced in [10] and [35]. 

2 The restriction to consistent set of facts is not really necessary, but it simplifies matters. 
3 We discuss semi-monotonicity in detail in Section 3. 
4 For a general and thorough account on the differences between Reiter's and constrained default 

logic, we refer the reader to [11]. 
5 Observe that both conditions coincide for normal default rules, which (roughly) explains why 

both approaches coincide in the case of normal default theories. 
6 The notion of groundedness was first explicated for default logic in [41], although it was already 

present in [30]. Groundedness was also studied in [20] in the case of autoepistemic logic. 
7 These projections extend to sets of default rules in the obvious way. 

See Theorem A. 1 for a formal formulation. 
9 For simplicity, we introduce only two new propositional letters, since gl is a normal default 

rule. 
10 In fact, this has been shown in [33] for regular as well as constrained default logic. 
11 In the sequel, we simply say literal instead of literal occurrences; the latter allow for distin- 

guishing between identical literals in different clauses. 
12 As pointed out by one the referees, an alternative approach is to view the connection method 

as a meta-theoretic approach. To this end, one could incorporate default rules by means of so- 
called theory connections, as used for instance in [3] for incorporating equality or induction. We 
have not pursued this line of inquiry since it makes the use of existing automated theorem-proving 
technology more difficult. 

13 Without loss of generality, we deal with atomic queries only, since any query can be trans- 
formed into 'atomic format' in the spirit of transformation r (cf. Section 2). 

14 Recall that we deal with literal occurrences. 
15 For illustration, we often explicate the respective &clauses rather than expressing things in 

terms of indexes. 
16 Observe that we omit in (4.9) the clauses {Ae 1 } and {Ca2} corresponding to C j ,  since 81 and 

g2 are normal default rules. 
17 Observe that we omit the clauses {Ae2} and {E~3} due to the fact that 82 and g3 are normal 

default rules. 
l~ See Definition A.1 for a formal definition. 
19 This is so because there may be an exponential number of extensions in the worst case. 
2o For simplicity, we assume in what follows that compl(p, M )  is always relative to the original 

set of w-clauses C w .  
21 That is, for any non-empty path p and any (unit-)clause containing a single literal L we can 

restrict ourselves either to testing (2a) or (2b). This however renders the choice in (2) a 'don't 
know'-choice (see below). 
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22 Recall that we want to stick as close as possible to existing technologies, so that we refrain 
from making additional changes. 

23 Recall that WD, = {as --+ 78 [ (c~6 : fl6)/"/6 C D'} for any subset D' of D. 

24 As above, we assume in what follows that compl(p, Cw,, CD,) is relative to Cw. 
25 Recall that we do not have to add the justification to the path in the case of normal default 

rules. 
26 Observe that this does not render Reiter's procedure incomplete, since neither A nor C should 

be derivable in this case. 
27 This is the compatible version of the 'knowledge base' s t u d e n t s .  
28 Thanks to Richard O'Keefe, the author of the count program. 
29 Let Form(~) be the asserted formula and Supp(~) the support of an assertion ~: if (1 , . . . ,  ~ E 

T'h(S) and Form(~l), . . . ,  Form(~,~) b- a then (a, ~Ji~l supp(~i)) E T'h(S). 

3o In what follows, we focus on the approach given for constrained default logic. 
31 See Definition A.1 for a formal definition. 
32 Recall that compl(p, M) is always relative to the original set of w-clauses Cw. 
33 Reasoning by contraposition would be an alternative to prove the same result. 
34 Reasoning by contraposition would be an alternative to prove the same result. 

References 

1. Baader, E and Hollunder, B.: Embedding defaults into terminological knowledge representation 
formalisms, in B. Nebel, C. Rich, and W. Swartout (eds), Proc. 3rd Int. Conf. Principles of 
Knowledge Representation and Reasoning, Cambridge, MA, pp. 306-317 October 1992. 

2. Besnard, R, Quiniou, R. and Quinton, R: A theorem-prover for a decidable subset of default 
logic, in Proc. AAAI Nat. Conf. Artificial Intelligence, 1983, pp. 27-30. 

3. Bibel, W.: Automated Theorem Proving, 2nd edn, Vieweg, Braunschweig, 1987. 
4. Brass, S.: Deduction with supemormal defaults, in R Schmitt, G. Brewka and K. Jantke (eds), 

Nonmonotonic and Inductive Logic, Springer, Berlin, 1991, pp. 153-174. 
5. Brewka, G.: Cumulative default logic: In defense of nonmonotonic inference rules, Artificial 

Intelligence 50(2) (1991), 183-205. 
6. Brewka, G.: Nonmonotonic Reasoning: Logical Foundations of Commonsense, Cambridge 

University Press, Cambridge, 1991. 
7. Brewka, G.: Adding priorities and specificity to default logic, in L. Pereira and D. Pearce (eds), 

European Workshop on Logics in Artificial Intelligence (JELIA'94), Springer, Berlin, 1994. 
8. Cadoli, M., Eiter, T. and Gottlob, G.: Default logic as a query language, in J. Doyle, R 

Torasso and E. Sandewall (eds), Proc. 4th Int. Conf. Principles of Knowledge Representation 
and Reasoning, 1994. 

9. Cadoli, M. and Schaerf, M.: A survey on complexity results for non-monotonic logics, J. Logic 
Programming 17 (1993). 

10. Delgrande, J. and Jackson, W.: Default logic revisited, in J. Allen, R. Fikes and E. Sandewall 
(eds), Proc. 2nd Int. Conf. Principles of Knowledge Representation and Reasoning, Morgan 
Kaufmann, 1991, pp. 118-127. 

11. Delgrande, J., Schaub, T. and Jackson, W.: Alternative approaches to default logic, Artificial 
Intelligence 70 (1994), 167-237. 

12. Dimopoulos, Y.: The computational value of joint consistency, in L. Pereira and D. Pearce 
(eds), European Workshop on Logics in Artificial Intelligence, Springer, Berlin, 1994, pp. 50- 
65. 

13. Doyle, J.: A truth maintenance system, Artificial Intelligence 12 (1979), 231-272. 
14. Eder, E.: Relative Complexities of First Order Calculi, Vieweg, Braunschweig, 1992. 
15. Etherington, D.: Reasoning with Incomplete Information, Research Notes in Ai~ificial Intelli- 

gence, Pitman/Morgan Kaufmann, London, 1988. 
16. Etherington, D. and Reiter, R.: On inheritance hierarchies with exceptions, in Proc. AAAI Nat. 

Conf. Artificial Intelligence, 1983, pp. 104-108. 



164 ~ SCHAUB 

17. Gelfond, M. and Lifschitz, V.: Logic programs with classical negation, in Proc. Int. Conf. 
Logic Programming, 1990, pp. 579-597. 

18. Gottlob, G.: Complexity results for nonmonotonic logics, J. Logic and Computation 2(3) 
(1992), 397-425. 

19. Junker, U. and Konolige, K.: Computing the extensions of autoepistemic and default logic 
with a TMS, in Proc. AAAI Nat. Conf. Artificial Intelligence, 1990. 

20. Konolige, K.: On the relation between default and autoepistemic logic, Artificial Intelligence 
35(2) (1988), 343-382. 

21. Letz, R., Bayed, S., Schumann, J. and Bibel, W. SETHEO: A high-performance theorem prover, 
J. Automated Reasoning 8(2) (1992), 183-212. 

22. Lukaszewicz, W.: Considerations on default logic-an alternative approach, Computational 
Intelligence 4 (1988), 1-16. 

23. Mercer, R.: Using default logic to derive natural language suppositions, in Proc. Canadian 
Soc. Computational Studies of Intelligence Conference, 1988, pp. 14--21. 

24. Moore, R.: Semantical considerations on nonmonotonic logics, Artificial Intelligence 25 (1985), 
75-94. 

25. Neugebauer, G.: From horn clauses to first order logic: A graceful ascent, Technical Report 
AIDA-92-21, FG Intellektik, FB Informatik, TH Darmstadt, 1992. 

26. Neugebauer, G. and Schaub, T.: A pool-based connection calculus, Technical Report AIDA- 
91-2, FG Intellektik, FB Informatik, TH Darmstadt, AlexanderstraBe 10, D-64283 Darmstadt, 
Germany, January 1991. 

27. Niemel~i, I.: Decision procedure for autoepistemic logic, in Proc. Conf. Automated Deduction, 
Argonne, 1988, pp. 675-684. 

28. Niemelfi, I.: A decision method for nonmonotonic reasoning based on autoepistemic reasoning, 
in J. Doyle, P. Torasso and E. Sandewall (eds), Proc. 4th Int. Conf. Principles of Knowledge 
Representation and Reasoning, Morgan Kaufmann, 1994, pp. 473--484. 

29. Poole, D., Goebel, R. and Aleliunas, R.: Theorist: A logical reasoning system for defaults 
and diagnosis, in N. Cercone and G. McCalla (eds), The Knowledge Frontier: Essays in the 
Representation of Knowledge, Chapter 13, Springer, New York, 1987, pp. 331-352. 

30. Reiter, R.: A logic for default reasoning, Artificial Intelligence 13(1-2) (1980), 81-132. 
31. Reiter, R.: A theory of diagnosis from first principles, Artificial Intelligence 32(1) (1987), 

57-96. 
32. Risch, V.: Les Tableaux Analytiques au Service des Logiques de Defauts, PhD Thesis, Uni- 

versit6 Aix-Marseille II, G.I.A., Parc Scientifique et Technologique de Luminy, April 1993. 
33. Rothschild, A.: Algorithmische Untersuchungen zu Defaultlogiken, Master Thesis, FG Intellek- 

tik, FB Informatik, TH Darmstadt, AlexanderstraBe 10, D-64283 Darmstadt, 1993. 
34. Schaub, T.: Assertional default theories: A semantical view, in J. Allen, R. Fikes and E. 

Sandewall (eds), Proc. 2nd Int. Conf. Principles of Knowledge Representation and Reasoning, 
Morgan Kaufmann, 1991, pp. 496-506. 

35. Schaub, T.: On commitment and cumulativity in default logics, in R. Krnse and P. Siegel (eds), 
Proc. European Conf. Symbolic and Quantitative Approaches to Uncertainty, Springer, Berlin, 
1991, pp. 304-309. 

36. Schaub, T.: Considerations on Default Logics, PhD Thesis, Technische Hochshule Darmstadt, 
AlexanderstraBe 10, D-64283 Darmstadt, Germany, November 1992. 

37. Schaub, T.: On constrained default theories, in B. Neumann (ed.), Proc. European Conf. on 
Artificial Intelligence, Wiley, New York, 1992, pp. 304-308. 

38. Schaub, T.: Variations of constrained default logic, in M. Clarke, R. Kruse and S. Moral (eds), 
Proc. European Conf. Symbolic and Quantitative Approaches to Reasoning and Uncertainty, 
Springer, Berlin, 1993, pp. 312-317. 

39. Schaub, T.: Computing queries from prioritized default theories, in Z. Ras and M. Zemankova 
(eds), 8th Int. Syrup. Methodologies for Intelligent Systems, Springer, Berlin, 1994, pp. 584- 
593. 

40. Schaub, T. and Thielscher, M.: A method for skeptical reasoning in constrained default logic, 
Technical Report, FG Intellektik, FB Informatik, TH Darmstadt, 1994. 



QUERY ANSWERING IN DEFAULT LOGICS 165 

4.1. Schwind, C.: A tableaux-based theorem prover for a decidable subset of default logic, in M. 
E. Stickel (ed.), CADE-IO, Springer, Berlin, 1990. 

42. Schwind, C. and Risch, V.: A tableaux-based characterization for default logic, in R. Kruse 
(ed.), Proc. European Conf. Symbolic and Quantitative Approaches to Uncertainty, Springer, 
Berlin, 1991, pp. 310-317. 

43. Slaney, J. SCOTT: A model-guided theorem prover, in Proc. Int. Joint Conf. on Artificial 
Intelligence, 1993, pp. 109-114. 

44. Stickel, M.: A Prolog technology theorem prover, New Generation Computing 2 (1984), 371- 
383. 

45. Thielscher, M. and Schaub, T.: Default reasoning by deductive planning, J. Automated Rea- 
soning 15(1) (1995), 1-40. 

46. Zhang, A. and Marek, W.: On the classification and existence of structures in default logic, 
Fundamenta Informaticae 8(4) (1990), 485-499. 


